The Classes P and NP. [email protected]
|
|
|
- Tamsin Chase
- 10 years ago
- Views:
Transcription
1 Intractable Problems The Classes P and NP Mohamed M. El Wakil [email protected] 1
2 Agenda 1. What is a problem? 2. Decidable or not? 3. The P class 4. The NP Class 5. TheNP Complete class 2
3 What is a problem? A problem is a question to be answered. What is the value of X/Y? A problem usually has parameters. X, and Y A decision problem, is a version of the problem with only two possible answers: Yes or No! Given two numbers X, and Y, does Y evenly divide X? An instance: a specific problem instance Does 3 evenly divide 6? 3
4 Decidable or not? A decidable problem, is a problem that could be solved using a computer. An undecidable problem, is a problem that t can never be solved using a computer, neither now or in the future. Only decidable problems! 4
5 Classification We need to classify problems in terms of their computability. Three classes: P class NP Class NP Complete class 5
6 P class, wrt Computers Problems with at least one algorithm that solves the problem in polynomial ltime wrt to the input size. Polynomial time The number of steps needed relates polynomially to the size of the input. O(n 2 ), O(n 9 ), O(n c ), where c is a constant. but NOT O(n!), O(2 n ), when n is the size of the input. 6
7 P class, wrt Turing Machines Problems solvable in polynomial time using a Dt Deterministic iiti Turing Machine (DTM) bl belong to the class P. Polynomial time The number of moves needed relates polynomially to the size of the input. n 2, 17n 3, 9n 4, but NOT 2 n DTM A Turing machine with a tape, head, transition function, and a set of states. 7
8 P Problem (MWST) Minimum Weight Spanning Tree Given a weighted graph G, find the minimum weight spanning tree. In other words, convert the given graph into a tree, that includes allthe nodes of the original graph, and minimizes the summation of weights of the edges in the resulting tree. 8
9 MWST Example Problem Instance Source: 9
10 Kruskal's s algorithm The MWST problem belongs bl to the P class of problems, since there is an algorithm that solves it in polynomial ltime. Kruskal's algorithm O(n 2 ) Create a forest F (a set of trees), where each vertex in the graph is a separate tree Create a set S containing all the edges in the graph While S is nonempty Remove an edge with minimum weight from S If that edge connects two different trees, then add it to the forest, combining two trees into a single tree Otherwise discard that edge 10
11 MWST Example Possible Solution Source: 11
12 NP class, wrt Turing Machines Problems solvable in polynomial time using a Non Deterministic Turing Machine (NDTM) belong to the class NP. NDTM A DTM, with two stages of processing: guessing, and checking. 12
13 Non Deterministic Turing Machine Guessing: Guess a solution, and then write it down to the tape. Checking: Evaluate the guess to decide whether it solves the problem or not. The number of guessed solutions, can be either polynomial or exponential. If the number of guessed solutions is polynomial, l then, the NDTM is equivalent to a DTM. 13
14 NP class, wrt Computers Problems that can be solved within an exponential time wrt the input size. This includes problems that can be solved din polynomial time. 14
15 Important A DTM is a NDTM that has a polynomial number of guesses. According to the dfiii definition of NP, the MWST problem is an NP problem. 15
16 NP Problem Example Travelling Salesman Problem (TSP) Given a number of cities and the costs of traveling from any city to any other city, what is the cheapest round trip route that visits each city exactly once andthen returns to the starting city? Source: problem 16
17 Solving the TSP There is no one single algorithm that solves this problem in polynomial time The only way, is to enumerate all possible itineraries and checking them one by one. For n cities, there are n! routes 17
18 Polynomial Time Reduction A problem P1, is polynomially reducible to problem P2, if there is a process that takes an instance of P1 as an input, and outputs a corresponding instance of P2 in polynomial time. P1: a * b P2: ((a+b) 2 a 2 b 2 )/2 18
19 NP Complete Class A problem P is NP Complete If: P is in NP For every problem L in NP, there is a polynomial time reduction from L to P. If P1 is NP Complete, and there is polynomial l time reduction from P1 to P2, then P2 is NP Complete. 19
20 NP complete lt problems family tree 20
21 The NP World Source: 21
22 Intractable Problems The Classes P and NP Mohamed M. El Wakil [email protected] 22
Computer Algorithms. NP-Complete Problems. CISC 4080 Yanjun Li
Computer Algorithms NP-Complete Problems NP-completeness The quest for efficient algorithms is about finding clever ways to bypass the process of exhaustive search, using clues from the input in order
Complexity Classes P and NP
Complexity Classes P and NP MATH 3220 Supplemental Presentation by John Aleshunas The cure for boredom is curiosity. There is no cure for curiosity Dorothy Parker Computational Complexity Theory In computer
CAD Algorithms. P and NP
CAD Algorithms The Classes P and NP Mohammad Tehranipoor ECE Department 6 September 2010 1 P and NP P and NP are two families of problems. P is a class which contains all of the problems we solve using
Page 1. CSCE 310J Data Structures & Algorithms. CSCE 310J Data Structures & Algorithms. P, NP, and NP-Complete. Polynomial-Time Algorithms
CSCE 310J Data Structures & Algorithms P, NP, and NP-Complete Dr. Steve Goddard [email protected] CSCE 310J Data Structures & Algorithms Giving credit where credit is due:» Most of the lecture notes
Outline. NP-completeness. When is a problem easy? When is a problem hard? Today. Euler Circuits
Outline NP-completeness Examples of Easy vs. Hard problems Euler circuit vs. Hamiltonian circuit Shortest Path vs. Longest Path 2-pairs sum vs. general Subset Sum Reducing one problem to another Clique
NP-Completeness. CptS 223 Advanced Data Structures. Larry Holder School of Electrical Engineering and Computer Science Washington State University
NP-Completeness CptS 223 Advanced Data Structures Larry Holder School of Electrical Engineering and Computer Science Washington State University 1 Hard Graph Problems Hard means no known solutions with
1. Nondeterministically guess a solution (called a certificate) 2. Check whether the solution solves the problem (called verification)
Some N P problems Computer scientists have studied many N P problems, that is, problems that can be solved nondeterministically in polynomial time. Traditionally complexity question are studied as languages:
On the Relationship between Classes P and NP
Journal of Computer Science 8 (7): 1036-1040, 2012 ISSN 1549-3636 2012 Science Publications On the Relationship between Classes P and NP Anatoly D. Plotnikov Department of Computer Systems and Networks,
NP-complete? NP-hard? Some Foundations of Complexity. Prof. Sven Hartmann Clausthal University of Technology Department of Informatics
NP-complete? NP-hard? Some Foundations of Complexity Prof. Sven Hartmann Clausthal University of Technology Department of Informatics Tractability of Problems Some problems are undecidable: no computer
Computational complexity theory
Computational complexity theory Goal: A general theory of the resources needed to solve computational problems What types of resources? Time What types of computational problems? decision problem Decision
Quantum and Non-deterministic computers facing NP-completeness
Quantum and Non-deterministic computers facing NP-completeness Thibaut University of Vienna Dept. of Business Administration Austria Vienna January 29th, 2013 Some pictures come from Wikipedia Introduction
OHJ-2306 Introduction to Theoretical Computer Science, Fall 2012 8.11.2012
276 The P vs. NP problem is a major unsolved problem in computer science It is one of the seven Millennium Prize Problems selected by the Clay Mathematics Institute to carry a $ 1,000,000 prize for the
Complexity Theory. IE 661: Scheduling Theory Fall 2003 Satyaki Ghosh Dastidar
Complexity Theory IE 661: Scheduling Theory Fall 2003 Satyaki Ghosh Dastidar Outline Goals Computation of Problems Concepts and Definitions Complexity Classes and Problems Polynomial Time Reductions Examples
Lecture 7: NP-Complete Problems
IAS/PCMI Summer Session 2000 Clay Mathematics Undergraduate Program Basic Course on Computational Complexity Lecture 7: NP-Complete Problems David Mix Barrington and Alexis Maciel July 25, 2000 1. Circuit
MATHEMATICS: CONCEPTS, AND FOUNDATIONS Vol. III - Logic and Computer Science - Phokion G. Kolaitis
LOGIC AND COMPUTER SCIENCE Phokion G. Kolaitis Computer Science Department, University of California, Santa Cruz, CA 95064, USA Keywords: algorithm, Armstrong s axioms, complete problem, complexity class,
Theoretical Computer Science (Bridging Course) Complexity
Theoretical Computer Science (Bridging Course) Complexity Gian Diego Tipaldi A scenario You are a programmer working for a logistics company Your boss asks you to implement a program that optimizes the
Tutorial 8. NP-Complete Problems
Tutorial 8 NP-Complete Problems Decision Problem Statement of a decision problem Part 1: instance description defining the input Part 2: question stating the actual yesor-no question A decision problem
Notes on NP Completeness
Notes on NP Completeness Rich Schwartz November 10, 2013 1 Overview Here are some notes which I wrote to try to understand what NP completeness means. Most of these notes are taken from Appendix B in Douglas
Introduction to Logic in Computer Science: Autumn 2006
Introduction to Logic in Computer Science: Autumn 2006 Ulle Endriss Institute for Logic, Language and Computation University of Amsterdam Ulle Endriss 1 Plan for Today Now that we have a basic understanding
Exponential time algorithms for graph coloring
Exponential time algorithms for graph coloring Uriel Feige Lecture notes, March 14, 2011 1 Introduction Let [n] denote the set {1,..., k}. A k-labeling of vertices of a graph G(V, E) is a function V [k].
Chapter 7 Uncomputability
Chapter 7 Uncomputability 190 7.1 Introduction Undecidability of concrete problems. First undecidable problem obtained by diagonalisation. Other undecidable problems obtained by means of the reduction
Reductions & NP-completeness as part of Foundations of Computer Science undergraduate course
Reductions & NP-completeness as part of Foundations of Computer Science undergraduate course Alex Angelopoulos, NTUA January 22, 2015 Outline Alex Angelopoulos (NTUA) FoCS: Reductions & NP-completeness-
Analysis of Computer Algorithms. Algorithm. Algorithm, Data Structure, Program
Analysis of Computer Algorithms Hiroaki Kobayashi Input Algorithm Output 12/13/02 Algorithm Theory 1 Algorithm, Data Structure, Program Algorithm Well-defined, a finite step-by-step computational procedure
Chapter 6: Graph Theory
Chapter 6: Graph Theory Graph theory deals with routing and network problems and if it is possible to find a best route, whether that means the least expensive, least amount of time or the least distance.
One last point: we started off this book by introducing another famously hard search problem:
S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 261 Factoring One last point: we started off this book by introducing another famously hard search problem: FACTORING, the task of finding all prime factors
CMPSCI611: Approximating MAX-CUT Lecture 20
CMPSCI611: Approximating MAX-CUT Lecture 20 For the next two lectures we ll be seeing examples of approximation algorithms for interesting NP-hard problems. Today we consider MAX-CUT, which we proved to
Welcome to... Problem Analysis and Complexity Theory 716.054, 3 VU
Welcome to... Problem Analysis and Complexity Theory 716.054, 3 VU Birgit Vogtenhuber Institute for Software Technology email: [email protected] office hour: Tuesday 10:30 11:30 slides: http://www.ist.tugraz.at/pact.html
Chapter 11. 11.1 Load Balancing. Approximation Algorithms. Load Balancing. Load Balancing on 2 Machines. Load Balancing: Greedy Scheduling
Approximation Algorithms Chapter Approximation Algorithms Q. Suppose I need to solve an NP-hard problem. What should I do? A. Theory says you're unlikely to find a poly-time algorithm. Must sacrifice one
Introduction to Algorithms. Part 3: P, NP Hard Problems
Introduction to Algorithms Part 3: P, NP Hard Problems 1) Polynomial Time: P and NP 2) NP-Completeness 3) Dealing with Hard Problems 4) Lower Bounds 5) Books c Wayne Goddard, Clemson University, 2004 Chapter
Algorithm Design and Analysis
Algorithm Design and Analysis LECTURE 27 Approximation Algorithms Load Balancing Weighted Vertex Cover Reminder: Fill out SRTEs online Don t forget to click submit Sofya Raskhodnikova 12/6/2011 S. Raskhodnikova;
! Solve problem to optimality. ! Solve problem in poly-time. ! Solve arbitrary instances of the problem. !-approximation algorithm.
Approximation Algorithms Chapter Approximation Algorithms Q Suppose I need to solve an NP-hard problem What should I do? A Theory says you're unlikely to find a poly-time algorithm Must sacrifice one of
Discuss the size of the instance for the minimum spanning tree problem.
3.1 Algorithm complexity The algorithms A, B are given. The former has complexity O(n 2 ), the latter O(2 n ), where n is the size of the instance. Let n A 0 be the size of the largest instance that can
Why Study NP- hardness. NP Hardness/Completeness Overview. P and NP. Scaling 9/3/13. Ron Parr CPS 570. NP hardness is not an AI topic
Why Study NP- hardness NP Hardness/Completeness Overview Ron Parr CPS 570 NP hardness is not an AI topic It s important for all computer scienhsts Understanding it will deepen your understanding of AI
Lecture 19: Introduction to NP-Completeness Steven Skiena. Department of Computer Science State University of New York Stony Brook, NY 11794 4400
Lecture 19: Introduction to NP-Completeness Steven Skiena Department of Computer Science State University of New York Stony Brook, NY 11794 4400 http://www.cs.sunysb.edu/ skiena Reporting to the Boss Suppose
! Solve problem to optimality. ! Solve problem in poly-time. ! Solve arbitrary instances of the problem. #-approximation algorithm.
Approximation Algorithms 11 Approximation Algorithms Q Suppose I need to solve an NP-hard problem What should I do? A Theory says you're unlikely to find a poly-time algorithm Must sacrifice one of three
Applied Algorithm Design Lecture 5
Applied Algorithm Design Lecture 5 Pietro Michiardi Eurecom Pietro Michiardi (Eurecom) Applied Algorithm Design Lecture 5 1 / 86 Approximation Algorithms Pietro Michiardi (Eurecom) Applied Algorithm Design
Quantum Monte Carlo and the negative sign problem
Quantum Monte Carlo and the negative sign problem or how to earn one million dollar Matthias Troyer, ETH Zürich Uwe-Jens Wiese, Universität Bern Complexity of many particle problems Classical 1 particle:
Introduction to computer science
Introduction to computer science Michael A. Nielsen University of Queensland Goals: 1. Introduce the notion of the computational complexity of a problem, and define the major computational complexity classes.
CPSC 211 Data Structures & Implementations (c) Texas A&M University [ 313]
CPSC 211 Data Structures & Implementations (c) Texas A&M University [ 313] File Structures A file is a collection of data stored on mass storage (e.g., disk or tape) Why on mass storage? too big to fit
SIMS 255 Foundations of Software Design. Complexity and NP-completeness
SIMS 255 Foundations of Software Design Complexity and NP-completeness Matt Welsh November 29, 2001 [email protected] 1 Outline Complexity of algorithms Space and time complexity ``Big O'' notation Complexity
The P versus NP Solution
The P versus NP Solution Frank Vega To cite this version: Frank Vega. The P versus NP Solution. 2015. HAL Id: hal-01143424 https://hal.archives-ouvertes.fr/hal-01143424 Submitted on 17 Apr
IE 680 Special Topics in Production Systems: Networks, Routing and Logistics*
IE 680 Special Topics in Production Systems: Networks, Routing and Logistics* Rakesh Nagi Department of Industrial Engineering University at Buffalo (SUNY) *Lecture notes from Network Flows by Ahuja, Magnanti
On the k-path cover problem for cacti
On the k-path cover problem for cacti Zemin Jin and Xueliang Li Center for Combinatorics and LPMC Nankai University Tianjin 300071, P.R. China [email protected], [email protected] Abstract In this paper we
The Union-Find Problem Kruskal s algorithm for finding an MST presented us with a problem in data-structure design. As we looked at each edge,
The Union-Find Problem Kruskal s algorithm for finding an MST presented us with a problem in data-structure design. As we looked at each edge, cheapest first, we had to determine whether its two endpoints
Honors Class (Foundations of) Informatics. Tom Verhoeff. Department of Mathematics & Computer Science Software Engineering & Technology
Honors Class (Foundations of) Informatics Tom Verhoeff Department of Mathematics & Computer Science Software Engineering & Technology www.win.tue.nl/~wstomv/edu/hci c 2011, T. Verhoeff @ TUE.NL 1/20 Information
NP-Completeness I. Lecture 19. 19.1 Overview. 19.2 Introduction: Reduction and Expressiveness
Lecture 19 NP-Completeness I 19.1 Overview In the past few lectures we have looked at increasingly more expressive problems that we were able to solve using efficient algorithms. In this lecture we introduce
Boulder Dash is NP hard
Boulder Dash is NP hard Marzio De Biasi marziodebiasi [at] gmail [dot] com December 2011 Version 0.01:... now the difficult part: is it NP? Abstract Boulder Dash is a videogame created by Peter Liepa and
Can linear programs solve NP-hard problems?
Can linear programs solve NP-hard problems? p. 1/9 Can linear programs solve NP-hard problems? Ronald de Wolf Linear programs Can linear programs solve NP-hard problems? p. 2/9 Can linear programs solve
A Fast Algorithm For Finding Hamilton Cycles
A Fast Algorithm For Finding Hamilton Cycles by Andrew Chalaturnyk A thesis presented to the University of Manitoba in partial fulfillment of the requirements for the degree of Masters of Science in Computer
ONLINE DEGREE-BOUNDED STEINER NETWORK DESIGN. Sina Dehghani Saeed Seddighin Ali Shafahi Fall 2015
ONLINE DEGREE-BOUNDED STEINER NETWORK DESIGN Sina Dehghani Saeed Seddighin Ali Shafahi Fall 2015 ONLINE STEINER FOREST PROBLEM An initially given graph G. s 1 s 2 A sequence of demands (s i, t i ) arriving
Diagonalization. Ahto Buldas. Lecture 3 of Complexity Theory October 8, 2009. Slides based on S.Aurora, B.Barak. Complexity Theory: A Modern Approach.
Diagonalization Slides based on S.Aurora, B.Barak. Complexity Theory: A Modern Approach. Ahto Buldas [email protected] Background One basic goal in complexity theory is to separate interesting complexity
11. APPROXIMATION ALGORITHMS
11. APPROXIMATION ALGORITHMS load balancing center selection pricing method: vertex cover LP rounding: vertex cover generalized load balancing knapsack problem Lecture slides by Kevin Wayne Copyright 2005
5. A full binary tree with n leaves contains [A] n nodes. [B] log n 2 nodes. [C] 2n 1 nodes. [D] n 2 nodes.
1. The advantage of.. is that they solve the problem if sequential storage representation. But disadvantage in that is they are sequential lists. [A] Lists [B] Linked Lists [A] Trees [A] Queues 2. The
The Classes P and NP
The Classes P and NP We now shift gears slightly and restrict our attention to the examination of two families of problems which are very important to computer scientists. These families constitute the
1 Definitions. Supplementary Material for: Digraphs. Concept graphs
Supplementary Material for: van Rooij, I., Evans, P., Müller, M., Gedge, J. & Wareham, T. (2008). Identifying Sources of Intractability in Cognitive Models: An Illustration using Analogical Structure Mapping.
Minesweeper as a Constraint Satisfaction Problem
Minesweeper as a Constraint Satisfaction Problem by Chris Studholme Introduction To Minesweeper Minesweeper is a simple one player computer game commonly found on machines with popular operating systems
Guessing Game: NP-Complete?
Guessing Game: NP-Complete? 1. LONGEST-PATH: Given a graph G = (V, E), does there exists a simple path of length at least k edges? YES 2. SHORTEST-PATH: Given a graph G = (V, E), does there exists a simple
Evaluation of Complexity of Some Programming Languages on the Travelling Salesman Problem
International Journal of Applied Science and Technology Vol. 3 No. 8; December 2013 Evaluation of Complexity of Some Programming Languages on the Travelling Salesman Problem D. R. Aremu O. A. Gbadamosi
8.1 Min Degree Spanning Tree
CS880: Approximations Algorithms Scribe: Siddharth Barman Lecturer: Shuchi Chawla Topic: Min Degree Spanning Tree Date: 02/15/07 In this lecture we give a local search based algorithm for the Min Degree
What are the place values to the left of the decimal point and their associated powers of ten?
The verbal answers to all of the following questions should be memorized before completion of algebra. Answers that are not memorized will hinder your ability to succeed in geometry and algebra. (Everything
Reminder: Complexity (1) Parallel Complexity Theory. Reminder: Complexity (2) Complexity-new
Reminder: Complexity (1) Parallel Complexity Theory Lecture 6 Number of steps or memory units required to compute some result In terms of input size Using a single processor O(1) says that regardless of
CIS 700: algorithms for Big Data
CIS 700: algorithms for Big Data Lecture 6: Graph Sketching Slides at http://grigory.us/big-data-class.html Grigory Yaroslavtsev http://grigory.us Sketching Graphs? We know how to sketch vectors: v Mv
CS5310 Algorithms 3 credit hours 2 hours lecture and 2 hours recitation every week
CS5310 Algorithms 3 credit hours 2 hours lecture and 2 hours recitation every week This course is a continuation of the study of data structures and algorithms, emphasizing methods useful in practice.
Why? A central concept in Computer Science. Algorithms are ubiquitous.
Analysis of Algorithms: A Brief Introduction Why? A central concept in Computer Science. Algorithms are ubiquitous. Using the Internet (sending email, transferring files, use of search engines, online
The K-Observer Problem in Computer Networks
The K-Observer Problem in Computer Networks H. B. Acharya 1, Taehwan Choi 1, Rida A. Bazzi 2, and Mohamed G. Gouda 1,3 1 The University of Texas at Austin, USA 2 Arizona State University, USA 3 The National
A Working Knowledge of Computational Complexity for an Optimizer
A Working Knowledge of Computational Complexity for an Optimizer ORF 363/COS 323 Instructor: Amir Ali Ahmadi TAs: Y. Chen, G. Hall, J. Ye Fall 2014 1 Why computational complexity? What is computational
2. (a) Explain the strassen s matrix multiplication. (b) Write deletion algorithm, of Binary search tree. [8+8]
Code No: R05220502 Set No. 1 1. (a) Describe the performance analysis in detail. (b) Show that f 1 (n)+f 2 (n) = 0(max(g 1 (n), g 2 (n)) where f 1 (n) = 0(g 1 (n)) and f 2 (n) = 0(g 2 (n)). [8+8] 2. (a)
How To Solve The Line Connectivity Problem In Polynomatix
Konrad-Zuse-Zentrum für Informationstechnik Berlin Takustraße 7 D-14195 Berlin-Dahlem Germany RALF BORNDÖRFER MARIKA NEUMANN MARC E. PFETSCH The Line Connectivity Problem Supported by the DFG Research
CSC 373: Algorithm Design and Analysis Lecture 16
CSC 373: Algorithm Design and Analysis Lecture 16 Allan Borodin February 25, 2013 Some materials are from Stephen Cook s IIT talk and Keven Wayne s slides. 1 / 17 Announcements and Outline Announcements
Automata Theory. Şubat 2006 Tuğrul Yılmaz Ankara Üniversitesi
Automata Theory Automata theory is the study of abstract computing devices. A. M. Turing studied an abstract machine that had all the capabilities of today s computers. Turing s goal was to describe the
NP-Completeness and Cook s Theorem
NP-Completeness and Cook s Theorem Lecture notes for COM3412 Logic and Computation 15th January 2002 1 NP decision problems The decision problem D L for a formal language L Σ is the computational task:
Compact Representations and Approximations for Compuation in Games
Compact Representations and Approximations for Compuation in Games Kevin Swersky April 23, 2008 Abstract Compact representations have recently been developed as a way of both encoding the strategic interactions
Chapter 1. Computation theory
Chapter 1. Computation theory In this chapter we will describe computation logic for the machines. This topic is a wide interdisciplinary field, so that the students can work in an interdisciplinary context.
Algebraic Computation Models. Algebraic Computation Models
Algebraic Computation Models Ζυγομήτρος Ευάγγελος ΜΠΛΑ 201118 Φεβρουάριος, 2013 Reasons for using algebraic models of computation The Turing machine model captures computations on bits. Many algorithms
SOLVING NARROW-INTERVAL LINEAR EQUATION SYSTEMS IS NP-HARD PATRICK THOR KAHL. Department of Computer Science
SOLVING NARROW-INTERVAL LINEAR EQUATION SYSTEMS IS NP-HARD PATRICK THOR KAHL Department of Computer Science APPROVED: Vladik Kreinovich, Chair, Ph.D. Luc Longpré, Ph.D. Mohamed Amine Khamsi, Ph.D. Pablo
CSE 326, Data Structures. Sample Final Exam. Problem Max Points Score 1 14 (2x7) 2 18 (3x6) 3 4 4 7 5 9 6 16 7 8 8 4 9 8 10 4 Total 92.
Name: Email ID: CSE 326, Data Structures Section: Sample Final Exam Instructions: The exam is closed book, closed notes. Unless otherwise stated, N denotes the number of elements in the data structure
MATHEMATICAL THOUGHT AND PRACTICE. Chapter 7: The Mathematics of Networks The Cost of Being Connected
MATHEMATICAL THOUGHT AND PRACTICE Chapter 7: The Mathematics of Networks The Cost of Being Connected Network A network is a graph that is connected. In this context the term is most commonly used when
5.1 Bipartite Matching
CS787: Advanced Algorithms Lecture 5: Applications of Network Flow In the last lecture, we looked at the problem of finding the maximum flow in a graph, and how it can be efficiently solved using the Ford-Fulkerson
Tetris is Hard: An Introduction to P vs NP
Tetris is Hard: An Introduction to P vs NP Based on Tetris is Hard, Even to Approximate in COCOON 2003 by Erik D. Demaine (MIT) Susan Hohenberger (JHU) David Liben-Nowell (Carleton) What s Your Problem?
Measuring the Performance of an Agent
25 Measuring the Performance of an Agent The rational agent that we are aiming at should be successful in the task it is performing To assess the success we need to have a performance measure What is rational
Classification - Examples
Lecture 2 Scheduling 1 Classification - Examples 1 r j C max given: n jobs with processing times p 1,...,p n and release dates r 1,...,r n jobs have to be scheduled without preemption on one machine taking
INTEGER PROGRAMMING. Integer Programming. Prototype example. BIP model. BIP models
Integer Programming INTEGER PROGRAMMING In many problems the decision variables must have integer values. Example: assign people, machines, and vehicles to activities in integer quantities. If this is
Chapter. NP-Completeness. Contents
Chapter 13 NP-Completeness Contents 13.1 P and NP......................... 593 13.1.1 Defining the Complexity Classes P and NP...594 13.1.2 Some Interesting Problems in NP.......... 597 13.2 NP-Completeness....................
Million Dollar Mathematics!
Million Dollar Mathematics! Alissa S. Crans Loyola Marymount University Southern California Undergraduate Math Day University of California, San Diego April 30, 2011 This image is from the Wikipedia article
A hybrid ACO algorithm for the Capacitated Minimum Spanning Tree Problem
A hybrid ACO algorithm for the Capacitated Minimum Spanning Tree Problem Marc Reimann Marco Laumanns Institute for Operations Research, Swiss Federal Institute of Technology Zurich, Clausiusstrasse 47,
CSE 135: Introduction to Theory of Computation Decidability and Recognizability
CSE 135: Introduction to Theory of Computation Decidability and Recognizability Sungjin Im University of California, Merced 04-28, 30-2014 High-Level Descriptions of Computation Instead of giving a Turing
Bicolored Shortest Paths in Graphs with Applications to Network Overlay Design
Bicolored Shortest Paths in Graphs with Applications to Network Overlay Design Hongsik Choi and Hyeong-Ah Choi Department of Electrical Engineering and Computer Science George Washington University Washington,
Data Mining Cluster Analysis: Basic Concepts and Algorithms. Lecture Notes for Chapter 8. Introduction to Data Mining
Data Mining Cluster Analysis: Basic Concepts and Algorithms Lecture Notes for Chapter 8 by Tan, Steinbach, Kumar 1 What is Cluster Analysis? Finding groups of objects such that the objects in a group will
1 Definition of a Turing machine
Introduction to Algorithms Notes on Turing Machines CS 4820, Spring 2012 April 2-16, 2012 1 Definition of a Turing machine Turing machines are an abstract model of computation. They provide a precise,
V. Adamchik 1. Graph Theory. Victor Adamchik. Fall of 2005
V. Adamchik 1 Graph Theory Victor Adamchik Fall of 2005 Plan 1. Basic Vocabulary 2. Regular graph 3. Connectivity 4. Representing Graphs Introduction A.Aho and J.Ulman acknowledge that Fundamentally, computer
Solutions to Homework 6
Solutions to Homework 6 Debasish Das EECS Department, Northwestern University [email protected] 1 Problem 5.24 We want to find light spanning trees with certain special properties. Given is one example
