1. Nondeterministically guess a solution (called a certificate) 2. Check whether the solution solves the problem (called verification)
|
|
|
- Alexia Clara Hodges
- 10 years ago
- Views:
Transcription
1 Some N P problems Computer scientists have studied many N P problems, that is, problems that can be solved nondeterministically in polynomial time. Traditionally complexity question are studied as languages: the cases that satisfy the stated conditions are described by strings in some language L, while those that do not are in L. We need to rephrase our intuitive understanding of the problem in terms of a language.
2 The class N P The class N P is the set of all languages that are polynomially decidable by a nondeterministic Turing machine. A nondeterministic algorithm operates in two phases : 1. Nondeterministically guess a solution (called a certificate) 2. Check whether the solution solves the problem (called verification) The second phase is called a verification algorithm and must take polynomial time.
3 SAT problem Example: Reconsider the SAT problem Suppose that a conjunctive normal form expression has length n, with m different literals (variable or negation of a variable): (x 1 x 2 ) (x 3 x 4 ) } {{ } n Since m < n, we take n as the problem size. We encode the conjunctive normal form expression as a string for a Turing machine: Σ = {x,,, (, ),, 0, 1} and the subscript of x is encoded as binary number: (x1 x 10) (x11 x100)
4 Example (continued): Since the subscript cannot be larger than m, the maximum length of any subscript is log 2 m. So, the the maximum encoded length of an n-symbol conjuctive normal form expression is O(nlogn) O(n 2 ). The next step is to nondeterministically create a certificate (assignments for the variables). This can be done in O(n) time (binary decision tree with 2 n leaves and O(n) height). The verification algorithm takes O(n 3 ) time: we check if the certificate makes the expression true (the encoded problem is O(n 2 ) and for each of the n variables we have to go through the entire encoded problem). SAT N P.
5 The CLIQUE problem Example: CLIQUE problem Let G = (V, E) be an undirected graph with vertices v 1, v 2,..., v n. A k-clique is a subset V k 2 V, such that there is an edge between every pair of vertices v i, v j V k. The clique problem is to decide if, for a given k, G has a k-clique. A deterministic search can examine all the elements of 2 V (exponential time-complexity). A nondeterministic algorithm guesses the correct subset (creating a certificate) and verifies the solution in deterministic polynomial time. CLIQUE N P.
6 N P problems There are many other such problems and all share the same characteristics: 1. All problems are in N P and have simple nondeterministic solutions. 2. All problems have deterministic solutions with exponential time complexity. One way to unify different cases is to see if we can reduce them to each other, in the sense if one is tractable, the others will tractable also. Cook-Karpe thesis: A problem that is in P is called tractable.
7 Polynomial time reduction Definition A language L 1 is said to be polynomial-time reducible to another language L 2 if there exists a deterministic Turing machine by which any w 1 in the alphabet of L 1 can be transformed in polynomial time to a w 2 in the alphabet of L 2 in such a way that w 1 L 1 if and only if w 2 L 2.
8 Polynomial time reduction Example: SAT problem is polynomial-time reducible to 3SAT. A restricted type of SAT is the 3SAT problem, in which each clause can have at most three literals: e 1 = (x 1 x 2 x 3 x 4 ) We introduce a new variable z and construct e 2 = (x 1 x 2 z) (x 3 x 4 z) If e 1 is true, one of the x 1, x 2, x 3, x 4 must be true. If x 1 x 2 is true, we choose z = 0, and e 2 is true. If x 3 x 4 = 1, we can choose z = 1 to satisfy e 2. Conversely, if e 2 is true, e 1 must also be true, so for satisfiability, e 1 and e 2 are equivalent. We run once through the expression (length n) and add new variables. The reduction runs in O(n).
9 Polynomial time reduction Example: 3SAT problem is polynomial-time reducible to CLIQUE. Consider e = (x 1 x 2 x 3 ) ( x 1 x 2 x 3 ) ( x 1 x 2 x 3 ) (x 1 x 2 x 3 ) We draw a graph in which each clause is represented by a group of three vertices and each literal is associated with one of the vertices. For each vertex in a group, we put an edge to all vertices of the other groups, unless the two associated literals are complements. Notice that the subgraph with ( x 2 ) 1, (x 3 ) 2, (x 3 ) 3, (x 1 ) 4 is a 4-clique and that x 2 = x 3 = x 1 = 1 is a variable assignment that satisfies e. It can be shown that the 3SAT problem can be satisfied if and only if the associated graph has a k-clique. The reduction can be done in deterministically polynomial time.
10 Polynomial time reduction The point of these polynomial time reductions is that we can now look at a given problem in several ways: Suppose we conjecture that SAT is tractable. If this is difficult to prove, we might try the simpler 3SAT case. If this does not work either, we can try to find an efficient algorithm for the CLIQUE problem. If any of the options can be shown to be tractable, we can claim that SAT is tractable.
11 N P-completeness and an open question There are a number of problems that are central to complexity study and are such that, if we completely understood one of them, we would understand the major issue involved in tractability. Definition A language L is said to be N P-complete if L N P and every L 1 N P is polynomial-time reducible to L. It follows from this definition that if L is N P-complete and polynomial-time reducible to L 1, then L 1 is also N P-complete. If we can find one deterministic polynomial-time algorithm for any N P-complete language, then every language in N P is also in P, that is, P = N P.
12 N P-completeness and an open question Do efficient algorithms exists for such problems? None have been found yet. This puts N P-completeness in the center of the question of the tractability of many important problems. The next result is known as Cook s theorem. Theorem The SAT problem is N P-complete. For every configuration sequence of a Turing machine one can construct a conjunctive normal form expression that is satisfiable if and only if there is a sequence of configurations leading to acceptance.
13 N P-completeness and an open question If we accept Cook s theorem, we immediately have a number of N P-complete problems: We have shown that SAT can be reduced to 3SAT, and that 3SAT can be reduced to CLIQUE. Therefore, 3SAT and CLIQUE are both N P-complete. There are many more problems that are known to be N P-complete. Efficient algorithms for any of these have been tried to find, so far without success. This leads us to conjecture that P N P, and that many important problems are intractable. P versus N P remains the fundamental open problem in computer science.
14 References LINZ, P. An introduction to Formal Languages and Automata. Jones and Bartlett Learning, 2012.
Page 1. CSCE 310J Data Structures & Algorithms. CSCE 310J Data Structures & Algorithms. P, NP, and NP-Complete. Polynomial-Time Algorithms
CSCE 310J Data Structures & Algorithms P, NP, and NP-Complete Dr. Steve Goddard [email protected] CSCE 310J Data Structures & Algorithms Giving credit where credit is due:» Most of the lecture notes
Lecture 7: NP-Complete Problems
IAS/PCMI Summer Session 2000 Clay Mathematics Undergraduate Program Basic Course on Computational Complexity Lecture 7: NP-Complete Problems David Mix Barrington and Alexis Maciel July 25, 2000 1. Circuit
NP-complete? NP-hard? Some Foundations of Complexity. Prof. Sven Hartmann Clausthal University of Technology Department of Informatics
NP-complete? NP-hard? Some Foundations of Complexity Prof. Sven Hartmann Clausthal University of Technology Department of Informatics Tractability of Problems Some problems are undecidable: no computer
OHJ-2306 Introduction to Theoretical Computer Science, Fall 2012 8.11.2012
276 The P vs. NP problem is a major unsolved problem in computer science It is one of the seven Millennium Prize Problems selected by the Clay Mathematics Institute to carry a $ 1,000,000 prize for the
Introduction to Logic in Computer Science: Autumn 2006
Introduction to Logic in Computer Science: Autumn 2006 Ulle Endriss Institute for Logic, Language and Computation University of Amsterdam Ulle Endriss 1 Plan for Today Now that we have a basic understanding
CSC 373: Algorithm Design and Analysis Lecture 16
CSC 373: Algorithm Design and Analysis Lecture 16 Allan Borodin February 25, 2013 Some materials are from Stephen Cook s IIT talk and Keven Wayne s slides. 1 / 17 Announcements and Outline Announcements
On the Relationship between Classes P and NP
Journal of Computer Science 8 (7): 1036-1040, 2012 ISSN 1549-3636 2012 Science Publications On the Relationship between Classes P and NP Anatoly D. Plotnikov Department of Computer Systems and Networks,
The Classes P and NP
The Classes P and NP We now shift gears slightly and restrict our attention to the examination of two families of problems which are very important to computer scientists. These families constitute the
NP-Completeness. CptS 223 Advanced Data Structures. Larry Holder School of Electrical Engineering and Computer Science Washington State University
NP-Completeness CptS 223 Advanced Data Structures Larry Holder School of Electrical Engineering and Computer Science Washington State University 1 Hard Graph Problems Hard means no known solutions with
NP-Completeness and Cook s Theorem
NP-Completeness and Cook s Theorem Lecture notes for COM3412 Logic and Computation 15th January 2002 1 NP decision problems The decision problem D L for a formal language L Σ is the computational task:
P versus NP, and More
1 P versus NP, and More Great Ideas in Theoretical Computer Science Saarland University, Summer 2014 If you have tried to solve a crossword puzzle, you know that it is much harder to solve it than to verify
Theoretical Computer Science (Bridging Course) Complexity
Theoretical Computer Science (Bridging Course) Complexity Gian Diego Tipaldi A scenario You are a programmer working for a logistics company Your boss asks you to implement a program that optimizes the
Tutorial 8. NP-Complete Problems
Tutorial 8 NP-Complete Problems Decision Problem Statement of a decision problem Part 1: instance description defining the input Part 2: question stating the actual yesor-no question A decision problem
Introduction to Algorithms. Part 3: P, NP Hard Problems
Introduction to Algorithms Part 3: P, NP Hard Problems 1) Polynomial Time: P and NP 2) NP-Completeness 3) Dealing with Hard Problems 4) Lower Bounds 5) Books c Wayne Goddard, Clemson University, 2004 Chapter
Chapter. NP-Completeness. Contents
Chapter 13 NP-Completeness Contents 13.1 P and NP......................... 593 13.1.1 Defining the Complexity Classes P and NP...594 13.1.2 Some Interesting Problems in NP.......... 597 13.2 NP-Completeness....................
Why? A central concept in Computer Science. Algorithms are ubiquitous.
Analysis of Algorithms: A Brief Introduction Why? A central concept in Computer Science. Algorithms are ubiquitous. Using the Internet (sending email, transferring files, use of search engines, online
Computer Algorithms. NP-Complete Problems. CISC 4080 Yanjun Li
Computer Algorithms NP-Complete Problems NP-completeness The quest for efficient algorithms is about finding clever ways to bypass the process of exhaustive search, using clues from the input in order
Complexity Classes P and NP
Complexity Classes P and NP MATH 3220 Supplemental Presentation by John Aleshunas The cure for boredom is curiosity. There is no cure for curiosity Dorothy Parker Computational Complexity Theory In computer
Discuss the size of the instance for the minimum spanning tree problem.
3.1 Algorithm complexity The algorithms A, B are given. The former has complexity O(n 2 ), the latter O(2 n ), where n is the size of the instance. Let n A 0 be the size of the largest instance that can
SIMS 255 Foundations of Software Design. Complexity and NP-completeness
SIMS 255 Foundations of Software Design Complexity and NP-completeness Matt Welsh November 29, 2001 [email protected] 1 Outline Complexity of algorithms Space and time complexity ``Big O'' notation Complexity
Quantum and Non-deterministic computers facing NP-completeness
Quantum and Non-deterministic computers facing NP-completeness Thibaut University of Vienna Dept. of Business Administration Austria Vienna January 29th, 2013 Some pictures come from Wikipedia Introduction
CAD Algorithms. P and NP
CAD Algorithms The Classes P and NP Mohammad Tehranipoor ECE Department 6 September 2010 1 P and NP P and NP are two families of problems. P is a class which contains all of the problems we solve using
Automata Theory. Şubat 2006 Tuğrul Yılmaz Ankara Üniversitesi
Automata Theory Automata theory is the study of abstract computing devices. A. M. Turing studied an abstract machine that had all the capabilities of today s computers. Turing s goal was to describe the
Notes on Complexity Theory Last updated: August, 2011. Lecture 1
Notes on Complexity Theory Last updated: August, 2011 Jonathan Katz Lecture 1 1 Turing Machines I assume that most students have encountered Turing machines before. (Students who have not may want to look
Welcome to... Problem Analysis and Complexity Theory 716.054, 3 VU
Welcome to... Problem Analysis and Complexity Theory 716.054, 3 VU Birgit Vogtenhuber Institute for Software Technology email: [email protected] office hour: Tuesday 10:30 11:30 slides: http://www.ist.tugraz.at/pact.html
Why Study NP- hardness. NP Hardness/Completeness Overview. P and NP. Scaling 9/3/13. Ron Parr CPS 570. NP hardness is not an AI topic
Why Study NP- hardness NP Hardness/Completeness Overview Ron Parr CPS 570 NP hardness is not an AI topic It s important for all computer scienhsts Understanding it will deepen your understanding of AI
MATHEMATICS: CONCEPTS, AND FOUNDATIONS Vol. III - Logic and Computer Science - Phokion G. Kolaitis
LOGIC AND COMPUTER SCIENCE Phokion G. Kolaitis Computer Science Department, University of California, Santa Cruz, CA 95064, USA Keywords: algorithm, Armstrong s axioms, complete problem, complexity class,
Generating models of a matched formula with a polynomial delay
Generating models of a matched formula with a polynomial delay Petr Savicky Institute of Computer Science, Academy of Sciences of Czech Republic, Pod Vodárenskou Věží 2, 182 07 Praha 8, Czech Republic
Complexity Theory. IE 661: Scheduling Theory Fall 2003 Satyaki Ghosh Dastidar
Complexity Theory IE 661: Scheduling Theory Fall 2003 Satyaki Ghosh Dastidar Outline Goals Computation of Problems Concepts and Definitions Complexity Classes and Problems Polynomial Time Reductions Examples
Introduction to computer science
Introduction to computer science Michael A. Nielsen University of Queensland Goals: 1. Introduce the notion of the computational complexity of a problem, and define the major computational complexity classes.
2. (a) Explain the strassen s matrix multiplication. (b) Write deletion algorithm, of Binary search tree. [8+8]
Code No: R05220502 Set No. 1 1. (a) Describe the performance analysis in detail. (b) Show that f 1 (n)+f 2 (n) = 0(max(g 1 (n), g 2 (n)) where f 1 (n) = 0(g 1 (n)) and f 2 (n) = 0(g 2 (n)). [8+8] 2. (a)
Introduction to NP-Completeness Written and copyright c by Jie Wang 1
91.502 Foundations of Comuter Science 1 Introduction to Written and coyright c by Jie Wang 1 We use time-bounded (deterministic and nondeterministic) Turing machines to study comutational comlexity of
One last point: we started off this book by introducing another famously hard search problem:
S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 261 Factoring One last point: we started off this book by introducing another famously hard search problem: FACTORING, the task of finding all prime factors
Tetris is Hard: An Introduction to P vs NP
Tetris is Hard: An Introduction to P vs NP Based on Tetris is Hard, Even to Approximate in COCOON 2003 by Erik D. Demaine (MIT) Susan Hohenberger (JHU) David Liben-Nowell (Carleton) What s Your Problem?
Mathematics for Algorithm and System Analysis
Mathematics for Algorithm and System Analysis for students of computer and computational science Edward A. Bender S. Gill Williamson c Edward A. Bender & S. Gill Williamson 2005. All rights reserved. Preface
Diagonalization. Ahto Buldas. Lecture 3 of Complexity Theory October 8, 2009. Slides based on S.Aurora, B.Barak. Complexity Theory: A Modern Approach.
Diagonalization Slides based on S.Aurora, B.Barak. Complexity Theory: A Modern Approach. Ahto Buldas [email protected] Background One basic goal in complexity theory is to separate interesting complexity
Lecture 1: Oracle Turing Machines
Computational Complexity Theory, Fall 2008 September 10 Lecture 1: Oracle Turing Machines Lecturer: Kristoffer Arnsfelt Hansen Scribe: Casper Kejlberg-Rasmussen Oracle TM Definition 1 Let A Σ. Then a Oracle
Lecture 2: Universality
CS 710: Complexity Theory 1/21/2010 Lecture 2: Universality Instructor: Dieter van Melkebeek Scribe: Tyson Williams In this lecture, we introduce the notion of a universal machine, develop efficient universal
The Classes P and NP. [email protected]
Intractable Problems The Classes P and NP Mohamed M. El Wakil [email protected] 1 Agenda 1. What is a problem? 2. Decidable or not? 3. The P class 4. The NP Class 5. TheNP Complete class 2 What is a
1 Definitions. Supplementary Material for: Digraphs. Concept graphs
Supplementary Material for: van Rooij, I., Evans, P., Müller, M., Gedge, J. & Wareham, T. (2008). Identifying Sources of Intractability in Cognitive Models: An Illustration using Analogical Structure Mapping.
NP-completeness and the real world. NP completeness. NP-completeness and the real world (2) NP-completeness and the real world
-completeness and the real world completeness Course Discrete Biological Models (Modelli Biologici Discreti) Zsuzsanna Lipták Imagine you are working for a biotech company. One day your boss calls you
Chapter 1. NP Completeness I. 1.1. Introduction. By Sariel Har-Peled, December 30, 2014 1 Version: 1.05
Chapter 1 NP Completeness I By Sariel Har-Peled, December 30, 2014 1 Version: 1.05 "Then you must begin a reading program immediately so that you man understand the crises of our age," Ignatius said solemnly.
Notes on NP Completeness
Notes on NP Completeness Rich Schwartz November 10, 2013 1 Overview Here are some notes which I wrote to try to understand what NP completeness means. Most of these notes are taken from Appendix B in Douglas
Computational complexity theory
Computational complexity theory Goal: A general theory of the resources needed to solve computational problems What types of resources? Time What types of computational problems? decision problem Decision
Complexity Theory. Jörg Kreiker. Summer term 2010. Chair for Theoretical Computer Science Prof. Esparza TU München
Complexity Theory Jörg Kreiker Chair for Theoretical Computer Science Prof. Esparza TU München Summer term 2010 Lecture 8 PSPACE 3 Intro Agenda Wrap-up Ladner proof and time vs. space succinctness QBF
Lecture 19: Introduction to NP-Completeness Steven Skiena. Department of Computer Science State University of New York Stony Brook, NY 11794 4400
Lecture 19: Introduction to NP-Completeness Steven Skiena Department of Computer Science State University of New York Stony Brook, NY 11794 4400 http://www.cs.sunysb.edu/ skiena Reporting to the Boss Suppose
Turing Machines: An Introduction
CIT 596 Theory of Computation 1 We have seen several abstract models of computing devices: Deterministic Finite Automata, Nondeterministic Finite Automata, Nondeterministic Finite Automata with ɛ-transitions,
Policy Analysis for Administrative Role Based Access Control
Policy Analysis for Administrative Role Based Access Control Amit Sasturkar Ping Yang Scott D. Stoller C.R. Ramakrishnan Department of Computer Science, Stony Brook University, Stony Brook, NY, 11794,
Notes on Complexity Theory Last updated: August, 2011. Lecture 1
Notes on Complexity Theory Last updated: August, 2011 Jonathan Katz Lecture 1 1 Turing Machines I assume that most students have encountered Turing machines before. (Students who have not may want to look
NP-Completeness I. Lecture 19. 19.1 Overview. 19.2 Introduction: Reduction and Expressiveness
Lecture 19 NP-Completeness I 19.1 Overview In the past few lectures we have looked at increasingly more expressive problems that we were able to solve using efficient algorithms. In this lecture we introduce
Every tree contains a large induced subgraph with all degrees odd
Every tree contains a large induced subgraph with all degrees odd A.J. Radcliffe Carnegie Mellon University, Pittsburgh, PA A.D. Scott Department of Pure Mathematics and Mathematical Statistics University
Universality in the theory of algorithms and computer science
Universality in the theory of algorithms and computer science Alexander Shen Computational models The notion of computable function was introduced in 1930ies. Simplifying (a rather interesting and puzzling)
Exponential time algorithms for graph coloring
Exponential time algorithms for graph coloring Uriel Feige Lecture notes, March 14, 2011 1 Introduction Let [n] denote the set {1,..., k}. A k-labeling of vertices of a graph G(V, E) is a function V [k].
The P versus NP Solution
The P versus NP Solution Frank Vega To cite this version: Frank Vega. The P versus NP Solution. 2015. HAL Id: hal-01143424 https://hal.archives-ouvertes.fr/hal-01143424 Submitted on 17 Apr
Nan Kong, Andrew J. Schaefer. Department of Industrial Engineering, Univeristy of Pittsburgh, PA 15261, USA
A Factor 1 2 Approximation Algorithm for Two-Stage Stochastic Matching Problems Nan Kong, Andrew J. Schaefer Department of Industrial Engineering, Univeristy of Pittsburgh, PA 15261, USA Abstract We introduce
On the Unique Games Conjecture
On the Unique Games Conjecture Antonios Angelakis National Technical University of Athens June 16, 2015 Antonios Angelakis (NTUA) Theory of Computation June 16, 2015 1 / 20 Overview 1 Introduction 2 Preliminary
On the independence number of graphs with maximum degree 3
On the independence number of graphs with maximum degree 3 Iyad A. Kanj Fenghui Zhang Abstract Let G be an undirected graph with maximum degree at most 3 such that G does not contain any of the three graphs
Reductions & NP-completeness as part of Foundations of Computer Science undergraduate course
Reductions & NP-completeness as part of Foundations of Computer Science undergraduate course Alex Angelopoulos, NTUA January 22, 2015 Outline Alex Angelopoulos (NTUA) FoCS: Reductions & NP-completeness-
SOLVING NARROW-INTERVAL LINEAR EQUATION SYSTEMS IS NP-HARD PATRICK THOR KAHL. Department of Computer Science
SOLVING NARROW-INTERVAL LINEAR EQUATION SYSTEMS IS NP-HARD PATRICK THOR KAHL Department of Computer Science APPROVED: Vladik Kreinovich, Chair, Ph.D. Luc Longpré, Ph.D. Mohamed Amine Khamsi, Ph.D. Pablo
Outline. NP-completeness. When is a problem easy? When is a problem hard? Today. Euler Circuits
Outline NP-completeness Examples of Easy vs. Hard problems Euler circuit vs. Hamiltonian circuit Shortest Path vs. Longest Path 2-pairs sum vs. general Subset Sum Reducing one problem to another Clique
CMPSCI611: Approximating MAX-CUT Lecture 20
CMPSCI611: Approximating MAX-CUT Lecture 20 For the next two lectures we ll be seeing examples of approximation algorithms for interesting NP-hard problems. Today we consider MAX-CUT, which we proved to
3515ICT Theory of Computation Turing Machines
Griffith University 3515ICT Theory of Computation Turing Machines (Based loosely on slides by Harald Søndergaard of The University of Melbourne) 9-0 Overview Turing machines: a general model of computation
Exact Polynomial-time Algorithm for the Clique Problem and P = NP for Clique Problem
xact Polynomial-time Algorithm for the Clique Problem and P = NP for Clique Problem Kanak Chandra Bora Department of Computer Science & ngineering Royal School of ngineering & Technology, Betkuchi, Guwahati-7810,
Small Maximal Independent Sets and Faster Exact Graph Coloring
Small Maximal Independent Sets and Faster Exact Graph Coloring David Eppstein Univ. of California, Irvine Dept. of Information and Computer Science The Exact Graph Coloring Problem: Given an undirected
The Basics of Graphical Models
The Basics of Graphical Models David M. Blei Columbia University October 3, 2015 Introduction These notes follow Chapter 2 of An Introduction to Probabilistic Graphical Models by Michael Jordan. Many figures
6.045: Automata, Computability, and Complexity Or, Great Ideas in Theoretical Computer Science Spring, 2010. Class 4 Nancy Lynch
6.045: Automata, Computability, and Complexity Or, Great Ideas in Theoretical Computer Science Spring, 2010 Class 4 Nancy Lynch Today Two more models of computation: Nondeterministic Finite Automata (NFAs)
How To Compare A Markov Algorithm To A Turing Machine
Markov Algorithm CHEN Yuanmi December 18, 2007 1 Abstract Markov Algorithm can be understood as a priority string rewriting system. In this short paper we give the definition of Markov algorithm and also
CS 3719 (Theory of Computation and Algorithms) Lecture 4
CS 3719 (Theory of Computation and Algorithms) Lecture 4 Antonina Kolokolova January 18, 2012 1 Undecidable languages 1.1 Church-Turing thesis Let s recap how it all started. In 1990, Hilbert stated a
The Parameterized Complexity of Short Computation and Factorization
The Parameterized Complexity of Short Computation and Factorization Liming Cai and Jianer Chen Department of Computer Science, Texas A & M University College Station, Texas 77843 U.S.A. Rodney G. Downey
CS154. Turing Machines. Turing Machine. Turing Machines versus DFAs FINITE STATE CONTROL AI N P U T INFINITE TAPE. read write move.
CS54 Turing Machines Turing Machine q 0 AI N P U T IN TAPE read write move read write move Language = {0} q This Turing machine recognizes the language {0} Turing Machines versus DFAs TM can both write
ω-automata Automata that accept (or reject) words of infinite length. Languages of infinite words appear:
ω-automata ω-automata Automata that accept (or reject) words of infinite length. Languages of infinite words appear: in verification, as encodings of non-terminating executions of a program. in arithmetic,
1 Definition of a Turing machine
Introduction to Algorithms Notes on Turing Machines CS 4820, Spring 2012 April 2-16, 2012 1 Definition of a Turing machine Turing machines are an abstract model of computation. They provide a precise,
Cycles and clique-minors in expanders
Cycles and clique-minors in expanders Benny Sudakov UCLA and Princeton University Expanders Definition: The vertex boundary of a subset X of a graph G: X = { all vertices in G\X with at least one neighbor
Cloud Computing is NP-Complete
Working Paper, February 2, 20 Joe Weinman Permalink: http://www.joeweinman.com/resources/joe_weinman_cloud_computing_is_np-complete.pdf Abstract Cloud computing is a rapidly emerging paradigm for computing,
Institut für Informatik Lehrstuhl Theoretische Informatik I / Komplexitätstheorie. An Iterative Compression Algorithm for Vertex Cover
Friedrich-Schiller-Universität Jena Institut für Informatik Lehrstuhl Theoretische Informatik I / Komplexitätstheorie Studienarbeit An Iterative Compression Algorithm for Vertex Cover von Thomas Peiselt
A Working Knowledge of Computational Complexity for an Optimizer
A Working Knowledge of Computational Complexity for an Optimizer ORF 363/COS 323 Instructor: Amir Ali Ahmadi TAs: Y. Chen, G. Hall, J. Ye Fall 2014 1 Why computational complexity? What is computational
Lecture 30: NP-Hard Problems [Fa 14]
[I]n his short and broken treatise he provides an eternal example not of laws, or even of method, for there is no method except to be very intelligent, but of intelligence itself swiftly operating the
Two Way F finite Automata and Three Ways to Solve Them
An Exponential Gap between LasVegas and Deterministic Sweeping Finite Automata Christos Kapoutsis, Richard Královič, and Tobias Mömke Department of Computer Science, ETH Zürich Abstract. A two-way finite
Approximated Distributed Minimum Vertex Cover Algorithms for Bounded Degree Graphs
Approximated Distributed Minimum Vertex Cover Algorithms for Bounded Degree Graphs Yong Zhang 1.2, Francis Y.L. Chin 2, and Hing-Fung Ting 2 1 College of Mathematics and Computer Science, Hebei University,
8.1 Min Degree Spanning Tree
CS880: Approximations Algorithms Scribe: Siddharth Barman Lecturer: Shuchi Chawla Topic: Min Degree Spanning Tree Date: 02/15/07 In this lecture we give a local search based algorithm for the Min Degree
Ian Stewart on Minesweeper
Ian Stewart on Minesweeper It's not often you can win a million dollars by analysing a computer game, but by a curious conjunction of fate, there's a chance that you might. However, you'll only pick up
Fairness in Routing and Load Balancing
Fairness in Routing and Load Balancing Jon Kleinberg Yuval Rabani Éva Tardos Abstract We consider the issue of network routing subject to explicit fairness conditions. The optimization of fairness criteria
V. Adamchik 1. Graph Theory. Victor Adamchik. Fall of 2005
V. Adamchik 1 Graph Theory Victor Adamchik Fall of 2005 Plan 1. Basic Vocabulary 2. Regular graph 3. Connectivity 4. Representing Graphs Introduction A.Aho and J.Ulman acknowledge that Fundamentally, computer
Problem Set 7 Solutions
8 8 Introduction to Algorithms May 7, 2004 Massachusetts Institute of Technology 6.046J/18.410J Professors Erik Demaine and Shafi Goldwasser Handout 25 Problem Set 7 Solutions This problem set is due in
Pushdown automata. Informatics 2A: Lecture 9. Alex Simpson. 3 October, 2014. School of Informatics University of Edinburgh [email protected].
Pushdown automata Informatics 2A: Lecture 9 Alex Simpson School of Informatics University of Edinburgh [email protected] 3 October, 2014 1 / 17 Recap of lecture 8 Context-free languages are defined by context-free
Definition 11.1. Given a graph G on n vertices, we define the following quantities:
Lecture 11 The Lovász ϑ Function 11.1 Perfect graphs We begin with some background on perfect graphs. graphs. First, we define some quantities on Definition 11.1. Given a graph G on n vertices, we define
Course Manual Automata & Complexity 2015
Course Manual Automata & Complexity 2015 Course code: Course homepage: Coordinator: Teachers lectures: Teacher exercise classes: Credits: X_401049 http://www.cs.vu.nl/~tcs/ac prof. dr. W.J. Fokkink home:
2.1 Complexity Classes
15-859(M): Randomized Algorithms Lecturer: Shuchi Chawla Topic: Complexity classes, Identity checking Date: September 15, 2004 Scribe: Andrew Gilpin 2.1 Complexity Classes In this lecture we will look
Computability Theory
CSC 438F/2404F Notes (S. Cook and T. Pitassi) Fall, 2014 Computability Theory This section is partly inspired by the material in A Course in Mathematical Logic by Bell and Machover, Chap 6, sections 1-10.
Invitation to Fixed-Parameter Algorithms
Rolf Niedermeier Invitation to Fixed-Parameter Algorithms October 23, 2002 Preface This work is based on my occupation with parameterized complexity and fixed-parameter algorithms which began more than
Classification - Examples
Lecture 2 Scheduling 1 Classification - Examples 1 r j C max given: n jobs with processing times p 1,...,p n and release dates r 1,...,r n jobs have to be scheduled without preemption on one machine taking
Lecture 1: Course overview, circuits, and formulas
Lecture 1: Course overview, circuits, and formulas Topics in Complexity Theory and Pseudorandomness (Spring 2013) Rutgers University Swastik Kopparty Scribes: John Kim, Ben Lund 1 Course Information Swastik
Remarks on the computational complexity of small universal Turing machines
Remarks on the computational complexity of small universal Turing machines Damien Woods School of Mathematics Boole Centre for Research in Informatics, University College Cork, Ireland http://www.bcri.ucc.ie/
Automata and Computability. Solutions to Exercises
Automata and Computability Solutions to Exercises Fall 25 Alexis Maciel Department of Computer Science Clarkson University Copyright c 25 Alexis Maciel ii Contents Preface vii Introduction 2 Finite Automata
