Lecture 3: Quantization Effects

Size: px
Start display at page:

Download "Lecture 3: Quantization Effects"

Transcription

1 Lecture 3: Quantization Effects Reading: We have so far discussed the design of discrete-time filters, not digital filters. To understand the characteristics of digital filters, we need first to understand the effects of quantization on both filter coefficients and signals. Most DSP systems are implemented using fixed-point arithmetic, in which case the dynamic range of the data that can be represented is quite limited. Floating-point arithmetic helps alleviate this problem, but consumes too much power and costs more. Due to the very nature of DSP, where digital data are obtained through an A/D converter, floating-point precision is usually not required. We will solve the dynammic range problem by continuous scaling. Coefficient Quantization The strategy in designing a digital filter has been that we first design a discrete-time filter with double floating-point precision, such as the use of Matlab, and then truncate (or round) the filter coefficients to implement the fixedpoint hardware. Number system: two s complement B xˆ X m b b i 0 i i X m x Bˆ where X m is the maximum value that x can take and x Bˆ b 0.b b b 3 b 4 b 5... b B. If b 0 0, 0 xˆ X m X m B, otherwise X m xˆ < 0. Define the step size to be the smallest quantity between numbers that can be represented by a quantizer, which is equal to X m B. Quantization error, e, is usually defined as xˆ x. Therefore for s complement truncation, the error is bounded by > e 0 rounding, the error is bounded by < e and for s complement 3-

2 We also need to be concerned with overflow or underflow, which can usually be minimized by employing a saturation circuit after an addition or substraction. Effects of coefficient quantization on IIR systems: Hz ( ) M b k z k k N a k z k k N Az ( ) a k z k N ( p j z ) k j To analyze the sensitiviy of each pole position with respect to filter coefficients a k, we borrow the following chain rule from calculus: Az ( ) a z pi k p i Az ( ) z pi p i a k Az ( ) a p k N k i z pi p i then a k N Az ( ) p z pi i ( p i p j ) j, j i The overall sensitivity of each pole to quantization errors introduced by all coefficients can be approximated by p i N pi a. a k k k 3-

3 Conclusion: Closely clustered poles are very sensitive to quantization error in filter coefficients (the same analysis applies to zeros as well). Solution: make sure that poles are NOT closely clustered! The use of nd-order section in filter design decouples the effects of quantization error on closely clustered poles. Let s take a look at implementing a pair of complex poles using a -nd order filter. Hz ( ) ( γe jθ z )( γe jθ z ) γcosθz γ z γcosθ -γ γcosθ and -γ must be computed and rounded to the number of bits available. Suppose that we use a 4-bit quantizer b 0.b b b 3. Both γcosθ and γ can take on the numbers from.000 to 0. (- to 0.875). Poles and zeros of a -nd order filter can only occur at the intersection of the lines representing γcosθ and the semi-circles representing γ. If γcosθ > 0.5, we can do two things. First, increase the number of bits before the binary point, or implement the factor of in γcosθ by a simple left-shift of bit after the coefficient multiplication, which involves some scaling consideration (will be discussed later). 3-3

4 Observations: Narrowband lowpass and narrowband highpass filters are most sensitive to coefficients quantization, which usually require more bits. Sampling at too high a rate is not necessarily good, pushing all poles closer to. Sensitivity increases for higher-order Direct Form realization. Poles may end up outside the unit circle after quantization and rounding. Cascade of nd-order sections is the common implementation to avoid instability. The stability of a nd-order section is guaranteed by ensuring γ to be less than. 3-4

5 Non-uniform density of poles and zeros of a nd-order section can be mitigated by using a coupled form structure. γcosθ γsinθ γsinθ γcosθ The quantized poles and zeros are at the intersections of evenly spaced horizontal and vertical lines. 3-5

6 Quantization effects on the FIR systems: Hz ( ˆ ) M [ hn ( ) hn ( )]z n 0 Hz ( ) Hz ( ) He ( jω ) M [ hn ( )]e jωn n 0 Frequency response distortion is linear with respect to the order of the filter. Quantization Effects on Linear-Phase FIR Filters Quantized linear-phase FIR filter is still linear-phase. If zeros are closely spaced, implement small sections of zeros independently with a cascade form: Zeros on the unit circle: az - z -. Zeros on the real axis: az - z -. Zeros at and -: -z - and z -. M ( hn ( ) ) e jωn ( B ) ( M ) n 0 Zeros of reciprocal conjugated pairs: ( γcosθz γ z )---- γ ( γ γcosθz z ) 3-6

7 Signal Quantization Reading: 6.9 and Signal quantization involves truncation and rounding of data samples to certain precision, represented by the number of quantization bits per sample. A typical digital signal processing system has three sources of quantization noise. x(t) 6-bit A/D converter 3-bit DSP 6-bit D/A converter y(t) The three sources of quantization noise can be represented by the following noise models: e (n) a k a k e (n) Impulse generator y(t) e 3 (n) e(n) is the difference between the exact sample value and the quantized value, due to the finite-word length of a quantizer. 3-7

8 Quantization noise is usually modeled as a random process, as the sample values cannot be predicted before hand. If there is no correlation between data samples, quantization noise can be approximated by a uniformly distributed probability density function, as shown below: PDF of e(n) e(n) _ -- Quantization noise mean 0. Quantization noise power -- e. de Let s look at the first noise source, introduced by the A/D converter. The quantization noise power is expressed in terms of the square of quantizer step size. However, this quantity doesn t carry too much meaning if not compared with the signal power. This also means that we need to scale the signal so that the full dynamic range of the quantizer can be used. Assume a random input signal with variance σ (variance power - mean ) and zero mean. Take X m 4σ, which means that the dynamic range of the quantizer is set to be equal to 4 times of standard deviation σ of the input signal. We call this quantization strategy 4σ scaling. PDF of 4σ σ σ 4σ To calculate the signal-to-quantization noise ratio, we first express signal power in terms of X m,asσ (X m /4)., the SNR can be calcu- As the quantization noise power is lated as: ( X m B )

9 SNR B log B log----- db 6B.5dB 6 6 From the above equation, we know that we get 6dBgain in SNR per additional bit. For example, if B 6, SNR 89 db. But this formula is only true if 4σ scaling has been used. Q: What if a 5σ scaling strategy has been used? A: We still get 6 db per additional bit, but the constant term -.5 db becomes -3.9 db. Q: If using a larger σ-scaling will give a lower SNR, why couldn t we always use a small σ scaling to get higher SNR? A: The equation is true only when the model of the noise is valid. If a smaller σ scaling strategy has been used, there will be a greater probability that the signal magnitude would exceed the dynamic range of the quantizer, causing highly nonlinear noise, which is not accounted for in the uniformly distributed noise model. Let s take a look at the third noise source, introduced by the D/A converter. Assuming that we quantize the internal data of 3 bits to 6 bits to be used by the D/A converter, the quantization noise can be approximated by a continuous random process uniformly distributed between half of the step size, similar to the case of A/D converter. This lowers the total SNR by another 3dB. (To calculate total SNR, all the noise powers are added up first, and then the ratio is calculated. 3dBsimply means that the signal-to-noise power ratio is halved, as the noise power is doubled.) The second quantization noise source, introduced by rounding and truncation inside a DSP, is more complicated. First let s take any two numbers, a and b, of 6 bits each. If we multiply them together, ab will need at most 3 bits to represent the result without losing precision. 3-9

10 Quantization noise in IIR filters: 3 bits 6 bits IIR filters cannot be implemented with perfect precision. A quantizer must be placed at the output of a multiplier to limit the number of bits in a recursive calculation. We need to quantify this quantization noise in order to determine the number of bits needed to satisfy a given SNR. FIR filters, on the other hand, can be implemented without quantization noise, if the number of bits increases with the filter order. We seldom do this, however, as the A/D and D/A converters have already introduced some quantization noise. There is no point to enforce perfect precision inside a DSP when a non-zero noise power already exists. There are two effects to be considered when we design a quantizer for multipliers and accumulators:. Quantizer step size should be kept as small as possible because of the square term in quantization noise power.. X m should be large enough to prevent overflow. Of course these two effects contradict with each other and represent a design trade-off, similar to the scaling strategy in determining the dynamic range of an A/D converter. 3-0

11 Example:Consider a direct form I second-order section: Q: How many quantization noise sources are there in the filter? A: It depends on where quantizers are placed. We can have either or 5. Assuming that we have M noise sources, then the total noise power will be M To calculate the noise power after filtering, we need to borrow some math from random processes. We all know that the Fourier transform of a random process doesn t exist, but the Fourier transform of the power of a stationary random process does exist, called power spectrum density. The power spectrum density at the output of a filter is the multiplication of the power spectrum density of the input and the square of the filter frequency response, as shown in the following figure: H(e jω ) P x (e jω ) P y (e jω )P x (e jω ) H(e jω ) Therefore the noise power at the output of a filter is the integration of its power spectrum density: σ f π σ e He ( jω ) dω π π, 3-

12 where we have assumed that the input noise power spectrum density is a constant variance σ (a white random process with zero mean). π By Parseval s Theorem,, then π He ( jω ) dω hn ( ) π n σ f σ e hn ( ). The output noise power can be calculated by either equation, as an integral of the power spectrum density over all frequencies, or as a scaled infinite summation of the impulse response squared. Usually it is easier to calculate the infinite summation, if the impulse response takes a closed form. Example:The noise power at the filter output is b Q X m B a Q a Example:The noise power at the filter output is σ f X m B hn ( ) X m B n. Q Q Q Q Q 3-

13 s should always be less than. If s is greater than, then either x max is less than, implying that the previous stage didn t use the full dynamic range available, or the summation of the filter impulse response is less than, implying that the filter wasn t designed properly. Both cases point to a wasted dynamic range, reducing signal power unnecessarily. The design of the scal- To calculate signal power, we use the same concept of power spectrum density, as the input signal is merely another random process. The signal power at the output of a filter is usually expressed as: π σ,whereσ s σ input He ( input is π jω ) dω σ input hn ( ) π n the input signal power, assuming that the input is also a white random process with zero-mean. The total SNR is the ratio of the signal power to the noise power. But before we discuss SNR, we need to consider scaling, which connects the signal magnitude to the quantizer dynamic range. Scaling criterion #: Bounded-input-bounded-output. In this criterion we want to make sure that every node in the filter network is bounded by some number. If we follow the convention that each number represents a fraction (with a possible scaling factor), each node in the network must be constrained to have a magnitude less than to avoid overflow. Pick any node in the network w(n). Its response can be expressed as wn ( ) xn ( m)h w ( m) x max h w ( m) m m. To make sure that w(n) <, we need to introduce a scaling factor s such that x max s h w ( m) m. 3-3

14 ing factor is therefore to always give the signal the maximum dynamic range possible, as the quantization noise power is a constant once the step size is determined. Bounded-input-bounded-output criterion usually results in a very small s, which reduces the signal power and therefore the overall SNR. Criterion #: Frequency response criterion. In this criterion we input a narrow-band signal x max cos ω o n to the filter. To avoid overflow at a node w(n) given this input signal, we need to insure that wn ( ) H w ( e jω o) x max. The scaling factor s should be chosen so that x max s max ( H w ( e jω ) ) 0 ω π Because max( H w ( e jω ) ) h w ( m), the scaling factor derived m using Criterion # is always smaller than the scaling factor derived using Criterion #. Example:Consider the following simple filter: b Q Q a Q: Assuming that x max, scale the input so that is always less than. 3-4

15 To find the scaling factor using Criterion #, we need to calculate the summation of the absolute values of the impulse response: s hm ( ) b a n m m a b. The output noise power is simply a To calculate signal power, assume that is a white random signal uniformly distributed between and -. Its mean is 0 and its variance is /3. The signal power at the output of the filter is --s b The total SNR is 3 a --s. 3 b ( a ) s a b Several finite-precision related problems: Signal quantization considerations for FFT. Signal quantization considerations for multiplications and additions. Normalized operations to mimic floating-point calculation. Complex operations such as divide and inverse usually use a table look-up to control the quantization effects. 3-5

Basics of Floating-Point Quantization

Basics of Floating-Point Quantization Chapter 2 Basics of Floating-Point Quantization Representation of physical quantities in terms of floating-point numbers allows one to cover a very wide dynamic range with a relatively small number of

More information

(Refer Slide Time: 01:11-01:27)

(Refer Slide Time: 01:11-01:27) Digital Signal Processing Prof. S. C. Dutta Roy Department of Electrical Engineering Indian Institute of Technology, Delhi Lecture - 6 Digital systems (contd.); inverse systems, stability, FIR and IIR,

More information

Probability and Random Variables. Generation of random variables (r.v.)

Probability and Random Variables. Generation of random variables (r.v.) Probability and Random Variables Method for generating random variables with a specified probability distribution function. Gaussian And Markov Processes Characterization of Stationary Random Process Linearly

More information

Em bedded DSP : I ntroduction to Digital Filters

Em bedded DSP : I ntroduction to Digital Filters Embedded DSP : Introduction to Digital Filters 1 Em bedded DSP : I ntroduction to Digital Filters Digital filters are a important part of DSP. In fact their extraordinary performance is one of the keys

More information

TCOM 370 NOTES 99-4 BANDWIDTH, FREQUENCY RESPONSE, AND CAPACITY OF COMMUNICATION LINKS

TCOM 370 NOTES 99-4 BANDWIDTH, FREQUENCY RESPONSE, AND CAPACITY OF COMMUNICATION LINKS TCOM 370 NOTES 99-4 BANDWIDTH, FREQUENCY RESPONSE, AND CAPACITY OF COMMUNICATION LINKS 1. Bandwidth: The bandwidth of a communication link, or in general any system, was loosely defined as the width of

More information

Solutions to Exam in Speech Signal Processing EN2300

Solutions to Exam in Speech Signal Processing EN2300 Solutions to Exam in Speech Signal Processing EN23 Date: Thursday, Dec 2, 8: 3: Place: Allowed: Grades: Language: Solutions: Q34, Q36 Beta Math Handbook (or corresponding), calculator with empty memory.

More information

Motorola Digital Signal Processors

Motorola Digital Signal Processors Motorola Digital Signal Processors Principles of Sigma-Delta Modulation for Analog-to- Digital Converters by Sangil Park, Ph. D. Strategic Applications Digital Signal Processor Operation MOTOROLA APR8

More information

Filter Comparison. Match #1: Analog vs. Digital Filters

Filter Comparison. Match #1: Analog vs. Digital Filters CHAPTER 21 Filter Comparison Decisions, decisions, decisions! With all these filters to choose from, how do you know which to use? This chapter is a head-to-head competition between filters; we'll select

More information

TTT4110 Information and Signal Theory Solution to exam

TTT4110 Information and Signal Theory Solution to exam Norwegian University of Science and Technology Department of Electronics and Telecommunications TTT4 Information and Signal Theory Solution to exam Problem I (a The frequency response is found by taking

More information

Chapter 8 - Power Density Spectrum

Chapter 8 - Power Density Spectrum EE385 Class Notes 8/8/03 John Stensby Chapter 8 - Power Density Spectrum Let X(t) be a WSS random process. X(t) has an average power, given in watts, of E[X(t) ], a constant. his total average power is

More information

TTT4120 Digital Signal Processing Suggested Solution to Exam Fall 2008

TTT4120 Digital Signal Processing Suggested Solution to Exam Fall 2008 Norwegian University of Science and Technology Department of Electronics and Telecommunications TTT40 Digital Signal Processing Suggested Solution to Exam Fall 008 Problem (a) The input and the input-output

More information

NRZ Bandwidth - HF Cutoff vs. SNR

NRZ Bandwidth - HF Cutoff vs. SNR Application Note: HFAN-09.0. Rev.2; 04/08 NRZ Bandwidth - HF Cutoff vs. SNR Functional Diagrams Pin Configurations appear at end of data sheet. Functional Diagrams continued at end of data sheet. UCSP

More information

Design of Efficient Digital Interpolation Filters for Integer Upsampling. Daniel B. Turek

Design of Efficient Digital Interpolation Filters for Integer Upsampling. Daniel B. Turek Design of Efficient Digital Interpolation Filters for Integer Upsampling by Daniel B. Turek Submitted to the Department of Electrical Engineering and Computer Science in partial fulfillment of the requirements

More information

IIR Half-band Filter Design with TMS320VC33 DSP

IIR Half-band Filter Design with TMS320VC33 DSP IIR Half-band Filter Design with TMS320VC33 DSP Ottó Nyári, Tibor Szakáll, Péter Odry Polytechnical Engineering College, Marka Oreskovica 16, Subotica, Serbia and Montenegro nyario@vts.su.ac.yu, tibi@vts.su.ac.yu,

More information

AVR223: Digital Filters with AVR. 8-bit Microcontrollers. Application Note. Features. 1 Introduction

AVR223: Digital Filters with AVR. 8-bit Microcontrollers. Application Note. Features. 1 Introduction AVR223: Digital Filters with AVR Features Implementation of Digital Filters Coefficient and Data scaling Fast Implementation of 4 th Order FIR Filter Fast Implementation of 2 nd Order IIR Filter Methods

More information

SECTION 6 DIGITAL FILTERS

SECTION 6 DIGITAL FILTERS SECTION 6 DIGITAL FILTERS Finite Impulse Response (FIR) Filters Infinite Impulse Response (IIR) Filters Multirate Filters Adaptive Filters 6.a 6.b SECTION 6 DIGITAL FILTERS Walt Kester INTRODUCTION Digital

More information

SGN-1158 Introduction to Signal Processing Test. Solutions

SGN-1158 Introduction to Signal Processing Test. Solutions SGN-1158 Introduction to Signal Processing Test. Solutions 1. Convolve the function ( ) with itself and show that the Fourier transform of the result is the square of the Fourier transform of ( ). (Hints:

More information

The Effective Number of Bits (ENOB) of my R&S Digital Oscilloscope Technical Paper

The Effective Number of Bits (ENOB) of my R&S Digital Oscilloscope Technical Paper The Effective Number of Bits (ENOB) of my R&S Digital Oscilloscope Technical Paper Products: R&S RTO1012 R&S RTO1014 R&S RTO1022 R&S RTO1024 This technical paper provides an introduction to the signal

More information

Frequency Response of FIR Filters

Frequency Response of FIR Filters Frequency Response of FIR Filters Chapter 6 This chapter continues the study of FIR filters from Chapter 5, but the emphasis is frequency response, which relates to how the filter responds to an input

More information

Time series analysis Matlab tutorial. Joachim Gross

Time series analysis Matlab tutorial. Joachim Gross Time series analysis Matlab tutorial Joachim Gross Outline Terminology Sampling theorem Plotting Baseline correction Detrending Smoothing Filtering Decimation Remarks Focus on practical aspects, exercises,

More information

min ǫ = E{e 2 [n]}. (11.2)

min ǫ = E{e 2 [n]}. (11.2) C H A P T E R 11 Wiener Filtering INTRODUCTION In this chapter we will consider the use of LTI systems in order to perform minimum mean-square-error (MMSE) estimation of a WSS random process of interest,

More information

CHAPTER 6 Frequency Response, Bode Plots, and Resonance

CHAPTER 6 Frequency Response, Bode Plots, and Resonance ELECTRICAL CHAPTER 6 Frequency Response, Bode Plots, and Resonance 1. State the fundamental concepts of Fourier analysis. 2. Determine the output of a filter for a given input consisting of sinusoidal

More information

ECE 0142 Computer Organization. Lecture 3 Floating Point Representations

ECE 0142 Computer Organization. Lecture 3 Floating Point Representations ECE 0142 Computer Organization Lecture 3 Floating Point Representations 1 Floating-point arithmetic We often incur floating-point programming. Floating point greatly simplifies working with large (e.g.,

More information

T = 1 f. Phase. Measure of relative position in time within a single period of a signal For a periodic signal f(t), phase is fractional part t p

T = 1 f. Phase. Measure of relative position in time within a single period of a signal For a periodic signal f(t), phase is fractional part t p Data Transmission Concepts and terminology Transmission terminology Transmission from transmitter to receiver goes over some transmission medium using electromagnetic waves Guided media. Waves are guided

More information

Lecture 8 ELE 301: Signals and Systems

Lecture 8 ELE 301: Signals and Systems Lecture 8 ELE 3: Signals and Systems Prof. Paul Cuff Princeton University Fall 2-2 Cuff (Lecture 7) ELE 3: Signals and Systems Fall 2-2 / 37 Properties of the Fourier Transform Properties of the Fourier

More information

Digital Signal Processing IIR Filter Design via Impulse Invariance

Digital Signal Processing IIR Filter Design via Impulse Invariance Digital Signal Processing IIR Filter Design via Impulse Invariance D. Richard Brown III D. Richard Brown III 1 / 11 Basic Procedure We assume here that we ve already decided to use an IIR filter. The basic

More information

Lecture 5: Variants of the LMS algorithm

Lecture 5: Variants of the LMS algorithm 1 Standard LMS Algorithm FIR filters: Lecture 5: Variants of the LMS algorithm y(n) = w 0 (n)u(n)+w 1 (n)u(n 1) +...+ w M 1 (n)u(n M +1) = M 1 k=0 w k (n)u(n k) =w(n) T u(n), Error between filter output

More information

Lecture 18: The Time-Bandwidth Product

Lecture 18: The Time-Bandwidth Product WAVELETS AND MULTIRATE DIGITAL SIGNAL PROCESSING Lecture 18: The Time-Bandwih Product Prof.Prof.V.M.Gadre, EE, IIT Bombay 1 Introduction In this lecture, our aim is to define the time Bandwih Product,

More information

Fixed-Point Arithmetic: An Introduction

Fixed-Point Arithmetic: An Introduction Fixed-Point Arithmetic: An Introduction 1 (15) Fixed-Point Arithmetic: An Introduction Randy Yates January 2, 2013 s i g n a l p r o c e s s i n g s y s t e m s s http://www.digitalsignallabs.com Typeset

More information

MODULATION Systems (part 1)

MODULATION Systems (part 1) Technologies and Services on Digital Broadcasting (8) MODULATION Systems (part ) "Technologies and Services of Digital Broadcasting" (in Japanese, ISBN4-339-62-2) is published by CORONA publishing co.,

More information

6.025J Medical Device Design Lecture 3: Analog-to-Digital Conversion Prof. Joel L. Dawson

6.025J Medical Device Design Lecture 3: Analog-to-Digital Conversion Prof. Joel L. Dawson Let s go back briefly to lecture 1, and look at where ADC s and DAC s fit into our overall picture. I m going in a little extra detail now since this is our eighth lecture on electronics and we are more

More information

Understanding CIC Compensation Filters

Understanding CIC Compensation Filters Understanding CIC Compensation Filters April 2007, ver. 1.0 Application Note 455 Introduction f The cascaded integrator-comb (CIC) filter is a class of hardware-efficient linear phase finite impulse response

More information

CHAPTER 5 Round-off errors

CHAPTER 5 Round-off errors CHAPTER 5 Round-off errors In the two previous chapters we have seen how numbers can be represented in the binary numeral system and how this is the basis for representing numbers in computers. Since any

More information

Implementation of the LMS Algorithm for Noise Cancellation on Speech Using the ARM LPC2378 Processor.

Implementation of the LMS Algorithm for Noise Cancellation on Speech Using the ARM LPC2378 Processor. School of Mathematics and Systems Engineering Reports from MSI - Rapporter från MSI Implementation of the LMS Algorithm for Noise Cancellation on Speech Using the ARM LPC2378 Processor. Cesar Augusto Azurdia

More information

Enhancing the SNR of the Fiber Optic Rotation Sensor using the LMS Algorithm

Enhancing the SNR of the Fiber Optic Rotation Sensor using the LMS Algorithm 1 Enhancing the SNR of the Fiber Optic Rotation Sensor using the LMS Algorithm Hani Mehrpouyan, Student Member, IEEE, Department of Electrical and Computer Engineering Queen s University, Kingston, Ontario,

More information

MEP Y9 Practice Book A

MEP Y9 Practice Book A 1 Base Arithmetic 1.1 Binary Numbers We normally work with numbers in base 10. In this section we consider numbers in base 2, often called binary numbers. In base 10 we use the digits 0, 1, 2, 3, 4, 5,

More information

0.8 Rational Expressions and Equations

0.8 Rational Expressions and Equations 96 Prerequisites 0.8 Rational Expressions and Equations We now turn our attention to rational expressions - that is, algebraic fractions - and equations which contain them. The reader is encouraged to

More information

chapter Introduction to Digital Signal Processing and Digital Filtering 1.1 Introduction 1.2 Historical Perspective

chapter Introduction to Digital Signal Processing and Digital Filtering 1.1 Introduction 1.2 Historical Perspective Introduction to Digital Signal Processing and Digital Filtering chapter 1 Introduction to Digital Signal Processing and Digital Filtering 1.1 Introduction Digital signal processing (DSP) refers to anything

More information

SAMPLE SOLUTIONS DIGITAL SIGNAL PROCESSING: Signals, Systems, and Filters Andreas Antoniou

SAMPLE SOLUTIONS DIGITAL SIGNAL PROCESSING: Signals, Systems, and Filters Andreas Antoniou SAMPLE SOLUTIONS DIGITAL SIGNAL PROCESSING: Signals, Systems, and Filters Andreas Antoniou (Revision date: February 7, 7) SA. A periodic signal can be represented by the equation x(t) k A k sin(ω k t +

More information

Common Core Unit Summary Grades 6 to 8

Common Core Unit Summary Grades 6 to 8 Common Core Unit Summary Grades 6 to 8 Grade 8: Unit 1: Congruence and Similarity- 8G1-8G5 rotations reflections and translations,( RRT=congruence) understand congruence of 2 d figures after RRT Dilations

More information

This Unit: Floating Point Arithmetic. CIS 371 Computer Organization and Design. Readings. Floating Point (FP) Numbers

This Unit: Floating Point Arithmetic. CIS 371 Computer Organization and Design. Readings. Floating Point (FP) Numbers This Unit: Floating Point Arithmetic CIS 371 Computer Organization and Design Unit 7: Floating Point App App App System software Mem CPU I/O Formats Precision and range IEEE 754 standard Operations Addition

More information

Design of FIR Filters

Design of FIR Filters Design of FIR Filters Elena Punskaya www-sigproc.eng.cam.ac.uk/~op205 Some material adapted from courses by Prof. Simon Godsill, Dr. Arnaud Doucet, Dr. Malcolm Macleod and Prof. Peter Rayner 68 FIR as

More information

2.161 Signal Processing: Continuous and Discrete Fall 2008

2.161 Signal Processing: Continuous and Discrete Fall 2008 MT OpenCourseWare http://ocw.mit.edu.6 Signal Processing: Continuous and Discrete Fall 00 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. MASSACHUSETTS

More information

ANALYZER BASICS WHAT IS AN FFT SPECTRUM ANALYZER? 2-1

ANALYZER BASICS WHAT IS AN FFT SPECTRUM ANALYZER? 2-1 WHAT IS AN FFT SPECTRUM ANALYZER? ANALYZER BASICS The SR760 FFT Spectrum Analyzer takes a time varying input signal, like you would see on an oscilloscope trace, and computes its frequency spectrum. Fourier's

More information

Signal to Noise Instrumental Excel Assignment

Signal to Noise Instrumental Excel Assignment Signal to Noise Instrumental Excel Assignment Instrumental methods, as all techniques involved in physical measurements, are limited by both the precision and accuracy. The precision and accuracy of a

More information

The Z transform (3) 1

The Z transform (3) 1 The Z transform (3) 1 Today Analysis of stability and causality of LTI systems in the Z domain The inverse Z Transform Section 3.3 (read class notes first) Examples 3.9, 3.11 Properties of the Z Transform

More information

What are the place values to the left of the decimal point and their associated powers of ten?

What are the place values to the left of the decimal point and their associated powers of ten? The verbal answers to all of the following questions should be memorized before completion of algebra. Answers that are not memorized will hinder your ability to succeed in geometry and algebra. (Everything

More information

Analysis of Filter Coefficient Precision on LMS Algorithm Performance for G.165/G.168 Echo Cancellation

Analysis of Filter Coefficient Precision on LMS Algorithm Performance for G.165/G.168 Echo Cancellation Application Report SPRA561 - February 2 Analysis of Filter Coefficient Precision on LMS Algorithm Performance for G.165/G.168 Echo Cancellation Zhaohong Zhang Gunter Schmer C6 Applications ABSTRACT This

More information

FFT Algorithms. Chapter 6. Contents 6.1

FFT Algorithms. Chapter 6. Contents 6.1 Chapter 6 FFT Algorithms Contents Efficient computation of the DFT............................................ 6.2 Applications of FFT................................................... 6.6 Computing DFT

More information

Lecture 14. Point Spread Function (PSF)

Lecture 14. Point Spread Function (PSF) Lecture 14 Point Spread Function (PSF), Modulation Transfer Function (MTF), Signal-to-noise Ratio (SNR), Contrast-to-noise Ratio (CNR), and Receiver Operating Curves (ROC) Point Spread Function (PSF) Recollect

More information

Introduction to Digital Filters

Introduction to Digital Filters CHAPTER 14 Introduction to Digital Filters Digital filters are used for two general purposes: (1) separation of signals that have been combined, and (2) restoration of signals that have been distorted

More information

Infinite Impulse Response Filter Structures in Xilinx FPGAs

Infinite Impulse Response Filter Structures in Xilinx FPGAs White Paper: Spartan -3A DSP, Virtex -5/Virtex-4 FPGAs, LogiCOE IP WP330 (v1.2) August 10, 2009 Infinite Impulse esponse Filter Structures in Xilinx FPGAs By: Michael Francis A large percentage of filters

More information

Numerical Matrix Analysis

Numerical Matrix Analysis Numerical Matrix Analysis Lecture Notes #10 Conditioning and / Peter Blomgren, blomgren.peter@gmail.com Department of Mathematics and Statistics Dynamical Systems Group Computational Sciences Research

More information

The front end of the receiver performs the frequency translation, channel selection and amplification of the signal.

The front end of the receiver performs the frequency translation, channel selection and amplification of the signal. Many receivers must be capable of handling a very wide range of signal powers at the input while still producing the correct output. This must be done in the presence of noise and interference which occasionally

More information

Sampling Theorem Notes. Recall: That a time sampled signal is like taking a snap shot or picture of signal periodically.

Sampling Theorem Notes. Recall: That a time sampled signal is like taking a snap shot or picture of signal periodically. Sampling Theorem We will show that a band limited signal can be reconstructed exactly from its discrete time samples. Recall: That a time sampled signal is like taking a snap shot or picture of signal

More information

Teaching DSP through the Practical Case Study of an FSK Modem

Teaching DSP through the Practical Case Study of an FSK Modem Disclaimer: This document was part of the First European DSP Education and Research Conference. It may have been written by someone whose native language is not English. TI assumes no liability for the

More information

Oct: 50 8 = 6 (r = 2) 6 8 = 0 (r = 6) Writing the remainders in reverse order we get: (50) 10 = (62) 8

Oct: 50 8 = 6 (r = 2) 6 8 = 0 (r = 6) Writing the remainders in reverse order we get: (50) 10 = (62) 8 ECE Department Summer LECTURE #5: Number Systems EEL : Digital Logic and Computer Systems Based on lecture notes by Dr. Eric M. Schwartz Decimal Number System: -Our standard number system is base, also

More information

Signal Detection. Outline. Detection Theory. Example Applications of Detection Theory

Signal Detection. Outline. Detection Theory. Example Applications of Detection Theory Outline Signal Detection M. Sami Fadali Professor of lectrical ngineering University of Nevada, Reno Hypothesis testing. Neyman-Pearson (NP) detector for a known signal in white Gaussian noise (WGN). Matched

More information

Determine If An Equation Represents a Function

Determine If An Equation Represents a Function Question : What is a linear function? The term linear function consists of two parts: linear and function. To understand what these terms mean together, we must first understand what a function is. The

More information

Introduction to Digital Audio

Introduction to Digital Audio Introduction to Digital Audio Before the development of high-speed, low-cost digital computers and analog-to-digital conversion circuits, all recording and manipulation of sound was done using analog techniques.

More information

Signal Detection C H A P T E R 14 14.1 SIGNAL DETECTION AS HYPOTHESIS TESTING

Signal Detection C H A P T E R 14 14.1 SIGNAL DETECTION AS HYPOTHESIS TESTING C H A P T E R 4 Signal Detection 4. SIGNAL DETECTION AS HYPOTHESIS TESTING In Chapter 3 we considered hypothesis testing in the context of random variables. The detector resulting in the minimum probability

More information

Digital Modulation. David Tipper. Department of Information Science and Telecommunications University of Pittsburgh. Typical Communication System

Digital Modulation. David Tipper. Department of Information Science and Telecommunications University of Pittsburgh. Typical Communication System Digital Modulation David Tipper Associate Professor Department of Information Science and Telecommunications University of Pittsburgh http://www.tele.pitt.edu/tipper.html Typical Communication System Source

More information

Auto-Tuning Using Fourier Coefficients

Auto-Tuning Using Fourier Coefficients Auto-Tuning Using Fourier Coefficients Math 56 Tom Whalen May 20, 2013 The Fourier transform is an integral part of signal processing of any kind. To be able to analyze an input signal as a superposition

More information

Department of Electrical and Computer Engineering Ben-Gurion University of the Negev. LAB 1 - Introduction to USRP

Department of Electrical and Computer Engineering Ben-Gurion University of the Negev. LAB 1 - Introduction to USRP Department of Electrical and Computer Engineering Ben-Gurion University of the Negev LAB 1 - Introduction to USRP - 1-1 Introduction In this lab you will use software reconfigurable RF hardware from National

More information

Positive Feedback and Oscillators

Positive Feedback and Oscillators Physics 3330 Experiment #6 Fall 1999 Positive Feedback and Oscillators Purpose In this experiment we will study how spontaneous oscillations may be caused by positive feedback. You will construct an active

More information

RF SYSTEM DESIGN OF TRANSCEIVERS FOR WIRELESS COMMUNICATIONS

RF SYSTEM DESIGN OF TRANSCEIVERS FOR WIRELESS COMMUNICATIONS RF SYSTEM DESIGN OF TRANSCEIVERS FOR WIRELESS COMMUNICATIONS Qizheng Gu Nokia Mobile Phones, Inc. 4y Springer Contents Preface xiii Chapter 1. Introduction 1 1.1. Wireless Systems 1 1.1.1. Mobile Communications

More information

Computer Networks and Internets, 5e Chapter 6 Information Sources and Signals. Introduction

Computer Networks and Internets, 5e Chapter 6 Information Sources and Signals. Introduction Computer Networks and Internets, 5e Chapter 6 Information Sources and Signals Modified from the lecture slides of Lami Kaya (LKaya@ieee.org) for use CECS 474, Fall 2008. 2009 Pearson Education Inc., Upper

More information

PRACTICAL GUIDE TO DATA SMOOTHING AND FILTERING

PRACTICAL GUIDE TO DATA SMOOTHING AND FILTERING PRACTICAL GUIDE TO DATA SMOOTHING AND FILTERING Ton van den Bogert October 3, 996 Summary: This guide presents an overview of filtering methods and the software which is available in the HPL.. What is

More information

LMS is a simple but powerful algorithm and can be implemented to take advantage of the Lattice FPGA architecture.

LMS is a simple but powerful algorithm and can be implemented to take advantage of the Lattice FPGA architecture. February 2012 Introduction Reference Design RD1031 Adaptive algorithms have become a mainstay in DSP. They are used in wide ranging applications including wireless channel estimation, radar guidance systems,

More information

Introduction to IQ-demodulation of RF-data

Introduction to IQ-demodulation of RF-data Introduction to IQ-demodulation of RF-data by Johan Kirkhorn, IFBT, NTNU September 15, 1999 Table of Contents 1 INTRODUCTION...3 1.1 Abstract...3 1.2 Definitions/Abbreviations/Nomenclature...3 1.3 Referenced

More information

Florida Math for College Readiness

Florida Math for College Readiness Core Florida Math for College Readiness Florida Math for College Readiness provides a fourth-year math curriculum focused on developing the mastery of skills identified as critical to postsecondary readiness

More information

Binary Numbering Systems

Binary Numbering Systems Binary Numbering Systems April 1997, ver. 1 Application Note 83 Introduction Binary numbering systems are used in virtually all digital systems, including digital signal processing (DSP), networking, and

More information

SIGNAL PROCESSING & SIMULATION NEWSLETTER

SIGNAL PROCESSING & SIMULATION NEWSLETTER 1 of 10 1/25/2008 3:38 AM SIGNAL PROCESSING & SIMULATION NEWSLETTER Note: This is not a particularly interesting topic for anyone other than those who ar e involved in simulation. So if you have difficulty

More information

Non-Data Aided Carrier Offset Compensation for SDR Implementation

Non-Data Aided Carrier Offset Compensation for SDR Implementation Non-Data Aided Carrier Offset Compensation for SDR Implementation Anders Riis Jensen 1, Niels Terp Kjeldgaard Jørgensen 1 Kim Laugesen 1, Yannick Le Moullec 1,2 1 Department of Electronic Systems, 2 Center

More information

The Fourier Analysis Tool in Microsoft Excel

The Fourier Analysis Tool in Microsoft Excel The Fourier Analysis Tool in Microsoft Excel Douglas A. Kerr Issue March 4, 2009 ABSTRACT AD ITRODUCTIO The spreadsheet application Microsoft Excel includes a tool that will calculate the discrete Fourier

More information

Discrete-Time Signals and Systems

Discrete-Time Signals and Systems 2 Discrete-Time Signals and Systems 2.0 INTRODUCTION The term signal is generally applied to something that conveys information. Signals may, for example, convey information about the state or behavior

More information

Dithering in Analog-to-digital Conversion

Dithering in Analog-to-digital Conversion Application Note 1. Introduction 2. What is Dither High-speed ADCs today offer higher dynamic performances and every effort is made to push these state-of-the art performances through design improvements

More information

UNIVERSITY OF CALIFORNIA, SAN DIEGO Electrical & Computer Engineering Department ECE 101 - Fall 2010 Linear Systems Fundamentals

UNIVERSITY OF CALIFORNIA, SAN DIEGO Electrical & Computer Engineering Department ECE 101 - Fall 2010 Linear Systems Fundamentals UNIVERSITY OF CALIFORNIA, SAN DIEGO Electrical & Computer Engineering Department ECE 101 - Fall 2010 Linear Systems Fundamentals FINAL EXAM WITH SOLUTIONS (YOURS!) You are allowed one 2-sided sheet of

More information

PYTHAGOREAN TRIPLES KEITH CONRAD

PYTHAGOREAN TRIPLES KEITH CONRAD PYTHAGOREAN TRIPLES KEITH CONRAD 1. Introduction A Pythagorean triple is a triple of positive integers (a, b, c) where a + b = c. Examples include (3, 4, 5), (5, 1, 13), and (8, 15, 17). Below is an ancient

More information

Implementation of Digital Signal Processing: Some Background on GFSK Modulation

Implementation of Digital Signal Processing: Some Background on GFSK Modulation Implementation of Digital Signal Processing: Some Background on GFSK Modulation Sabih H. Gerez University of Twente, Department of Electrical Engineering s.h.gerez@utwente.nl Version 4 (February 7, 2013)

More information

Analog Filters. A common instrumentation filter application is the attenuation of high frequencies to avoid frequency aliasing in the sampled data.

Analog Filters. A common instrumentation filter application is the attenuation of high frequencies to avoid frequency aliasing in the sampled data. Analog Filters Filters can be used to attenuate unwanted signals such as interference or noise or to isolate desired signals from unwanted. They use the frequency response of a measuring system to alter

More information

DDS. 16-bit Direct Digital Synthesizer / Periodic waveform generator Rev. 1.4. Key Design Features. Block Diagram. Generic Parameters.

DDS. 16-bit Direct Digital Synthesizer / Periodic waveform generator Rev. 1.4. Key Design Features. Block Diagram. Generic Parameters. Key Design Features Block Diagram Synthesizable, technology independent VHDL IP Core 16-bit signed output samples 32-bit phase accumulator (tuning word) 32-bit phase shift feature Phase resolution of 2π/2

More information

Lecture 9. Poles, Zeros & Filters (Lathi 4.10) Effects of Poles & Zeros on Frequency Response (1) Effects of Poles & Zeros on Frequency Response (3)

Lecture 9. Poles, Zeros & Filters (Lathi 4.10) Effects of Poles & Zeros on Frequency Response (1) Effects of Poles & Zeros on Frequency Response (3) Effects of Poles & Zeros on Frequency Response (1) Consider a general system transfer function: zeros at z1, z2,..., zn Lecture 9 Poles, Zeros & Filters (Lathi 4.10) The value of the transfer function

More information

First, we show how to use known design specifications to determine filter order and 3dB cut-off

First, we show how to use known design specifications to determine filter order and 3dB cut-off Butterworth Low-Pass Filters In this article, we describe the commonly-used, n th -order Butterworth low-pass filter. First, we show how to use known design specifications to determine filter order and

More information

UNIVERSITY OF CALIFORNIA, SAN DIEGO Electrical & Computer Engineering Department ECE 101 - Fall 2009 Linear Systems Fundamentals

UNIVERSITY OF CALIFORNIA, SAN DIEGO Electrical & Computer Engineering Department ECE 101 - Fall 2009 Linear Systems Fundamentals UNIVERSITY OF CALIFORNIA, SAN DIEGO Electrical & Computer Engineering Department ECE 101 - Fall 2009 Linear Systems Fundamentals MIDTERM EXAM You are allowed one 2-sided sheet of notes. No books, no other

More information

Continued Fractions and the Euclidean Algorithm

Continued Fractions and the Euclidean Algorithm Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction

More information

An Introduction to Digital Filters

An Introduction to Digital Filters TM An Introduction to Digital Filters Application Note January 1999 AN9603.2 Introduction Digital Signal Processing (DSP) affords greater flexibility, higher performance (in terms of attenuation and selectivity),

More information

Binary Division. Decimal Division. Hardware for Binary Division. Simple 16-bit Divider Circuit

Binary Division. Decimal Division. Hardware for Binary Division. Simple 16-bit Divider Circuit Decimal Division Remember 4th grade long division? 43 // quotient 12 521 // divisor dividend -480 41-36 5 // remainder Shift divisor left (multiply by 10) until MSB lines up with dividend s Repeat until

More information

Digital Transmission of Analog Data: PCM and Delta Modulation

Digital Transmission of Analog Data: PCM and Delta Modulation Digital Transmission of Analog Data: PCM and Delta Modulation Required reading: Garcia 3.3.2 and 3.3.3 CSE 323, Fall 200 Instructor: N. Vlajic Digital Transmission of Analog Data 2 Digitization process

More information

CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA

CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA We Can Early Learning Curriculum PreK Grades 8 12 INSIDE ALGEBRA, GRADES 8 12 CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA April 2016 www.voyagersopris.com Mathematical

More information

The Calculation of G rms

The Calculation of G rms The Calculation of G rms QualMark Corp. Neill Doertenbach The metric of G rms is typically used to specify and compare the energy in repetitive shock vibration systems. However, the method of arriving

More information

Combining the ADS1202 with an FPGA Digital Filter for Current Measurement in Motor Control Applications

Combining the ADS1202 with an FPGA Digital Filter for Current Measurement in Motor Control Applications Application Report SBAA094 June 2003 Combining the ADS1202 with an FPGA Digital Filter for Current Measurement in Motor Control Applications Miroslav Oljaca, Tom Hendrick Data Acquisition Products ABSTRACT

More information

Lecture 8: Signal Detection and Noise Assumption

Lecture 8: Signal Detection and Noise Assumption ECE 83 Fall Statistical Signal Processing instructor: R. Nowak, scribe: Feng Ju Lecture 8: Signal Detection and Noise Assumption Signal Detection : X = W H : X = S + W where W N(, σ I n n and S = [s, s,...,

More information

HYBRID FIR-IIR FILTERS By John F. Ehlers

HYBRID FIR-IIR FILTERS By John F. Ehlers HYBRID FIR-IIR FILTERS By John F. Ehlers Many traders have come to me, asking me to make their indicators act just one day sooner. They are convinced that this is just the edge they need to make a zillion

More information

Higher Education Math Placement

Higher Education Math Placement Higher Education Math Placement Placement Assessment Problem Types 1. Whole Numbers, Fractions, and Decimals 1.1 Operations with Whole Numbers Addition with carry Subtraction with borrowing Multiplication

More information

2010 Solutions. a + b. a + b 1. (a + b)2 + (b a) 2. (b2 + a 2 ) 2 (a 2 b 2 ) 2

2010 Solutions. a + b. a + b 1. (a + b)2 + (b a) 2. (b2 + a 2 ) 2 (a 2 b 2 ) 2 00 Problem If a and b are nonzero real numbers such that a b, compute the value of the expression ( ) ( b a + a a + b b b a + b a ) ( + ) a b b a + b a +. b a a b Answer: 8. Solution: Let s simplify the

More information

Lecture 5 Rational functions and partial fraction expansion

Lecture 5 Rational functions and partial fraction expansion S. Boyd EE102 Lecture 5 Rational functions and partial fraction expansion (review of) polynomials rational functions pole-zero plots partial fraction expansion repeated poles nonproper rational functions

More information

1) Write the following as an algebraic expression using x as the variable: Triple a number subtracted from the number

1) Write the following as an algebraic expression using x as the variable: Triple a number subtracted from the number 1) Write the following as an algebraic expression using x as the variable: Triple a number subtracted from the number A. 3(x - x) B. x 3 x C. 3x - x D. x - 3x 2) Write the following as an algebraic expression

More information

The Method of Partial Fractions Math 121 Calculus II Spring 2015

The Method of Partial Fractions Math 121 Calculus II Spring 2015 Rational functions. as The Method of Partial Fractions Math 11 Calculus II Spring 015 Recall that a rational function is a quotient of two polynomials such f(x) g(x) = 3x5 + x 3 + 16x x 60. The method

More information