6.025J Medical Device Design Lecture 3: Analog-to-Digital Conversion Prof. Joel L. Dawson
|
|
|
- Gilbert Garrison
- 9 years ago
- Views:
Transcription
1 Let s go back briefly to lecture 1, and look at where ADC s and DAC s fit into our overall picture. I m going in a little extra detail now since this is our eighth lecture on electronics and we are more sophisticated now. ADC Analog-to-digital converter DAC Digital-to-analog converter Digital signal processing is amazing. For decades our processing power has doubled roughly every 18 months. If that fails to astound, imagine putting $1,000 into some sort of retirement account with that kind of yield, and within 30 years But in order to get to all that DSP goodness, we must first translate our analog signals to digital signals. If we want to act on our digital results, we often must translate digital commands back to analog signals. So in medical electronics, it is almost impossible to get around these blocks. Lets take a look at them.
2 Analog-to-Digital Conversion An ADC is typically an integrated circuit ( IC on microchip) that looks functionally like : The ADC relies on a periodic square-wave signal called the clock. Once every clock cycle the ADC looks at the voltage at V IN at that instant, and translates it to a binary number that is linearly related to the input voltage. Recall how binary numbers work; each digit is a one or a zero: Decimal equivalent: 2 7 id id id id 0 So in this case the output of the ADC binary code that represents a decimal magnitude. Page 2
3 What does this digital code mean, or represent? You ll in general have to look at a data sheet, but often the ADC will require one or more reference voltage inputs (See attached example). A way to visualize this is with a plot of output code vs. input voltage: From a plot like this, we can see that for 2 N codes, where N is the number of bits, there are 2 N 1 intervals on the voltage axis. This means that each LSB represents a change in input voltage of This is the important detail. But from a qualitative viewpoint, the thing to really notice about ADC s is that they discretize our signal in two ways: in both voltage and in time. Lets take a good look at both types of discretization. We ll start with time. Page 3
4 Sampling Before doing the actual analog-to-digital conversion, the first thing an ADC will do is sample a signal. That is, it will grab the signal at a particular instant in time and keep it still so that it can embark on the conversion process. How do you grab an analog signal, you ask? This is called a sample and hold or perhaps, more accurately, a track and hold. Remember that this is a perfect amplifier, so its input draws no current. This means that when the switch is open, the capacitor just holds at the value of v(t) right before the switch opens. We can illustrate the sampling process graphically: The ADC then provides digitized versions of the samples of v(a). These samples are: v n Class Exercise: Page 4 [ ] = v( nτ).
5 We can get into trouble by looking only at the samples of a signal. Suppose that we take the samples of a sinusoid of frequency f 0 : x[ n] = sin(2π f 0 inτ s ) And compare them to those of a sinusoid of frequency f 0 Δf : Find Δf for which x[ n]and x 2 [ n] are identical. (Workspace) x 2 ( ) [ n] = sin 2π ( f 0 + Δf )i nτ s The phenomenon that we have stumbled upon here is called aliasing and it is a hazard of sampled data systems. You can work that out as long as your input signal is restricted to a frequency band f s 2 < f IN < f s, you have no difficulty. That is if the input signal is composed of complex 2 exponentials e jωt for which where f s = 1 Τ s,ω s = 2π f s, then you are okay. ω s 2 < ω < ω s 2 Page 5
6 Incidentally, you have seen this before. TV cameras used to only sample 24 frames per second, which is slower then rotational frequency of some of the wheels that were being shot. So you would get this weird effect of the wheels seeming to turn backwards. Anyway, in electronics design we will sometimes head this off by including an initializing filter before the ADC: So that s what we mean by discretization in time. What about amplitude? In general when you take a sample, you will have an error that can be anywhere between Δ 2 and Δ, where Δ is the LSB (From page 3). For purposes of analysis, we treat this as a quantization noise 2 with PDF: Page 6
7 It has been shown that this quantization noise distributes pretty uniformly in frequency, so we treat it the way we treat thermal noise. The signal-to-quantization noise ratio relates to the number of bits according to SQNR = ( 6.02B +1.76)dB (6B)dB So if you digitize a pure, full scale sinusoid and take an IFT, what you will see is Page 7
Analog signals are those which are naturally occurring. Any analog signal can be converted to a digital signal.
3.3 Analog to Digital Conversion (ADC) Analog signals are those which are naturally occurring. Any analog signal can be converted to a digital signal. 1 3.3 Analog to Digital Conversion (ADC) WCB/McGraw-Hill
Chapter 6: From Digital-to-Analog and Back Again
Chapter 6: From Digital-to-Analog and Back Again Overview Often the information you want to capture in an experiment originates in the laboratory as an analog voltage or a current. Sometimes you want to
CHAPTER 6 Frequency Response, Bode Plots, and Resonance
ELECTRICAL CHAPTER 6 Frequency Response, Bode Plots, and Resonance 1. State the fundamental concepts of Fourier analysis. 2. Determine the output of a filter for a given input consisting of sinusoidal
PCM Encoding and Decoding:
PCM Encoding and Decoding: Aim: Introduction to PCM encoding and decoding. Introduction: PCM Encoding: The input to the PCM ENCODER module is an analog message. This must be constrained to a defined bandwidth
Lecture 24: Oscillators. Clapp Oscillator. VFO Startup
Whites, EE 322 Lecture 24 Page 1 of 10 Lecture 24: Oscillators. Clapp Oscillator. VFO Startup Oscillators are circuits that produce periodic output voltages, such as sinusoids. They accomplish this feat
Sampling Theorem Notes. Recall: That a time sampled signal is like taking a snap shot or picture of signal periodically.
Sampling Theorem We will show that a band limited signal can be reconstructed exactly from its discrete time samples. Recall: That a time sampled signal is like taking a snap shot or picture of signal
Department of Electrical and Computer Engineering Ben-Gurion University of the Negev. LAB 1 - Introduction to USRP
Department of Electrical and Computer Engineering Ben-Gurion University of the Negev LAB 1 - Introduction to USRP - 1-1 Introduction In this lab you will use software reconfigurable RF hardware from National
Introduction to Digital Audio
Introduction to Digital Audio Before the development of high-speed, low-cost digital computers and analog-to-digital conversion circuits, all recording and manipulation of sound was done using analog techniques.
b 1 is the most significant bit (MSB) The MSB is the bit that has the most (largest) influence on the analog output
CMOS Analog IC Design - Chapter 10 Page 10.0-5 BLOCK DIAGRAM OF A DIGITAL-ANALOG CONVERTER b 1 is the most significant bit (MSB) The MSB is the bit that has the most (largest) influence on the analog output
Voice---is analog in character and moves in the form of waves. 3-important wave-characteristics:
Voice Transmission --Basic Concepts-- Voice---is analog in character and moves in the form of waves. 3-important wave-characteristics: Amplitude Frequency Phase Voice Digitization in the POTS Traditional
Digital to Analog and Analog to Digital Conversion
Real world (lab) is Computer (binary) is digital Digital to Analog and Analog to Digital Conversion V t V t D/A or DAC and A/D or ADC D/A Conversion Computer DAC A/D Conversion Computer DAC Digital to
Filter Comparison. Match #1: Analog vs. Digital Filters
CHAPTER 21 Filter Comparison Decisions, decisions, decisions! With all these filters to choose from, how do you know which to use? This chapter is a head-to-head competition between filters; we'll select
Continuous-Time Converter Architectures for Integrated Audio Processors: By Brian Trotter, Cirrus Logic, Inc. September 2008
Continuous-Time Converter Architectures for Integrated Audio Processors: By Brian Trotter, Cirrus Logic, Inc. September 2008 As consumer electronics devices continue to both decrease in size and increase
Application Report. 1 Introduction. 2 Resolution of an A-D Converter. 2.1 Signal-to-Noise Ratio (SNR) Harman Grewal... ABSTRACT
Application Report SLAA323 JULY 2006 Oversampling the ADC12 for Higher Resolution Harman Grewal... ABSTRACT This application report describes the theory of oversampling to achieve resolutions greater than
ε: Voltage output of Signal Generator (also called the Source voltage or Applied
Experiment #10: LR & RC Circuits Frequency Response EQUIPMENT NEEDED Science Workshop Interface Power Amplifier (2) Voltage Sensor graph paper (optional) (3) Patch Cords Decade resistor, capacitor, and
chapter Introduction to Digital Signal Processing and Digital Filtering 1.1 Introduction 1.2 Historical Perspective
Introduction to Digital Signal Processing and Digital Filtering chapter 1 Introduction to Digital Signal Processing and Digital Filtering 1.1 Introduction Digital signal processing (DSP) refers to anything
Basics of Digital Recording
Basics of Digital Recording CONVERTING SOUND INTO NUMBERS In a digital recording system, sound is stored and manipulated as a stream of discrete numbers, each number representing the air pressure at a
DIGITAL-TO-ANALOGUE AND ANALOGUE-TO-DIGITAL CONVERSION
DIGITAL-TO-ANALOGUE AND ANALOGUE-TO-DIGITAL CONVERSION Introduction The outputs from sensors and communications receivers are analogue signals that have continuously varying amplitudes. In many systems
Spike-Based Sensing and Processing: What are spikes good for? John G. Harris Electrical and Computer Engineering Dept
Spike-Based Sensing and Processing: What are spikes good for? John G. Harris Electrical and Computer Engineering Dept ONR NEURO-SILICON WORKSHOP, AUG 1-2, 2006 Take Home Messages Introduce integrate-and-fire
Controller Design in Frequency Domain
ECSE 4440 Control System Engineering Fall 2001 Project 3 Controller Design in Frequency Domain TA 1. Abstract 2. Introduction 3. Controller design in Frequency domain 4. Experiment 5. Colclusion 1. Abstract
AVR127: Understanding ADC Parameters. Introduction. Features. Atmel 8-bit and 32-bit Microcontrollers APPLICATION NOTE
Atmel 8-bit and 32-bit Microcontrollers AVR127: Understanding ADC Parameters APPLICATION NOTE Introduction This application note explains the basic concepts of analog-to-digital converter (ADC) and the
Lecture 18: Common Emitter Amplifier. Maximum Efficiency of Class A Amplifiers. Transformer Coupled Loads.
Whites, EE 3 Lecture 18 Page 1 of 10 Lecture 18: Common Emitter Amplifier. Maximum Efficiency of Class A Amplifiers. Transformer Coupled Loads. We discussed using transistors as switches in the last lecture.
Taking the Mystery out of the Infamous Formula, "SNR = 6.02N + 1.76dB," and Why You Should Care. by Walt Kester
ITRODUCTIO Taking the Mystery out of the Infamous Formula, "SR = 6.0 + 1.76dB," and Why You Should Care by Walt Kester MT-001 TUTORIAL You don't have to deal with ADCs or DACs for long before running across
Lab #9: AC Steady State Analysis
Theory & Introduction Lab #9: AC Steady State Analysis Goals for Lab #9 The main goal for lab 9 is to make the students familar with AC steady state analysis, db scale and the NI ELVIS frequency analyzer.
1995 Mixed-Signal Products SLAA013
Application Report 995 Mixed-Signal Products SLAA03 IMPORTANT NOTICE Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service
FUNDAMENTALS OF MODERN SPECTRAL ANALYSIS. Matthew T. Hunter, Ph.D.
FUNDAMENTALS OF MODERN SPECTRAL ANALYSIS Matthew T. Hunter, Ph.D. AGENDA Introduction Spectrum Analyzer Architecture Dynamic Range Instantaneous Bandwidth The Importance of Image Rejection and Anti-Aliasing
Timing Errors and Jitter
Timing Errors and Jitter Background Mike Story In a sampled (digital) system, samples have to be accurate in level and time. The digital system uses the two bits of information the signal was this big
Analog Representations of Sound
Analog Representations of Sound Magnified phonograph grooves, viewed from above: The shape of the grooves encodes the continuously varying audio signal. Analog to Digital Recording Chain ADC Microphone
SAMPLE CHAPTERS UNESCO EOLSS DIGITAL INSTRUMENTS. García J. and García D.F. University of Oviedo, Spain
DIGITAL INSTRUMENTS García J. and García D.F. University of Oviedo, Spain Keywords: analog-to-digital conversion, digital-to-analog conversion, data-acquisition systems, signal acquisition, signal conditioning,
Lecture - 4 Diode Rectifier Circuits
Basic Electronics (Module 1 Semiconductor Diodes) Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Lecture - 4 Diode Rectifier Circuits
Conversion Between Analog and Digital Signals
ELET 3156 DL - Laboratory #6 Conversion Between Analog and Digital Signals There is no pre-lab work required for this experiment. However, be sure to read through the assignment completely prior to starting
Using the Impedance Method
Using the Impedance Method The impedance method allows us to completely eliminate the differential equation approach for the determination of the response of circuits. In fact the impedance method even
1. Oscilloscope is basically a graph-displaying device-it draws a graph of an electrical signal.
CHAPTER 3: OSCILLOSCOPE AND SIGNAL GENERATOR 3.1 Introduction to oscilloscope 1. Oscilloscope is basically a graph-displaying device-it draws a graph of an electrical signal. 2. The graph show signal change
Section 3. Sensor to ADC Design Example
Section 3 Sensor to ADC Design Example 3-1 This section describes the design of a sensor to ADC system. The sensor measures temperature, and the measurement is interfaced into an ADC selected by the systems
Frequency response: Resonance, Bandwidth, Q factor
Frequency response: esonance, Bandwidth, Q factor esonance. Let s continue the exploration of the frequency response of circuits by investigating the series circuit shown on Figure. C + V - Figure The
ADC and DAC. Quantization
CHAPTER ADC and DAC Most of the signals directly encountered in science and engineering are continuous: light intensity that changes with distance; voltage that varies over time; a chemical reaction rate
by Anurag Pulincherry A THESIS submitted to Oregon State University in partial fulfillment of the requirements for the degree of Master of Science
A Continuous Time Frequency Translating Delta Sigma Modulator by Anurag Pulincherry A THESIS submitted to Oregon State University in partial fulfillment of the requirements for the degree of Master of
S. Boyd EE102. Lecture 1 Signals. notation and meaning. common signals. size of a signal. qualitative properties of signals.
S. Boyd EE102 Lecture 1 Signals notation and meaning common signals size of a signal qualitative properties of signals impulsive signals 1 1 Signals a signal is a function of time, e.g., f is the force
Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science. 6.002 Electronic Circuits Spring 2007
Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.002 Electronic Circuits Spring 2007 Lab 4: Audio Playback System Introduction In this lab, you will construct,
DAC Digital To Analog Converter
DAC Digital To Analog Converter DAC Digital To Analog Converter Highlights XMC4000 provides two digital to analog converters. Each can output one analog value. Additional multiple analog waves can be generated
Digital To Analog Converter with Sine Wave Output
Digital To Analog Converter with Sine Wave Output Overview In this Lab we will build a resistive ladder network and use the BASIC Stamp to generate the digital data for the D/A conversions. PBASIC will
Analog Filters. A common instrumentation filter application is the attenuation of high frequencies to avoid frequency aliasing in the sampled data.
Analog Filters Filters can be used to attenuate unwanted signals such as interference or noise or to isolate desired signals from unwanted. They use the frequency response of a measuring system to alter
QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 956 24-BIT DIFFERENTIAL ADC WITH I2C LTC2485 DESCRIPTION
LTC2485 DESCRIPTION Demonstration circuit 956 features the LTC2485, a 24-Bit high performance Σ analog-to-digital converter (ADC). The LTC2485 features 2ppm linearity, 0.5µV offset, and 600nV RMS noise.
Sampling and Interpolation. Yao Wang Polytechnic University, Brooklyn, NY11201
Sampling and Interpolation Yao Wang Polytechnic University, Brooklyn, NY1121 http://eeweb.poly.edu/~yao Outline Basics of sampling and quantization A/D and D/A converters Sampling Nyquist sampling theorem
Hideo Okawara s Mixed Signal Lecture Series. DSP-Based Testing Fundamentals 46 Per-pin Signal Generator
Hideo Okawara s Mixed Signal Lecture Series DSP-Based Testing Fundamentals 46 Per-pin Signal Generator Advantest Corporation, Tokyo Japan August 2012 Preface to the Series ADC and DAC are the most typical
Laboratory 4: Feedback and Compensation
Laboratory 4: Feedback and Compensation To be performed during Week 9 (Oct. 20-24) and Week 10 (Oct. 27-31) Due Week 11 (Nov. 3-7) 1 Pre-Lab This Pre-Lab should be completed before attending your regular
Lab 5 Getting started with analog-digital conversion
Lab 5 Getting started with analog-digital conversion Achievements in this experiment Practical knowledge of coding of an analog signal into a train of digital codewords in binary format using pulse code
Positive Feedback and Oscillators
Physics 3330 Experiment #6 Fall 1999 Positive Feedback and Oscillators Purpose In this experiment we will study how spontaneous oscillations may be caused by positive feedback. You will construct an active
Dithering in Analog-to-digital Conversion
Application Note 1. Introduction 2. What is Dither High-speed ADCs today offer higher dynamic performances and every effort is made to push these state-of-the art performances through design improvements
Implementation of Digital Signal Processing: Some Background on GFSK Modulation
Implementation of Digital Signal Processing: Some Background on GFSK Modulation Sabih H. Gerez University of Twente, Department of Electrical Engineering [email protected] Version 4 (February 7, 2013)
INTRODUCTION TO DIGITAL SYSTEMS. IMPLEMENTATION: MODULES (ICs) AND NETWORKS IMPLEMENTATION OF ALGORITHMS IN HARDWARE
INTRODUCTION TO DIGITAL SYSTEMS 1 DESCRIPTION AND DESIGN OF DIGITAL SYSTEMS FORMAL BASIS: SWITCHING ALGEBRA IMPLEMENTATION: MODULES (ICs) AND NETWORKS IMPLEMENTATION OF ALGORITHMS IN HARDWARE COURSE EMPHASIS:
Combining the ADS1202 with an FPGA Digital Filter for Current Measurement in Motor Control Applications
Application Report SBAA094 June 2003 Combining the ADS1202 with an FPGA Digital Filter for Current Measurement in Motor Control Applications Miroslav Oljaca, Tom Hendrick Data Acquisition Products ABSTRACT
Chapter 12 Driven RLC Circuits
hapter Driven ircuits. A Sources... -. A ircuits with a Source and One ircuit Element... -3.. Purely esistive oad... -3.. Purely Inductive oad... -6..3 Purely apacitive oad... -8.3 The Series ircuit...
Laboratory #5: RF Filter Design
EEE 194 RF Laboratory Exercise 5 1 Laboratory #5: RF Filter Design I. OBJECTIVES A. Design a third order low-pass Chebyshev filter with a cutoff frequency of 330 MHz and 3 db ripple with equal terminations
Step Response of RC Circuits
Step Response of RC Circuits 1. OBJECTIVES...2 2. REFERENCE...2 3. CIRCUITS...2 4. COMPONENTS AND SPECIFICATIONS...3 QUANTITY...3 DESCRIPTION...3 COMMENTS...3 5. DISCUSSION...3 5.1 SOURCE RESISTANCE...3
AND9035/D. BELASIGNA 250 and 300 for Low-Bandwidth Applications APPLICATION NOTE
BELASIGNA 250 and 300 for Low-Bandwidth Applications APPLICATION NOTE Introduction This application note describes the use of BELASIGNA 250 and BELASIGNA 300 in low bandwidth applications. The intended
Next Generation of High Speed. Modems8
Next Generation of High Speed Modems High Speed Modems. 1 Traditional Modems Assume both ends have Analog connection Analog signals are converted to Digital and back again. Limits transmission speed to
Electrical Resonance
Electrical Resonance (R-L-C series circuit) APPARATUS 1. R-L-C Circuit board 2. Signal generator 3. Oscilloscope Tektronix TDS1002 with two sets of leads (see Introduction to the Oscilloscope ) INTRODUCTION
Lecture 24. Inductance and Switching Power Supplies (how your solar charger voltage converter works)
Lecture 24 Inductance and Switching Power Supplies (how your solar charger voltage converter works) Copyright 2014 by Mark Horowitz 1 Roadmap: How Does This Work? 2 Processor Board 3 More Detailed Roadmap
PLL frequency synthesizer
ANALOG & TELECOMMUNICATION ELECTRONICS LABORATORY EXERCISE 4 Lab 4: PLL frequency synthesizer 1.1 Goal The goals of this lab exercise are: - Verify the behavior of a and of a complete PLL - Find capture
Using a Thermistor to Measure Temperature. Thermistors are resistors that vary their resistance according to temperature.
Using a Thermistor to Measure Temperature Overview of a Thermistor Thermistors are resistors that vary their resistance according to temperature. The change in resistance is roughly proportional to the
Android based Alcohol detection system using Bluetooth technology
For more Project details visit: http://www.projectsof8051.com/android-based-alcohol-detection-system-usingbluetooth-technology/ Code 1435 Project Title Android based Alcohol detection system using Bluetooth
Low Pass Filter Rise Time vs Bandwidth
AN121 Dataforth Corporation Page 1 of 7 DID YOU KNOW? The number googol is ten raised to the hundredth power or 1 followed by 100 zeros. Edward Kasner (1878-1955) a noted mathematician is best remembered
Higher National Unit Specification. General information for centres. Transmission of Measurement Signals. Unit code: DX4T 35
Higher National Unit Specification General information for centres Unit title: Transmission of Measurement Signals Unit code: DX4T 35 Unit purpose: This Unit is designed to enable candidates to gain knowledge
Probability and Random Variables. Generation of random variables (r.v.)
Probability and Random Variables Method for generating random variables with a specified probability distribution function. Gaussian And Markov Processes Characterization of Stationary Random Process Linearly
Manufacturing Equipment Modeling
QUESTION 1 For a linear axis actuated by an electric motor complete the following: a. Derive a differential equation for the linear axis velocity assuming viscous friction acts on the DC motor shaft, leadscrew,
= V peak 2 = 0.707V peak
BASIC ELECTRONICS - RECTIFICATION AND FILTERING PURPOSE Suppose that you wanted to build a simple DC electronic power supply, which operated off of an AC input (e.g., something you might plug into a standard
Analog and Digital Filters Anthony Garvert November 13, 2015
Analog and Digital Filters Anthony Garvert November 13, 2015 Abstract In circuit analysis and performance, a signal transmits some form of information, such as a voltage or current. However, over a range
Electronics for Analog Signal Processing - II Prof. K. Radhakrishna Rao Department of Electrical Engineering Indian Institute of Technology Madras
Electronics for Analog Signal Processing - II Prof. K. Radhakrishna Rao Department of Electrical Engineering Indian Institute of Technology Madras Lecture - 18 Wideband (Video) Amplifiers In the last class,
Lecture 22: Class C Power Amplifiers
Whites, EE 322 Lecture 22 Page 1 of 13 Lecture 22: lass Power Amplifiers We discovered in Lecture 18 (Section 9.2) that the maximum efficiency of lass A amplifiers is 25% with a resistive load and 50%
Trigonometric functions and sound
Trigonometric functions and sound The sounds we hear are caused by vibrations that send pressure waves through the air. Our ears respond to these pressure waves and signal the brain about their amplitude
WHAT DESIGNERS SHOULD KNOW ABOUT DATA CONVERTER DRIFT
WHAT DESIGNERS SHOULD KNOW ABOUT DATA CONVERTER DRIFT Understanding the Components of Worst-Case Degradation Can Help in Avoiding Overspecification Exactly how inaccurate will a change in temperature make
Lock - in Amplifier and Applications
Lock - in Amplifier and Applications What is a Lock in Amplifier? In a nut shell, what a lock-in amplifier does is measure the amplitude V o of a sinusoidal voltage, V in (t) = V o cos(ω o t) where ω o
Improving A D Converter Performance Using Dither
Improving A D Converter Performance Using Dither 1 0 INTRODUCTION Many analog-to-digital converter applications require low distortion for a very wide dynamic range of signals Unfortunately the distortion
The Phase Modulator In NBFM Voice Communication Systems
The Phase Modulator In NBFM Voice Communication Systems Virgil Leenerts 8 March 5 The phase modulator has been a point of discussion as to why it is used and not a frequency modulator in what are called
VCO Phase noise. Characterizing Phase Noise
VCO Phase noise Characterizing Phase Noise The term phase noise is widely used for describing short term random frequency fluctuations of a signal. Frequency stability is a measure of the degree to which
EE 402 RECITATION #13 REPORT
MIDDLE EAST TECHNICAL UNIVERSITY EE 402 RECITATION #13 REPORT LEAD-LAG COMPENSATOR DESIGN F. Kağan İPEK Utku KIRAN Ç. Berkan Şahin 5/16/2013 Contents INTRODUCTION... 3 MODELLING... 3 OBTAINING PTF of OPEN
Clock Recovery in Serial-Data Systems Ransom Stephens, Ph.D.
Clock Recovery in Serial-Data Systems Ransom Stephens, Ph.D. Abstract: The definition of a bit period, or unit interval, is much more complicated than it looks. If it were just the reciprocal of the data
ECEN 1400, Introduction to Analog and Digital Electronics
ECEN 1400, Introduction to Analog and Digital Electronics Lab 4: Power supply 1 INTRODUCTION This lab will span two lab periods. In this lab, you will create the power supply that transforms the AC wall
OPERATIONAL AMPLIFIERS. o/p
OPERATIONAL AMPLIFIERS 1. If the input to the circuit of figure is a sine wave the output will be i/p o/p a. A half wave rectified sine wave b. A fullwave rectified sine wave c. A triangular wave d. A
Analog/Digital Conversion. Analog Signals. Digital Signals. Analog vs. Digital. Interfacing a microprocessor-based system to the real world.
Analog/Digital Conversion Analog Signals Interacing a microprocessor-based system to the real world. continuous range x(t) Analog and digital signals he bridge: Sampling heorem Conversion concepts Conversion
A few words about imaginary numbers (and electronics) Mark Cohen [email protected]
A few words about imaginary numbers (and electronics) Mark Cohen mscohen@guclaedu While most of us have seen imaginary numbers in high school algebra, the topic is ordinarily taught in abstraction without
Lesson 16 Analog-to-Digital Converter (ADC)
Lesson 16 Analog-to-Digital Converter (ADC) 1. Overview In this lesson, the Analog-to-Digital Converter (ADC) of the Cortex-M3 is introduced. For detailed description of the features and controlling options
25. AM radio receiver
1 25. AM radio receiver The chapter describes the programming of a microcontroller to demodulate a signal from a local radio station. To keep the circuit simple the signal from the local amplitude modulated
The front end of the receiver performs the frequency translation, channel selection and amplification of the signal.
Many receivers must be capable of handling a very wide range of signal powers at the input while still producing the correct output. This must be done in the presence of noise and interference which occasionally
MP3 Player CSEE 4840 SPRING 2010 PROJECT DESIGN. [email protected]. [email protected]
MP3 Player CSEE 4840 SPRING 2010 PROJECT DESIGN Zheng Lai Zhao Liu Meng Li Quan Yuan [email protected] [email protected] [email protected] [email protected] I. Overview Architecture The purpose
Kit 106. 50 Watt Audio Amplifier
Kit 106 50 Watt Audio Amplifier T his kit is based on an amazing IC amplifier module from ST Electronics, the TDA7294 It is intended for use as a high quality audio class AB amplifier in hi-fi applications
Broadband Networks. Prof. Dr. Abhay Karandikar. Electrical Engineering Department. Indian Institute of Technology, Bombay. Lecture - 29.
Broadband Networks Prof. Dr. Abhay Karandikar Electrical Engineering Department Indian Institute of Technology, Bombay Lecture - 29 Voice over IP So, today we will discuss about voice over IP and internet
Making Accurate Voltage Noise and Current Noise Measurements on Operational Amplifiers Down to 0.1Hz
Author: Don LaFontaine Making Accurate Voltage Noise and Current Noise Measurements on Operational Amplifiers Down to 0.1Hz Abstract Making accurate voltage and current noise measurements on op amps in
What the Nyquist Criterion Means to Your Sampled Data System Design. by Walt Kester
TUTORAL What the Nyquist Criterion Means to Your Sampled Data System Design NTRODUCTON by Walt Kester A quick reading of Harry Nyquist's classic Bell System Technical Journal article of 194 (Reference
Switch Mode Power Supply Topologies
Switch Mode Power Supply Topologies The Buck Converter 2008 Microchip Technology Incorporated. All Rights Reserved. WebSeminar Title Slide 1 Welcome to this Web seminar on Switch Mode Power Supply Topologies.
Digital Guitar Effects Pedal
Digital Guitar Effects Pedal 01001000100000110000001000001100 010010001000 Jonathan Fong John Shefchik Advisor: Dr. Brian Nutter SPRP499 Texas Tech University [email protected] Presentation Outline
MAS.836 HOW TO BIAS AN OP-AMP
MAS.836 HOW TO BIAS AN OP-AMP Op-Amp Circuits: Bias, in an electronic circuit, describes the steady state operating characteristics with no signal being applied. In an op-amp circuit, the operating characteristic
Understanding Delta Conversion Online "Power Regulation" - Part 2
Application Note #40 Understanding Delta Conversion Online "Power Regulation" - Part 2 Introduction This application note is the second in a series on delta conversion theory of operation. For complete
MICROPHONE SPECIFICATIONS EXPLAINED
Application Note AN-1112 MICROPHONE SPECIFICATIONS EXPLAINED INTRODUCTION A MEMS microphone IC is unique among InvenSense, Inc., products in that its input is an acoustic pressure wave. For this reason,
ANALYZER BASICS WHAT IS AN FFT SPECTRUM ANALYZER? 2-1
WHAT IS AN FFT SPECTRUM ANALYZER? ANALYZER BASICS The SR760 FFT Spectrum Analyzer takes a time varying input signal, like you would see on an oscilloscope trace, and computes its frequency spectrum. Fourier's
Decimal Number (base 10) Binary Number (base 2)
LECTURE 5. BINARY COUNTER Before starting with counters there is some vital information that needs to be understood. The most important is the fact that since the outputs of a digital chip can only be
