CAD Algorithms. P and NP
|
|
|
- Lee King
- 10 years ago
- Views:
Transcription
1 CAD Algorithms The Classes P and NP Mohammad Tehranipoor ECE Department 6 September P and NP P and NP are two families of problems. P is a class which contains all of the problems we solve using computers. If we think about the problems we actually present to the computer we note that not too many computations require more than O(n 3 ) or O(n 4 ) time assuming that n is very large. Most of the important algorithms we compute are somewhere in the O(log n) to O(n 3 ) range. 6 September
2 Class P Practical computation resides within polynomial time (O(N c ), c > 1) bounds. Definition: The class of polynomially solvable problems, P contains all sets in which membership may be decided by an algorithm whose running time is bounded by a polynomial. Advantage: Its use allows us to not worry about our machine model since all reasonable models of computation (including programs and Turing machines) have time complexities, which are polynomially related. 6 September Class NP NP is a class of problems that we would love to solve but are unable to do so exactly. Example: Consider final examination scheduling. A school has n courses and five days in which to schedule examinations. An optimal schedule would be one where no student has to take two examinations on the same day. There are O(5 n ) possible different schedules. 200,000,000,000,000,000,000 years! (regardless of the type of machine used) Obviously this will not be done between registration and the end of the semester! 6 September
3 Class NP Another Example: Find minimal length tour of n cities where we begin and end at the same place. This is called closed tour problem. N! different tours are possible. If we have a tour (a solution), we can easily check to see how long it is. Thus, if we want a tour of less than some fixed length, we can quickly check candidates to see if they qualify. Also, previous tours can help find a new one that could potentially provide better result Genetic algorithm 6 September NP There are many tasks for which we may apply fast (polynomial) algorithms. There are also some problems that cannot be solved algorithmically. One example of a class of problems which cannot be solved in the "traditional" way, are NP problems. There are many important problems in which it is very difficult to find a solution, but once we have it, it is easy to check the solution. This is key in developing many algorithms in solving very complex problems. If we can determine the worth of an answer, then maybe we can investigate promising solutions and keep the best one. This fact led to NP-complete problems. 6 September
4 Definition: NP Problems The class of nondeterministic polynomially acceptable problems, NP, contains all sets in which membership can be verified in polynomial time. It means that it is possible to "guess" the solution (by some nondeterministic algorithm) and then check it. Nondeterministic is just a fancy way of talking about guessing a solution. A problem is in NP if you can quickly (in polynomial time) test whether a solution is correct (without worrying about how hard it might be to find the solution). NP does not stand for "non-polynomial". There are many complexity classes that are much harder than NP. 6 September VLSI Kind of Example Partitioning Problem: A large circuit is divided into smaller subcircuits (blocks) Objective: Minimize cutsize Block 1 Block 2 Cutsize = 6 6 September
5 NP Problems As of today, there are no faster algorithm to provide exact answers to NP-problems. The discovery of such algorithms remains a big task for researchers (maybe you!). Today many people think that such algorithms do not exist and so they are looking for alternative methods. An example of an alternative method is the genetic algorithm. 6 September NP Examples Many graph problems used in CAD algorithms for computer chip design fit in class of NP. Other examples: Scheduling problems Steiner tree Satisfiability Problem Closed Tour Given n cities and an integer k, is there a tour, of length less than k, of the cities which begins and ends at the same city? 6 September
6 NP Examples Examination Scheduling Given a list of courses, a list of conflicts between them, and an integer k; is there an exam schedule consisting of k dates such that there are no conflicts between courses which have examinations on the same date? Vertex Cover Given a graph and an integer k, is there a collection of k vertices such that each edge is connected to one of the vertices in the collection? Chromatic Number (Color) Given a graph and an integer k, is there a way to color the vertices with k colors such that adjacent vertices are colored differently? 6 September Solutions Use a heuristic. If you can't quickly solve the problem with a good worst case time, maybe you can come up with a method for solving a reasonable fraction of the common cases. Solve the problem approximately instead of exactly. A lot of the time it is possible to come up with a provably fast algorithm, that doesn't solve the problem exactly but comes up with a solution you can prove is close to right. 6 September
7 Solutions Use an exponential time solution anyway. If you really have to solve the problem exactly, you can settle down to writing an exponential time algorithm and stop worrying about finding a better solution. 6 September
Computer Algorithms. NP-Complete Problems. CISC 4080 Yanjun Li
Computer Algorithms NP-Complete Problems NP-completeness The quest for efficient algorithms is about finding clever ways to bypass the process of exhaustive search, using clues from the input in order
The Classes P and NP
The Classes P and NP We now shift gears slightly and restrict our attention to the examination of two families of problems which are very important to computer scientists. These families constitute the
Page 1. CSCE 310J Data Structures & Algorithms. CSCE 310J Data Structures & Algorithms. P, NP, and NP-Complete. Polynomial-Time Algorithms
CSCE 310J Data Structures & Algorithms P, NP, and NP-Complete Dr. Steve Goddard [email protected] CSCE 310J Data Structures & Algorithms Giving credit where credit is due:» Most of the lecture notes
Tutorial 8. NP-Complete Problems
Tutorial 8 NP-Complete Problems Decision Problem Statement of a decision problem Part 1: instance description defining the input Part 2: question stating the actual yesor-no question A decision problem
SIMS 255 Foundations of Software Design. Complexity and NP-completeness
SIMS 255 Foundations of Software Design Complexity and NP-completeness Matt Welsh November 29, 2001 [email protected] 1 Outline Complexity of algorithms Space and time complexity ``Big O'' notation Complexity
Outline. NP-completeness. When is a problem easy? When is a problem hard? Today. Euler Circuits
Outline NP-completeness Examples of Easy vs. Hard problems Euler circuit vs. Hamiltonian circuit Shortest Path vs. Longest Path 2-pairs sum vs. general Subset Sum Reducing one problem to another Clique
NP-Completeness I. Lecture 19. 19.1 Overview. 19.2 Introduction: Reduction and Expressiveness
Lecture 19 NP-Completeness I 19.1 Overview In the past few lectures we have looked at increasingly more expressive problems that we were able to solve using efficient algorithms. In this lecture we introduce
Lecture 7: NP-Complete Problems
IAS/PCMI Summer Session 2000 Clay Mathematics Undergraduate Program Basic Course on Computational Complexity Lecture 7: NP-Complete Problems David Mix Barrington and Alexis Maciel July 25, 2000 1. Circuit
NP-complete? NP-hard? Some Foundations of Complexity. Prof. Sven Hartmann Clausthal University of Technology Department of Informatics
NP-complete? NP-hard? Some Foundations of Complexity Prof. Sven Hartmann Clausthal University of Technology Department of Informatics Tractability of Problems Some problems are undecidable: no computer
Complexity Theory. IE 661: Scheduling Theory Fall 2003 Satyaki Ghosh Dastidar
Complexity Theory IE 661: Scheduling Theory Fall 2003 Satyaki Ghosh Dastidar Outline Goals Computation of Problems Concepts and Definitions Complexity Classes and Problems Polynomial Time Reductions Examples
CSC 373: Algorithm Design and Analysis Lecture 16
CSC 373: Algorithm Design and Analysis Lecture 16 Allan Borodin February 25, 2013 Some materials are from Stephen Cook s IIT talk and Keven Wayne s slides. 1 / 17 Announcements and Outline Announcements
1. Nondeterministically guess a solution (called a certificate) 2. Check whether the solution solves the problem (called verification)
Some N P problems Computer scientists have studied many N P problems, that is, problems that can be solved nondeterministically in polynomial time. Traditionally complexity question are studied as languages:
NP-Completeness. CptS 223 Advanced Data Structures. Larry Holder School of Electrical Engineering and Computer Science Washington State University
NP-Completeness CptS 223 Advanced Data Structures Larry Holder School of Electrical Engineering and Computer Science Washington State University 1 Hard Graph Problems Hard means no known solutions with
The Classes P and NP. [email protected]
Intractable Problems The Classes P and NP Mohamed M. El Wakil [email protected] 1 Agenda 1. What is a problem? 2. Decidable or not? 3. The P class 4. The NP Class 5. TheNP Complete class 2 What is a
Quantum and Non-deterministic computers facing NP-completeness
Quantum and Non-deterministic computers facing NP-completeness Thibaut University of Vienna Dept. of Business Administration Austria Vienna January 29th, 2013 Some pictures come from Wikipedia Introduction
Lecture 19: Introduction to NP-Completeness Steven Skiena. Department of Computer Science State University of New York Stony Brook, NY 11794 4400
Lecture 19: Introduction to NP-Completeness Steven Skiena Department of Computer Science State University of New York Stony Brook, NY 11794 4400 http://www.cs.sunysb.edu/ skiena Reporting to the Boss Suppose
On the Relationship between Classes P and NP
Journal of Computer Science 8 (7): 1036-1040, 2012 ISSN 1549-3636 2012 Science Publications On the Relationship between Classes P and NP Anatoly D. Plotnikov Department of Computer Systems and Networks,
A Working Knowledge of Computational Complexity for an Optimizer
A Working Knowledge of Computational Complexity for an Optimizer ORF 363/COS 323 Instructor: Amir Ali Ahmadi TAs: Y. Chen, G. Hall, J. Ye Fall 2014 1 Why computational complexity? What is computational
Why? A central concept in Computer Science. Algorithms are ubiquitous.
Analysis of Algorithms: A Brief Introduction Why? A central concept in Computer Science. Algorithms are ubiquitous. Using the Internet (sending email, transferring files, use of search engines, online
OHJ-2306 Introduction to Theoretical Computer Science, Fall 2012 8.11.2012
276 The P vs. NP problem is a major unsolved problem in computer science It is one of the seven Millennium Prize Problems selected by the Clay Mathematics Institute to carry a $ 1,000,000 prize for the
Introduction to Algorithms. Part 3: P, NP Hard Problems
Introduction to Algorithms Part 3: P, NP Hard Problems 1) Polynomial Time: P and NP 2) NP-Completeness 3) Dealing with Hard Problems 4) Lower Bounds 5) Books c Wayne Goddard, Clemson University, 2004 Chapter
Tetris is Hard: An Introduction to P vs NP
Tetris is Hard: An Introduction to P vs NP Based on Tetris is Hard, Even to Approximate in COCOON 2003 by Erik D. Demaine (MIT) Susan Hohenberger (JHU) David Liben-Nowell (Carleton) What s Your Problem?
CMPSCI611: Approximating MAX-CUT Lecture 20
CMPSCI611: Approximating MAX-CUT Lecture 20 For the next two lectures we ll be seeing examples of approximation algorithms for interesting NP-hard problems. Today we consider MAX-CUT, which we proved to
Introduction to computer science
Introduction to computer science Michael A. Nielsen University of Queensland Goals: 1. Introduce the notion of the computational complexity of a problem, and define the major computational complexity classes.
Small Maximal Independent Sets and Faster Exact Graph Coloring
Small Maximal Independent Sets and Faster Exact Graph Coloring David Eppstein Univ. of California, Irvine Dept. of Information and Computer Science The Exact Graph Coloring Problem: Given an undirected
Complexity Classes P and NP
Complexity Classes P and NP MATH 3220 Supplemental Presentation by John Aleshunas The cure for boredom is curiosity. There is no cure for curiosity Dorothy Parker Computational Complexity Theory In computer
Guessing Game: NP-Complete?
Guessing Game: NP-Complete? 1. LONGEST-PATH: Given a graph G = (V, E), does there exists a simple path of length at least k edges? YES 2. SHORTEST-PATH: Given a graph G = (V, E), does there exists a simple
Introduction to Logic in Computer Science: Autumn 2006
Introduction to Logic in Computer Science: Autumn 2006 Ulle Endriss Institute for Logic, Language and Computation University of Amsterdam Ulle Endriss 1 Plan for Today Now that we have a basic understanding
Computational complexity theory
Computational complexity theory Goal: A general theory of the resources needed to solve computational problems What types of resources? Time What types of computational problems? decision problem Decision
NP-completeness and the real world. NP completeness. NP-completeness and the real world (2) NP-completeness and the real world
-completeness and the real world completeness Course Discrete Biological Models (Modelli Biologici Discreti) Zsuzsanna Lipták Imagine you are working for a biotech company. One day your boss calls you
Efficiency of algorithms. Algorithms. Efficiency of algorithms. Binary search and linear search. Best, worst and average case.
Algorithms Efficiency of algorithms Computational resources: time and space Best, worst and average case performance How to compare algorithms: machine-independent measure of efficiency Growth rate Complexity
Universality in the theory of algorithms and computer science
Universality in the theory of algorithms and computer science Alexander Shen Computational models The notion of computable function was introduced in 1930ies. Simplifying (a rather interesting and puzzling)
MATHEMATICS: CONCEPTS, AND FOUNDATIONS Vol. III - Logic and Computer Science - Phokion G. Kolaitis
LOGIC AND COMPUTER SCIENCE Phokion G. Kolaitis Computer Science Department, University of California, Santa Cruz, CA 95064, USA Keywords: algorithm, Armstrong s axioms, complete problem, complexity class,
CPSC 211 Data Structures & Implementations (c) Texas A&M University [ 313]
CPSC 211 Data Structures & Implementations (c) Texas A&M University [ 313] File Structures A file is a collection of data stored on mass storage (e.g., disk or tape) Why on mass storage? too big to fit
2. (a) Explain the strassen s matrix multiplication. (b) Write deletion algorithm, of Binary search tree. [8+8]
Code No: R05220502 Set No. 1 1. (a) Describe the performance analysis in detail. (b) Show that f 1 (n)+f 2 (n) = 0(max(g 1 (n), g 2 (n)) where f 1 (n) = 0(g 1 (n)) and f 2 (n) = 0(g 2 (n)). [8+8] 2. (a)
Why Study NP- hardness. NP Hardness/Completeness Overview. P and NP. Scaling 9/3/13. Ron Parr CPS 570. NP hardness is not an AI topic
Why Study NP- hardness NP Hardness/Completeness Overview Ron Parr CPS 570 NP hardness is not an AI topic It s important for all computer scienhsts Understanding it will deepen your understanding of AI
Reductions & NP-completeness as part of Foundations of Computer Science undergraduate course
Reductions & NP-completeness as part of Foundations of Computer Science undergraduate course Alex Angelopoulos, NTUA January 22, 2015 Outline Alex Angelopoulos (NTUA) FoCS: Reductions & NP-completeness-
Chapter 1. NP Completeness I. 1.1. Introduction. By Sariel Har-Peled, December 30, 2014 1 Version: 1.05
Chapter 1 NP Completeness I By Sariel Har-Peled, December 30, 2014 1 Version: 1.05 "Then you must begin a reading program immediately so that you man understand the crises of our age," Ignatius said solemnly.
Exponential time algorithms for graph coloring
Exponential time algorithms for graph coloring Uriel Feige Lecture notes, March 14, 2011 1 Introduction Let [n] denote the set {1,..., k}. A k-labeling of vertices of a graph G(V, E) is a function V [k].
ONLINE DEGREE-BOUNDED STEINER NETWORK DESIGN. Sina Dehghani Saeed Seddighin Ali Shafahi Fall 2015
ONLINE DEGREE-BOUNDED STEINER NETWORK DESIGN Sina Dehghani Saeed Seddighin Ali Shafahi Fall 2015 ONLINE STEINER FOREST PROBLEM An initially given graph G. s 1 s 2 A sequence of demands (s i, t i ) arriving
Quantum Monte Carlo and the negative sign problem
Quantum Monte Carlo and the negative sign problem or how to earn one million dollar Matthias Troyer, ETH Zürich Uwe-Jens Wiese, Universität Bern Complexity of many particle problems Classical 1 particle:
NP-Completeness and Cook s Theorem
NP-Completeness and Cook s Theorem Lecture notes for COM3412 Logic and Computation 15th January 2002 1 NP decision problems The decision problem D L for a formal language L Σ is the computational task:
CHOOSING THE BEST HEURISTIC FOR A NP-PROBLEM
CHOOSING THE BEST HEURISTIC FOR A NP-PROBLEM Thesis submitted in partial fulfillment of the requirements for the award of Degree of Master of Engineering in Computer Science and Engineering Thapar University,
Answer: (a) Since we cannot repeat men on the committee, and the order we select them in does not matter, ( )
1. (Chapter 1 supplementary, problem 7): There are 12 men at a dance. (a) In how many ways can eight of them be selected to form a cleanup crew? (b) How many ways are there to pair off eight women at the
Discuss the size of the instance for the minimum spanning tree problem.
3.1 Algorithm complexity The algorithms A, B are given. The former has complexity O(n 2 ), the latter O(2 n ), where n is the size of the instance. Let n A 0 be the size of the largest instance that can
School Timetabling in Theory and Practice
School Timetabling in Theory and Practice Irving van Heuven van Staereling VU University, Amsterdam Faculty of Sciences December 24, 2012 Preface At almost every secondary school and university, some
ON THE COMPLEXITY OF THE GAME OF SET. {kamalika,pbg,dratajcz,hoeteck}@cs.berkeley.edu
ON THE COMPLEXITY OF THE GAME OF SET KAMALIKA CHAUDHURI, BRIGHTEN GODFREY, DAVID RATAJCZAK, AND HOETECK WEE {kamalika,pbg,dratajcz,hoeteck}@cs.berkeley.edu ABSTRACT. Set R is a card game played with a
Euler Paths and Euler Circuits
Euler Paths and Euler Circuits An Euler path is a path that uses every edge of a graph exactly once. An Euler circuit is a circuit that uses every edge of a graph exactly once. An Euler path starts and
On the k-path cover problem for cacti
On the k-path cover problem for cacti Zemin Jin and Xueliang Li Center for Combinatorics and LPMC Nankai University Tianjin 300071, P.R. China [email protected], [email protected] Abstract In this paper we
Classification - Examples
Lecture 2 Scheduling 1 Classification - Examples 1 r j C max given: n jobs with processing times p 1,...,p n and release dates r 1,...,r n jobs have to be scheduled without preemption on one machine taking
JUST-IN-TIME SCHEDULING WITH PERIODIC TIME SLOTS. Received December May 12, 2003; revised February 5, 2004
Scientiae Mathematicae Japonicae Online, Vol. 10, (2004), 431 437 431 JUST-IN-TIME SCHEDULING WITH PERIODIC TIME SLOTS Ondřej Čepeka and Shao Chin Sung b Received December May 12, 2003; revised February
CS311H. Prof: Peter Stone. Department of Computer Science The University of Texas at Austin
CS311H Prof: Department of Computer Science The University of Texas at Austin Good Morning, Colleagues Good Morning, Colleagues Are there any questions? Logistics Class survey Logistics Class survey Homework
How to Prove a Theorem So No One Else Can Claim It
Proceedings of the International Congress of Mathematicians Berkeley, California, USA, 1986 How to Prove a Theorem So No One Else Can Claim It MANUEL BLUM Goldwasser, Micali, and Rackoff [GMR] define for
Randomized algorithms
Randomized algorithms March 10, 2005 1 What are randomized algorithms? Algorithms which use random numbers to make decisions during the executions of the algorithm. Why would we want to do this?? Deterministic
Approximation Algorithms
Approximation Algorithms or: How I Learned to Stop Worrying and Deal with NP-Completeness Ong Jit Sheng, Jonathan (A0073924B) March, 2012 Overview Key Results (I) General techniques: Greedy algorithms
Analysis of Computer Algorithms. Algorithm. Algorithm, Data Structure, Program
Analysis of Computer Algorithms Hiroaki Kobayashi Input Algorithm Output 12/13/02 Algorithm Theory 1 Algorithm, Data Structure, Program Algorithm Well-defined, a finite step-by-step computational procedure
P versus NP, and More
1 P versus NP, and More Great Ideas in Theoretical Computer Science Saarland University, Summer 2014 If you have tried to solve a crossword puzzle, you know that it is much harder to solve it than to verify
On the Unique Games Conjecture
On the Unique Games Conjecture Antonios Angelakis National Technical University of Athens June 16, 2015 Antonios Angelakis (NTUA) Theory of Computation June 16, 2015 1 / 20 Overview 1 Introduction 2 Preliminary
Ian Stewart on Minesweeper
Ian Stewart on Minesweeper It's not often you can win a million dollars by analysing a computer game, but by a curious conjunction of fate, there's a chance that you might. However, you'll only pick up
The Union-Find Problem Kruskal s algorithm for finding an MST presented us with a problem in data-structure design. As we looked at each edge,
The Union-Find Problem Kruskal s algorithm for finding an MST presented us with a problem in data-structure design. As we looked at each edge, cheapest first, we had to determine whether its two endpoints
Lecture 1: Course overview, circuits, and formulas
Lecture 1: Course overview, circuits, and formulas Topics in Complexity Theory and Pseudorandomness (Spring 2013) Rutgers University Swastik Kopparty Scribes: John Kim, Ben Lund 1 Course Information Swastik
Approximated Distributed Minimum Vertex Cover Algorithms for Bounded Degree Graphs
Approximated Distributed Minimum Vertex Cover Algorithms for Bounded Degree Graphs Yong Zhang 1.2, Francis Y.L. Chin 2, and Hing-Fung Ting 2 1 College of Mathematics and Computer Science, Hebei University,
Distributed Computing over Communication Networks: Maximal Independent Set
Distributed Computing over Communication Networks: Maximal Independent Set What is a MIS? MIS An independent set (IS) of an undirected graph is a subset U of nodes such that no two nodes in U are adjacent.
Million Dollar Mathematics!
Million Dollar Mathematics! Alissa S. Crans Loyola Marymount University Southern California Undergraduate Math Day University of California, San Diego April 30, 2011 This image is from the Wikipedia article
Algorithm Design and Analysis
Algorithm Design and Analysis LECTURE 27 Approximation Algorithms Load Balancing Weighted Vertex Cover Reminder: Fill out SRTEs online Don t forget to click submit Sofya Raskhodnikova 12/6/2011 S. Raskhodnikova;
! X is a set of strings. ! Instance: string s. ! Algorithm A solves problem X: A(s) = yes iff s! X.
Decision Problems 8.2 Definition of NP Decision problem. X is a set of strings. Instance: string s. Algorithm A solves problem X: A(s) = yes iff s X. Polynomial time. Algorithm A runs in polytime if for
! Solve problem to optimality. ! Solve problem in poly-time. ! Solve arbitrary instances of the problem. #-approximation algorithm.
Approximation Algorithms 11 Approximation Algorithms Q Suppose I need to solve an NP-hard problem What should I do? A Theory says you're unlikely to find a poly-time algorithm Must sacrifice one of three
5.1 Bipartite Matching
CS787: Advanced Algorithms Lecture 5: Applications of Network Flow In the last lecture, we looked at the problem of finding the maximum flow in a graph, and how it can be efficiently solved using the Ford-Fulkerson
Boulder Dash is NP hard
Boulder Dash is NP hard Marzio De Biasi marziodebiasi [at] gmail [dot] com December 2011 Version 0.01:... now the difficult part: is it NP? Abstract Boulder Dash is a videogame created by Peter Liepa and
Bicolored Shortest Paths in Graphs with Applications to Network Overlay Design
Bicolored Shortest Paths in Graphs with Applications to Network Overlay Design Hongsik Choi and Hyeong-Ah Choi Department of Electrical Engineering and Computer Science George Washington University Washington,
8.1 Min Degree Spanning Tree
CS880: Approximations Algorithms Scribe: Siddharth Barman Lecturer: Shuchi Chawla Topic: Min Degree Spanning Tree Date: 02/15/07 In this lecture we give a local search based algorithm for the Min Degree
Single machine parallel batch scheduling with unbounded capacity
Workshop on Combinatorics and Graph Theory 21th, April, 2006 Nankai University Single machine parallel batch scheduling with unbounded capacity Yuan Jinjiang Department of mathematics, Zhengzhou University
Quantum Computability and Complexity and the Limits of Quantum Computation
Quantum Computability and Complexity and the Limits of Quantum Computation Eric Benjamin, Kenny Huang, Amir Kamil, Jimmy Kittiyachavalit University of California, Berkeley December 7, 2003 This paper will
Near Optimal Solutions
Near Optimal Solutions Many important optimization problems are lacking efficient solutions. NP-Complete problems unlikely to have polynomial time solutions. Good heuristics important for such problems.
Notes on NP Completeness
Notes on NP Completeness Rich Schwartz November 10, 2013 1 Overview Here are some notes which I wrote to try to understand what NP completeness means. Most of these notes are taken from Appendix B in Douglas
Theoretical Computer Science (Bridging Course) Complexity
Theoretical Computer Science (Bridging Course) Complexity Gian Diego Tipaldi A scenario You are a programmer working for a logistics company Your boss asks you to implement a program that optimizes the
Theorem (informal statement): There are no extendible methods in David Chalmers s sense unless P = NP.
Theorem (informal statement): There are no extendible methods in David Chalmers s sense unless P = NP. Explication: In his paper, The Singularity: A philosophical analysis, David Chalmers defines an extendible
Reminder: Complexity (1) Parallel Complexity Theory. Reminder: Complexity (2) Complexity-new
Reminder: Complexity (1) Parallel Complexity Theory Lecture 6 Number of steps or memory units required to compute some result In terms of input size Using a single processor O(1) says that regardless of
5. A full binary tree with n leaves contains [A] n nodes. [B] log n 2 nodes. [C] 2n 1 nodes. [D] n 2 nodes.
1. The advantage of.. is that they solve the problem if sequential storage representation. But disadvantage in that is they are sequential lists. [A] Lists [B] Linked Lists [A] Trees [A] Queues 2. The
Chapter. NP-Completeness. Contents
Chapter 13 NP-Completeness Contents 13.1 P and NP......................... 593 13.1.1 Defining the Complexity Classes P and NP...594 13.1.2 Some Interesting Problems in NP.......... 597 13.2 NP-Completeness....................
APP INVENTOR. Test Review
APP INVENTOR Test Review Main Concepts App Inventor Lists Creating Random Numbers Variables Searching and Sorting Data Linear Search Binary Search Selection Sort Quick Sort Abstraction Modulus Division
(67902) Topics in Theory and Complexity Nov 2, 2006. Lecture 7
(67902) Topics in Theory and Complexity Nov 2, 2006 Lecturer: Irit Dinur Lecture 7 Scribe: Rani Lekach 1 Lecture overview This Lecture consists of two parts In the first part we will refresh the definition
Faster deterministic integer factorisation
David Harvey (joint work with Edgar Costa, NYU) University of New South Wales 25th October 2011 The obvious mathematical breakthrough would be the development of an easy way to factor large prime numbers
Parallel Simulated Annealing Algorithm for Graph Coloring Problem
Parallel Simulated Annealing Algorithm for Graph Coloring Problem Szymon Łukasik 1, Zbigniew Kokosiński 2, and Grzegorz Świętoń 2 1 Systems Research Institute, Polish Academy of Sciences, ul. Newelska
Applied Algorithm Design Lecture 5
Applied Algorithm Design Lecture 5 Pietro Michiardi Eurecom Pietro Michiardi (Eurecom) Applied Algorithm Design Lecture 5 1 / 86 Approximation Algorithms Pietro Michiardi (Eurecom) Applied Algorithm Design
Minesweeper as a Constraint Satisfaction Problem
Minesweeper as a Constraint Satisfaction Problem by Chris Studholme Introduction To Minesweeper Minesweeper is a simple one player computer game commonly found on machines with popular operating systems
Definition 11.1. Given a graph G on n vertices, we define the following quantities:
Lecture 11 The Lovász ϑ Function 11.1 Perfect graphs We begin with some background on perfect graphs. graphs. First, we define some quantities on Definition 11.1. Given a graph G on n vertices, we define
A Performance Comparison of Five Algorithms for Graph Isomorphism
A Performance Comparison of Five Algorithms for Graph Isomorphism P. Foggia, C.Sansone, M. Vento Dipartimento di Informatica e Sistemistica Via Claudio, 21 - I 80125 - Napoli, Italy {foggiapa, carlosan,
Load Balancing and Rebalancing on Web Based Environment. Yu Zhang
Load Balancing and Rebalancing on Web Based Environment Yu Zhang This report is submitted as partial fulfilment of the requirements for the Honours Programme of the School of Computer Science and Software
3. Computational Complexity.
3. Computational Complexity. (A) Introduction. As we will see, most cryptographic systems derive their supposed security from the presumed inability of any adversary to crack certain (number theoretic)
MATHEMATICAL ENGINEERING TECHNICAL REPORTS. An Improved Approximation Algorithm for the Traveling Tournament Problem
MATHEMATICAL ENGINEERING TECHNICAL REPORTS An Improved Approximation Algorithm for the Traveling Tournament Problem Daisuke YAMAGUCHI, Shinji IMAHORI, Ryuhei MIYASHIRO, Tomomi MATSUI METR 2009 42 September
