Foundations of Operations Research
|
|
|
- Lynne Arnold
- 10 years ago
- Views:
Transcription
1 Foundations of Operations Research Master of Science in Computer Engineering Roberto Cordone Tuesday Thursday Lesson 1: Introduction to Operations Research Como, Fall / 19
2 Operations Research It is the science of decision-making It helps people taking better decisions in complex situations, exploiting mathematical models quantitative methods to determine the results of each possible decision and to select the best decision (or at least a satisfactory one) It is a branch of applied mathematics combining economics (to model the decision process) knowledge from specific application fields such as industrial engineering, marketing, physics, chemistry, biology, etc... (to describe correctly the problems) computer science (to solve the problems efficiently) business (to turn the suggested decisions into practice) 2 / 19
3 Decision-making problems They are characterized by two relevant features 1 the number of solutions: many classical mathematical problems have a single solution: Apples cost 1.5 euro/kg. You buy 3 kg. of apples How much do you spend? decision-making problems have several feasible solutions and some solutions are better than others: Go to the market Buy enough food for the whole week Spend as little as possible 2 the impact on practice: the solution to a classical problem is an answer to an abstract question an information on what has happened or will happen the optimal solution to a decision-making problem is a guide about how to act in a practical situation 3 / 19
4 Example: task assignment m = 3 tasks have to be performed: T 1,..., T m m = 3 machines are available to perform them: M 1,..., M m each task must be assigned to exactly one machine each machine can perform exactly one task c ij is the cost required to perform task T i on machine M j (i, j = 1,..., m) M 1 M 2 M 3 T T T Decide which machine will perform each task so as to minimize the total cost How many solutions are there? 4 / 19
5 Example: task assignment m = 3 tasks have to be performed: T 1,..., T m m = 3 machines are available to perform them: M 1,..., M m each task must be assigned to exactly one machine each machine can perform exactly one task c ij is the cost required to perform task T i on machine M j (i, j = 1,..., m) M 1 M 2 M 3 T T T Decide which machine will perform each task so as to minimize the total cost How many solutions are there? Exactly m!, that is, the number of permutations of the tasks 5 / 19
6 Example: task assignment m = 3 tasks have to be performed: T 1,..., T m m = 3 machines are available to perform them: M 1,..., M m each task must be assigned to exactly one machine each machine can perform exactly one task c ij is the cost required to perform task T i on machine M j (i, j = 1,..., m) M 1 M 2 M 3 T T T Decide which machine will perform each task so as to minimize the total cost How many solutions are there? Exactly m!, that is, the number of permutations of the tasks 6 / 19
7 Example: network design n = 5 towns (nodes) must be linked to each other (directly or not) m = 9 potential links (edges) exist between towns i and j each potential link (i, j) has a cost c ij Select a subset of edges guaranteeing that each pair of nodes are linked so as to minimize the total cost How many solutions are there? 7 / 19
8 Example: network design n = 5 towns (nodes) must be linked to each other (directly or not) m = 9 potential links (edges) exist between towns i and j each potential link (i, j) has a cost c ij Select a subset of edges guaranteeing that each pair of nodes are linked so as to minimize the total cost How many solutions are there? At most 2 m, that is the number of subsets of edges (not all subsets guarantee the connectivity) 8 / 19
9 Example: network design n = 5 towns (nodes) must be linked to each other (directly or not) m = 9 potential links (edges) exist between towns i and j each potential link (i, j) has a cost c ij Select a subset of edges guaranteeing that each pair of nodes are linked so as to minimize the total cost How many solutions are there? At most 2 m, that is the number of subsets of edges (not all subsets guarantee the connectivity) 9 / 19
10 Shortest path a digital map of a road network an origin location a target location Determine a route from the origin to the target so as to minimize the travel time (or distance, or cost) 10 / 19
11 Social networks A social network a set of users a set of friendship relations between pairs of users Find a subset of users who are all pairwise related so as to maximize their number 11 / 19
12 Example: mail delivery a digital map of a road network a starting and arrival point a set of streets along which mail must be delivered Find a close path along all the required streets so as to minimize its total length 12 / 19
13 Examples Personnel scheduling: determine the weekly shifts for workers covering all daily tasks and respecting labor regulations so as to minimize the cost of the personnel Service counters: determine how many counters to open at each time of the day respecting a limit on the average waiting time of the customers so as to minimize the cost Laptop: choose the components of a laptop so as to optimize its total price, weight and performance 13 / 19
14 A brief historical sketch: the roots Combinatorial Linear Integer Optimization Programming Programming Leonhard Euler Jean Baptiste Joseph Fourier Diophantus ( ) ( ) (200/ /298) : Euler solves the problem of the seven bridges of Königsberg : Fourier solves 3-dimensional Linear Programming problems 3 III century: Diophantus searches for integer solutions to equations 14 / 19
15 A brief historical sketch: the beginnings World War II gave the real start to Operations Research, summoning scientists to research on the most efficient conduct of military operations During the Siege of Leningrad, L.V. Kantorovich ( ) was in charge of the Road of Life, an ice road across the frozen Lake Ladoga, which was the only access to the town during winter. He calculated the optimal distance between cars on ice, depending on ice thickness and air temperature, and personally walked on the ice between the cars to ensure they did not sink. 15 / 19
16 A brief historical sketch: the developments Combinatorial Optimization: 1926: O. Bor uvka finds how to connect all nodes in a network at minimum cost 1947: E. Dijkstra finds the shortest path between two places Linear Programming 1939: L.V. Kantorovitch lays the foundations of Linear Programming (Nobel Prize in 1975) 1947: G. Dantzig invents the simplex algorithm for linear programs Integer Programming 1958: R. Gomory proposes the cutting plane method 1965: E. Balas proposes the branch-and-bound method 16 / 19
17 A brief historical sketch: business applications After the war, the substantial increase in the size of companies and organizations gave rise to more complex decision-making problems OR was widely applied to business, industry, and society fast progress in methodologies diffusion of computing power (hardware and software) OR methodologies improve the use of scarse resources with a significant impact not only for large companies and organizations Operations Research = Management Science Rapidly evolving contexts, with high levels of complexity and uncertainty pose a severe challenge to Operations Research The huge amount of data available with modern information systems opens new avenues (Business Analytics) 17 / 19
18 A brief historical sketch: business applications year company sector results 1990 Taco Bell personnel scheduling 7.6M$ annual (fast food) savings 1992 American Arlines design fare structure, overbooking + 500M$ and flights coordination 1992 Harris Corp. production planning 50% 95% orders (semiconductors) on time 1995 GM - car rental use of car park +50M$ per year avoided banckruptcy 1996 HP - printers modify production line doubled production 1997 Bosques Arauco harvesting logistics 5M$ annual and transport savings 1999 IBM supply chain re-engineering 750M$ annual savings 18 / 19
19 Not just money-making Redesigning Milan s Emergency Service / 19
Linear Programming I
Linear Programming I November 30, 2003 1 Introduction In the VCR/guns/nuclear bombs/napkins/star wars/professors/butter/mice problem, the benevolent dictator, Bigus Piguinus, of south Antarctica penguins
Branch-and-Price Approach to the Vehicle Routing Problem with Time Windows
TECHNISCHE UNIVERSITEIT EINDHOVEN Branch-and-Price Approach to the Vehicle Routing Problem with Time Windows Lloyd A. Fasting May 2014 Supervisors: dr. M. Firat dr.ir. M.A.A. Boon J. van Twist MSc. Contents
Why? A central concept in Computer Science. Algorithms are ubiquitous.
Analysis of Algorithms: A Brief Introduction Why? A central concept in Computer Science. Algorithms are ubiquitous. Using the Internet (sending email, transferring files, use of search engines, online
IE 680 Special Topics in Production Systems: Networks, Routing and Logistics*
IE 680 Special Topics in Production Systems: Networks, Routing and Logistics* Rakesh Nagi Department of Industrial Engineering University at Buffalo (SUNY) *Lecture notes from Network Flows by Ahuja, Magnanti
Outline. NP-completeness. When is a problem easy? When is a problem hard? Today. Euler Circuits
Outline NP-completeness Examples of Easy vs. Hard problems Euler circuit vs. Hamiltonian circuit Shortest Path vs. Longest Path 2-pairs sum vs. general Subset Sum Reducing one problem to another Clique
V. Adamchik 1. Graph Theory. Victor Adamchik. Fall of 2005
V. Adamchik 1 Graph Theory Victor Adamchik Fall of 2005 Plan 1. Basic Vocabulary 2. Regular graph 3. Connectivity 4. Representing Graphs Introduction A.Aho and J.Ulman acknowledge that Fundamentally, computer
MATHEMATICS Unit Decision 1
General Certificate of Education January 2008 Advanced Subsidiary Examination MATHEMATICS Unit Decision 1 MD01 Tuesday 15 January 2008 9.00 am to 10.30 am For this paper you must have: an 8-page answer
Research Paper Business Analytics. Applications for the Vehicle Routing Problem. Jelmer Blok
Research Paper Business Analytics Applications for the Vehicle Routing Problem Jelmer Blok Applications for the Vehicle Routing Problem Jelmer Blok Research Paper Vrije Universiteit Amsterdam Faculteit
An Optimization Approach for Cooperative Communication in Ad Hoc Networks
An Optimization Approach for Cooperative Communication in Ad Hoc Networks Carlos A.S. Oliveira and Panos M. Pardalos University of Florida Abstract. Mobile ad hoc networks (MANETs) are a useful organizational
APPM4720/5720: Fast algorithms for big data. Gunnar Martinsson The University of Colorado at Boulder
APPM4720/5720: Fast algorithms for big data Gunnar Martinsson The University of Colorado at Boulder Course objectives: The purpose of this course is to teach efficient algorithms for processing very large
Introduction to Networks and Business Intelligence
Introduction to Networks and Business Intelligence Prof. Dr. Daning Hu Department of Informatics University of Zurich Sep 17th, 2015 Outline Network Science A Random History Network Analysis Network Topological
Unit 1. Today I am going to discuss about Transportation problem. First question that comes in our mind is what is a transportation problem?
Unit 1 Lesson 14: Transportation Models Learning Objective : What is a Transportation Problem? How can we convert a transportation problem into a linear programming problem? How to form a Transportation
Offline sorting buffers on Line
Offline sorting buffers on Line Rohit Khandekar 1 and Vinayaka Pandit 2 1 University of Waterloo, ON, Canada. email: [email protected] 2 IBM India Research Lab, New Delhi. email: [email protected]
Asking Hard Graph Questions. Paul Burkhardt. February 3, 2014
Beyond Watson: Predictive Analytics and Big Data U.S. National Security Agency Research Directorate - R6 Technical Report February 3, 2014 300 years before Watson there was Euler! The first (Jeopardy!)
INTEGER PROGRAMMING. Integer Programming. Prototype example. BIP model. BIP models
Integer Programming INTEGER PROGRAMMING In many problems the decision variables must have integer values. Example: assign people, machines, and vehicles to activities in integer quantities. If this is
Chapter 11. 11.1 Load Balancing. Approximation Algorithms. Load Balancing. Load Balancing on 2 Machines. Load Balancing: Greedy Scheduling
Approximation Algorithms Chapter Approximation Algorithms Q. Suppose I need to solve an NP-hard problem. What should I do? A. Theory says you're unlikely to find a poly-time algorithm. Must sacrifice one
Chapter 15: Dynamic Programming
Chapter 15: Dynamic Programming Dynamic programming is a general approach to making a sequence of interrelated decisions in an optimum way. While we can describe the general characteristics, the details
Social Media Mining. Graph Essentials
Graph Essentials Graph Basics Measures Graph and Essentials Metrics 2 2 Nodes and Edges A network is a graph nodes, actors, or vertices (plural of vertex) Connections, edges or ties Edge Node Measures
Approximation Algorithms
Approximation Algorithms or: How I Learned to Stop Worrying and Deal with NP-Completeness Ong Jit Sheng, Jonathan (A0073924B) March, 2012 Overview Key Results (I) General techniques: Greedy algorithms
On the effect of forwarding table size on SDN network utilization
IBM Haifa Research Lab On the effect of forwarding table size on SDN network utilization Rami Cohen IBM Haifa Research Lab Liane Lewin Eytan Yahoo Research, Haifa Seffi Naor CS Technion, Israel Danny Raz
ON THE COMPLEXITY OF THE GAME OF SET. {kamalika,pbg,dratajcz,hoeteck}@cs.berkeley.edu
ON THE COMPLEXITY OF THE GAME OF SET KAMALIKA CHAUDHURI, BRIGHTEN GODFREY, DAVID RATAJCZAK, AND HOETECK WEE {kamalika,pbg,dratajcz,hoeteck}@cs.berkeley.edu ABSTRACT. Set R is a card game played with a
2014-2015 The Master s Degree with Thesis Course Descriptions in Industrial Engineering
2014-2015 The Master s Degree with Thesis Course Descriptions in Industrial Engineering Compulsory Courses IENG540 Optimization Models and Algorithms In the course important deterministic optimization
The Problem of Scheduling Technicians and Interventions in a Telecommunications Company
The Problem of Scheduling Technicians and Interventions in a Telecommunications Company Sérgio Garcia Panzo Dongala November 2008 Abstract In 2007 the challenge organized by the French Society of Operational
Chapter 10: Network Flow Programming
Chapter 10: Network Flow Programming Linear programming, that amazingly useful technique, is about to resurface: many network problems are actually just special forms of linear programs! This includes,
! Solve problem to optimality. ! Solve problem in poly-time. ! Solve arbitrary instances of the problem. !-approximation algorithm.
Approximation Algorithms Chapter Approximation Algorithms Q Suppose I need to solve an NP-hard problem What should I do? A Theory says you're unlikely to find a poly-time algorithm Must sacrifice one of
Scheduling Home Health Care with Separating Benders Cuts in Decision Diagrams
Scheduling Home Health Care with Separating Benders Cuts in Decision Diagrams André Ciré University of Toronto John Hooker Carnegie Mellon University INFORMS 2014 Home Health Care Home health care delivery
Quantum Monte Carlo and the negative sign problem
Quantum Monte Carlo and the negative sign problem or how to earn one million dollar Matthias Troyer, ETH Zürich Uwe-Jens Wiese, Universität Bern Complexity of many particle problems Classical 1 particle:
! Solve problem to optimality. ! Solve problem in poly-time. ! Solve arbitrary instances of the problem. #-approximation algorithm.
Approximation Algorithms 11 Approximation Algorithms Q Suppose I need to solve an NP-hard problem What should I do? A Theory says you're unlikely to find a poly-time algorithm Must sacrifice one of three
Euler Paths and Euler Circuits
Euler Paths and Euler Circuits An Euler path is a path that uses every edge of a graph exactly once. An Euler circuit is a circuit that uses every edge of a graph exactly once. An Euler path starts and
Airport Planning and Design. Excel Solver
Airport Planning and Design Excel Solver Dr. Antonio A. Trani Professor of Civil and Environmental Engineering Virginia Polytechnic Institute and State University Blacksburg, Virginia Spring 2012 1 of
Dynamic programming. Doctoral course Optimization on graphs - Lecture 4.1. Giovanni Righini. January 17 th, 2013
Dynamic programming Doctoral course Optimization on graphs - Lecture.1 Giovanni Righini January 1 th, 201 Implicit enumeration Combinatorial optimization problems are in general NP-hard and we usually
Comparison of Non-linear Dimensionality Reduction Techniques for Classification with Gene Expression Microarray Data
CMPE 59H Comparison of Non-linear Dimensionality Reduction Techniques for Classification with Gene Expression Microarray Data Term Project Report Fatma Güney, Kübra Kalkan 1/15/2013 Keywords: Non-linear
Euler, Mei-Ko Kwan, Königsberg, and a Chinese Postman
Documenta Math. 43 Euler, Mei-Ko Kwan, Königsberg, and a Chinese Postman Martin Grötschel and Ya-xiang Yuan 2010 Mathematics Subject Classification: 00-02, 01A05, 05C38, 90-03 Keywords and Phrases: Eulerian
A SOCIAL NETWORK ANALYSIS APPROACH TO ANALYZE ROAD NETWORKS INTRODUCTION
A SOCIAL NETWORK ANALYSIS APPROACH TO ANALYZE ROAD NETWORKS Kyoungjin Park Alper Yilmaz Photogrammetric and Computer Vision Lab Ohio State University [email protected] [email protected] ABSTRACT Depending
USING EXCEL SOLVER IN OPTIMIZATION PROBLEMS
USING EXCEL SOLVER IN OPTIMIZATION PROBLEMS Leslie Chandrakantha John Jay College of Criminal Justice of CUNY Mathematics and Computer Science Department 445 West 59 th Street, New York, NY 10019 [email protected]
Modeling and Solving the Capacitated Vehicle Routing Problem on Trees
in The Vehicle Routing Problem: Latest Advances and New Challenges Modeling and Solving the Capacitated Vehicle Routing Problem on Trees Bala Chandran 1 and S. Raghavan 2 1 Department of Industrial Engineering
White Paper: Big Data and the hype around IoT
1 White Paper: Big Data and the hype around IoT Author: Alton Harewood 21 Aug 2014 (first published on LinkedIn) If I knew today what I will know tomorrow, how would my life change? For some time the idea
The Data Engineer. Mike Tamir Chief Science Officer Galvanize. Steven Miller Global Leader Academic Programs IBM Analytics
The Data Engineer Mike Tamir Chief Science Officer Galvanize Steven Miller Global Leader Academic Programs IBM Analytics Alessandro Gagliardi Lead Faculty Galvanize Businesses are quickly realizing that
Practical Guide to the Simplex Method of Linear Programming
Practical Guide to the Simplex Method of Linear Programming Marcel Oliver Revised: April, 0 The basic steps of the simplex algorithm Step : Write the linear programming problem in standard form Linear
Prescriptive Analytics. A business guide
Prescriptive Analytics A business guide May 2014 Contents 3 The Business Value of Prescriptive Analytics 4 What is Prescriptive Analytics? 6 Prescriptive Analytics Methods 7 Integration 8 Business Applications
Types of Engineering Jobs
What Do Engineers Do? Engineers apply the theories and principles of science and mathematics to the economical solution of practical technical problems. I.e. To solve problems Often their work is the link
Optimal shift scheduling with a global service level constraint
Optimal shift scheduling with a global service level constraint Ger Koole & Erik van der Sluis Vrije Universiteit Division of Mathematics and Computer Science De Boelelaan 1081a, 1081 HV Amsterdam The
Decision Mathematics D1. Advanced/Advanced Subsidiary. Friday 12 January 2007 Morning Time: 1 hour 30 minutes. D1 answer book
Paper Reference(s) 6689/01 Edexcel GCE Decision Mathematics D1 Advanced/Advanced Subsidiary Friday 12 January 2007 Morning Time: 1 hour 30 minutes Materials required for examination Nil Items included
SIMS 255 Foundations of Software Design. Complexity and NP-completeness
SIMS 255 Foundations of Software Design Complexity and NP-completeness Matt Welsh November 29, 2001 [email protected] 1 Outline Complexity of algorithms Space and time complexity ``Big O'' notation Complexity
A Branch and Bound Algorithm for Solving the Binary Bi-level Linear Programming Problem
A Branch and Bound Algorithm for Solving the Binary Bi-level Linear Programming Problem John Karlof and Peter Hocking Mathematics and Statistics Department University of North Carolina Wilmington Wilmington,
Load balancing Static Load Balancing
Chapter 7 Load Balancing and Termination Detection Load balancing used to distribute computations fairly across processors in order to obtain the highest possible execution speed. Termination detection
Customized Report- Big Data
GINeVRA Digital Research Hub Customized Report- Big Data 1 2014. All Rights Reserved. Agenda Context Challenges and opportunities Solutions Market Case studies Recommendations 2 2014. All Rights Reserved.
Graph Theory Origin and Seven Bridges of Königsberg -Rhishikesh
Graph Theory Origin and Seven Bridges of Königsberg -Rhishikesh Graph Theory: Graph theory can be defined as the study of graphs; Graphs are mathematical structures used to model pair-wise relations between
Load Balancing and Termination Detection
Chapter 7 Load Balancing and Termination Detection 1 Load balancing used to distribute computations fairly across processors in order to obtain the highest possible execution speed. Termination detection
YOU CAN COUNT ON NUMBER LINES
Key Idea 2 Number and Numeration: Students use number sense and numeration to develop an understanding of multiple uses of numbers in the real world, the use of numbers to communicate mathematically, and
Big Ideas in Mathematics
Big Ideas in Mathematics which are important to all mathematics learning. (Adapted from the NCTM Curriculum Focal Points, 2006) The Mathematics Big Ideas are organized using the PA Mathematics Standards
26 Linear Programming
The greatest flood has the soonest ebb; the sorest tempest the most sudden calm; the hottest love the coldest end; and from the deepest desire oftentimes ensues the deadliest hate. Th extremes of glory
Data-Driven Decisions: Role of Operations Research in Business Analytics
Data-Driven Decisions: Role of Operations Research in Business Analytics Dr. Radhika Kulkarni Vice President, Advanced Analytics R&D SAS Institute April 11, 2011 Welcome to the World of Analytics! Lessons
OFTECHNOLO..1_GY: X; 0 t;0~~~~~~~~~~~~~~ : ;. i : wokn. f t,0l'' f:fad 02 'L'S0 00';0000f ::: 000';0' :-:::
... -. -. _,.,...,..-. - - - - soft,, LI,,, '-'J''
The Goldberg Rao Algorithm for the Maximum Flow Problem
The Goldberg Rao Algorithm for the Maximum Flow Problem COS 528 class notes October 18, 2006 Scribe: Dávid Papp Main idea: use of the blocking flow paradigm to achieve essentially O(min{m 2/3, n 1/2 }
Two objective functions for a real life Split Delivery Vehicle Routing Problem
International Conference on Industrial Engineering and Systems Management IESM 2011 May 25 - May 27 METZ - FRANCE Two objective functions for a real life Split Delivery Vehicle Routing Problem Marc Uldry
Lecture 10: Regression Trees
Lecture 10: Regression Trees 36-350: Data Mining October 11, 2006 Reading: Textbook, sections 5.2 and 10.5. The next three lectures are going to be about a particular kind of nonlinear predictive model,
ANTALYA INTERNATIONAL UNIVERSITY INDUSTRIAL ENGINEERING COURSE DESCRIPTIONS
ANTALYA INTERNATIONAL UNIVERSITY INDUSTRIAL ENGINEERING COURSE DESCRIPTIONS CORE COURSES MATH 101 - Calculus I Trigonometric functions and their basic properties. Inverse trigonometric functions. Logarithmic
Transportation Polytopes: a Twenty year Update
Transportation Polytopes: a Twenty year Update Jesús Antonio De Loera University of California, Davis Based on various papers joint with R. Hemmecke, E.Kim, F. Liu, U. Rothblum, F. Santos, S. Onn, R. Yoshida,
Available online at www.sciencedirect.com. ScienceDirect. Procedia Computer Science 52 (2015 ) 902 907
Available online at www.sciencedirect.com ScienceDirect Procedia Computer Science 52 (2015 ) 902 907 The 4th International Workshop on Agent-based Mobility, Traffic and Transportation Models, Methodologies
Networks and Paths. The study of networks in mathematics began in the middle 1700 s with a famous puzzle called the Seven Bridges of Konigsburg.
ame: Day: etworks and Paths Try This: For each figure,, and, draw a path that traces every line and curve exactly once, without lifting your pencil.... Figures,, and above are examples of ETWORKS. network
Solution of a Large-Scale Traveling-Salesman Problem
Chapter 1 Solution of a Large-Scale Traveling-Salesman Problem George B. Dantzig, Delbert R. Fulkerson, and Selmer M. Johnson Introduction by Vašek Chvátal and William Cook The birth of the cutting-plane
ANALYTICS CENTER LEARNING PROGRAM
Overview of Curriculum ANALYTICS CENTER LEARNING PROGRAM The following courses are offered by Analytics Center as part of its learning program: Course Duration Prerequisites 1- Math and Theory 101 - Fundamentals
OPMG 5811 LOGISTICS MANAGEMENT. Course Outline* Semester 2, 2012
Australian School of Business Information Systems, Technology and Management OPMG 5811 LOGISTICS MANAGEMENT Course Outline* Semester 2, 2012 Part A: Course-Specific Information Please consult **Part B
NEW VERSION OF DECISION SUPPORT SYSTEM FOR EVALUATING TAKEOVER BIDS IN PRIVATIZATION OF THE PUBLIC ENTERPRISES AND SERVICES
NEW VERSION OF DECISION SUPPORT SYSTEM FOR EVALUATING TAKEOVER BIDS IN PRIVATIZATION OF THE PUBLIC ENTERPRISES AND SERVICES Silvija Vlah Kristina Soric Visnja Vojvodic Rosenzweig Department of Mathematics
BIG DATA What it is and how to use?
BIG DATA What it is and how to use? Lauri Ilison, PhD Data Scientist 21.11.2014 Big Data definition? There is no clear definition for BIG DATA BIG DATA is more of a concept than precise term 1 21.11.14
Table of Contents. Bibliografische Informationen http://d-nb.info/996514864. digitalisiert durch
1 Introduction to Cryptography and Data Security 1 1.1 Overview of Cryptology (and This Book) 2 1.2 Symmetric Cryptography 4 1.2.1 Basics 4 1.2.2 Simple Symmetric Encryption: The Substitution Cipher...
3. INNER PRODUCT SPACES
. INNER PRODUCT SPACES.. Definition So far we have studied abstract vector spaces. These are a generalisation of the geometric spaces R and R. But these have more structure than just that of a vector space.
Comparative Analysis of FAHP and FTOPSIS Method for Evaluation of Different Domains
International Journal of Research Studies in Computer Science and Engineering (IJRSCSE) August 2015, PP 58-62 ISSN 2349-4840 (Print) & ISSN 2349-4859 (Online) www.arcjournals.org Comparative Analysis of
Chapter 13: Binary and Mixed-Integer Programming
Chapter 3: Binary and Mixed-Integer Programming The general branch and bound approach described in the previous chapter can be customized for special situations. This chapter addresses two special situations:
An optimization model for aircraft maintenance scheduling and re-assignment
Transportation Research Part A 37 (2003) 29 48 www.elsevier.com/locate/tra An optimization model for aircraft maintenance scheduling and re-assignment Chellappan Sriram 1, Ali Haghani * Department of Civil
CS311H. Prof: Peter Stone. Department of Computer Science The University of Texas at Austin
CS311H Prof: Department of Computer Science The University of Texas at Austin Good Morning, Colleagues Good Morning, Colleagues Are there any questions? Logistics Class survey Logistics Class survey Homework
This paper introduces a new method for shift scheduling in multiskill call centers. The method consists of
MANUFACTURING & SERVICE OPERATIONS MANAGEMENT Vol. 10, No. 3, Summer 2008, pp. 411 420 issn 1523-4614 eissn 1526-5498 08 1003 0411 informs doi 10.1287/msom.1070.0172 2008 INFORMS Simple Methods for Shift
Process Modelling from Insurance Event Log
Process Modelling from Insurance Event Log P.V. Kumaraguru Research scholar, Dr.M.G.R Educational and Research Institute University Chennai- 600 095 India Dr. S.P. Rajagopalan Professor Emeritus, Dr. M.G.R
Information Management course
Università degli Studi di Milano Master Degree in Computer Science Information Management course Teacher: Alberto Ceselli Lecture 01 : 06/10/2015 Practical informations: Teacher: Alberto Ceselli ([email protected])
Discrete Mathematics & Mathematical Reasoning Chapter 10: Graphs
Discrete Mathematics & Mathematical Reasoning Chapter 10: Graphs Kousha Etessami U. of Edinburgh, UK Kousha Etessami (U. of Edinburgh, UK) Discrete Mathematics (Chapter 6) 1 / 13 Overview Graphs and Graph
Scheduling Shop Scheduling. Tim Nieberg
Scheduling Shop Scheduling Tim Nieberg Shop models: General Introduction Remark: Consider non preemptive problems with regular objectives Notation Shop Problems: m machines, n jobs 1,..., n operations
Mathematical Ideas that Shaped the World. Chaos and Fractals
Mathematical Ideas that Shaped the World Chaos and Fractals Plan for this class What is chaos? Why is the weather so hard to predict? Do lemmings really commit mass suicide? How do we measure the coastline
Risk Management for IT Security: When Theory Meets Practice
Risk Management for IT Security: When Theory Meets Practice Anil Kumar Chorppath Technical University of Munich Munich, Germany Email: [email protected] Tansu Alpcan The University of Melbourne Melbourne,
Answers Teacher Copy. Systems of Linear Equations Monetary Systems Overload. Activity 3. Solving Systems of Two Equations in Two Variables
of 26 8/20/2014 2:00 PM Answers Teacher Copy Activity 3 Lesson 3-1 Systems of Linear Equations Monetary Systems Overload Solving Systems of Two Equations in Two Variables Plan Pacing: 1 class period Chunking
Frequency Assignment in Mobile Phone Systems
Konrad-Zuse-Zentrum für Informationstechnik Berlin Takustraße 7 D-14195 Berlin-Dahlem Germany MARTIN GRÖTSCHEL Frequency Assignment in Mobile Phone Systems ZIB-Report 00-58 (Dezember 2000) Frequency Assignment
NETWORKING TECHNOLOGIES
NETWORKING TECHNOLOGIES (October 19, 2015) BUS3500 - Abdou Illia, Fall 2015 1 LEARNING GOALS Identify the major hardware components in networks. Identify and explain the various types of computer networks.
Load Balancing Routing Algorithm for Data Gathering Sensor Network
Load Balancing Routing Algorithm for Data Gathering Sensor Network Evgeny Bakin, Grigory Evseev State University of Aerospace Instrumentation Saint-Petersburg, Russia {jenyb, egs}@vu.spb.ru Denis Dorum
Graph theory and network analysis. Devika Subramanian Comp 140 Fall 2008
Graph theory and network analysis Devika Subramanian Comp 140 Fall 2008 1 The bridges of Konigsburg Source: Wikipedia The city of Königsberg in Prussia was set on both sides of the Pregel River, and included
Lecture 3. Linear Programming. 3B1B Optimization Michaelmas 2015 A. Zisserman. Extreme solutions. Simplex method. Interior point method
Lecture 3 3B1B Optimization Michaelmas 2015 A. Zisserman Linear Programming Extreme solutions Simplex method Interior point method Integer programming and relaxation The Optimization Tree Linear Programming
Linear Programming for Optimization. Mark A. Schulze, Ph.D. Perceptive Scientific Instruments, Inc.
1. Introduction Linear Programming for Optimization Mark A. Schulze, Ph.D. Perceptive Scientific Instruments, Inc. 1.1 Definition Linear programming is the name of a branch of applied mathematics that
A Column-Generation and Branch-and-Cut Approach to the Bandwidth-Packing Problem
[J. Res. Natl. Inst. Stand. Technol. 111, 161-185 (2006)] A Column-Generation and Branch-and-Cut Approach to the Bandwidth-Packing Problem Volume 111 Number 2 March-April 2006 Christine Villa and Karla
Introduction. Real World Planning. Planning with Time. Time 15/11/2012. COMP219: Artificial Intelligence. COMP219: Artificial Intelligence
COMP219: Artificial Intelligence COMP219: Artificial Intelligence Dr. Annabel Latham Room 2.05 Ashton Building Department of Computer Science University of Liverpool Lecture 26: Real World Planning: Scheduling
TRILL for Service Provider Data Center and IXP. Francois Tallet, Cisco Systems
for Service Provider Data Center and IXP Francois Tallet, Cisco Systems 1 : Transparent Interconnection of Lots of Links overview How works designs Conclusion 2 IETF standard for Layer 2 multipathing Driven
Investigating Area Under a Curve
Mathematics Investigating Area Under a Curve About this Lesson This lesson is an introduction to areas bounded by functions and the x-axis on a given interval. Since the functions in the beginning of the
Role of Stochastic Optimization in Revenue Management. Huseyin Topaloglu School of Operations Research and Information Engineering Cornell University
Role of Stochastic Optimization in Revenue Management Huseyin Topaloglu School of Operations Research and Information Engineering Cornell University Revenue Management Revenue management involves making
Let the data speak to you. Look Who s Peeking at Your Paycheck. Big Data. What is Big Data? The Artemis project: Saving preemies using Big Data
CS535 Big Data W1.A.1 CS535 BIG DATA W1.A.2 Let the data speak to you Medication Adherence Score How likely people are to take their medication, based on: How long people have lived at the same address
