# Numerical Matrix Analysis

Size: px
Start display at page:

Transcription

1 Numerical Matrix Analysis Lecture Notes #10 Conditioning and / Peter Blomgren, Department of Mathematics and Statistics Dynamical Systems Group Computational Sciences Research Center San Diego State University San Diego, CA Spring 2016 Peter Blomgren, / (1/23)

2 Outline 1 Finite Precision IEEE Binary Floating Point (from Math 541) Non-representable Values a Source of Errors 2 Theorem and Notation Fundamental Axiom of Example 3 Introduction: What is the correct answer? Accuracy Absolute and Relative Error, and Backward Peter Blomgren, / (2/23)

3 IEEE Binary Floating Point (from Math 541) Non-representable Values a Source of Errors Finite Precision A 64-bit real number, double The Binary Standard (IEEE The Institute for Electrical and Electronics Engineers) standard specified the following layout for a 64-bit real number: Where sc 10 c 9... c 1 c 0 m 51 m m 1 m 0 Symbol Bits Description s 1 The sign bit 0=positive, 1=negative c 11 The characteristic (exponent) m 52 The mantissa r = ( 1) s 2 c 1023 (1+f), c = 10 k=0 c n 2 n, f = 51 k=0 m k 2 52 k Peter Blomgren, / (3/23)

4 IEEE Binary Floating Point (from Math 541) Non-representable Values a Source of Errors IEEE Special Signals In order to be able to represent zero, ±, and NaN (not-a-number), the following special signals are defined in the IEEE standard: Type S (1 bit) C (11 bits) M (52 bits) signaling NaN u 2047 (max).0uuuuu u (*) quiet NaN u 2047 (max).1uuuuu u negative infinity (max) positive infinity (max) negative zero positive zero (*) with at least one 1 bit. From Peter Blomgren, / (4/23)

5 IEEE Binary Floating Point (from Math 541) Non-representable Values a Source of Errors Examples: Finite Precision r = ( 1) s 2 c 1023 (1+f), c = Example #1 10 k=0 c n 2 n, f = 51 k=0 m k 2 52 k 0, , ( r 1 = ( 1) ) = = 3.0 Example #2 (The Smallest Positive Real Number) 0, , r 2 = ( 1) (1+2 52) Peter Blomgren, / (5/23)

6 IEEE Binary Floating Point (from Math 541) Non-representable Values a Source of Errors Examples: Finite Precision r = ( 1) s 2 c 1023 (1+f), c = 10 k=0 c n 2 n, f = 51 k=0 m k 2 52 k Example #3 (The Largest Positive Real Number) 0, , ( r 3 = ( 1) ) 2 52 ( = ) Peter Blomgren, / (6/23)

7 IEEE Binary Floating Point (from Math 541) Non-representable Values a Source of Errors That s Quite a Range! In summary, we can represent { ±0, ± , ± , ±, NaN } and a whole bunch of numbers in ( , ) ( , ) Bottom line: Over- or under-flowing is usually not a problem in IEEE floating point arithmetic. The problem in scientific computing is what we cannot represent. Peter Blomgren, / (7/23)

8 IEEE Binary Floating Point (from Math 541) Non-representable Values a Source of Errors Fun with Matlab......Integers ( ) 2 53 = 2 ( ) ( ) = 2 ( ) 2 53 = (2 53 1) = 1 realmax = realmin = eps = The smallest not-exactly-representable integer is ( ) = 9,007,199,254,740,993. Peter Blomgren, / (8/23)

9 IEEE Binary Floating Point (from Math 541) Non-representable Values a Source of Errors Something is Missing Gaps in the Representation 1 of 3 There are gaps in the floating-point representation! Given the representation 0, , for the value v 1 = ( ), the next larger floating-point value is 0, , i.e. the value v 2 = ( ) The difference between these two values is = ( ). Any number in the interval (v 1,v 2 ) is not representable! Peter Blomgren, / (9/23)

10 IEEE Binary Floating Point (from Math 541) Non-representable Values a Source of Errors Something is Missing Gaps in the Representation 2 of 3 A gap of doesn t seem too bad... However, the size of the gap depend on the value itself... Consider r = 3.0 0, , and the next value 0, , Here, the difference is = 2 51 ( ). In general, in the interval [2 n,2 n+1 ] the gap is 2 n 52. Peter Blomgren, / (10/23)

11 IEEE Binary Floating Point (from Math 541) Non-representable Values a Source of Errors Something is Missing Gaps in the Representation 3 of 3 At the other extreme, the difference between 0, , and the next value 0, , is = That s a fairly significant gap!!! (A number large enough to comfortably count all the particles in the universe...) See, e.g. mrob/pub/math/numbers-10.html Peter Blomgren, / (11/23)

12 IEEE Binary Floating Point (from Math 541) Non-representable Values a Source of Errors The Relative Gap It makes more sense to factor the exponent out of the discussion and talk about the relative gap: Exponent Gap Relative Gap (Gap/Exponent) Any difference between numbers smaller than the local gap is not representable, e.g. any number in the interval [ 3.0, ) 2 51 is represented by the value 3.0. Peter Blomgren, / (12/23)

13 Theorem and Notation Fundamental Axiom of Example The Floating Point Theorem ǫ mach Theorem Floating point numbers represent intervals! Notation: We let fl(x) denote the floating point representation of x R. The relative gap defines ǫ mach x R, there exists ǫ with ǫ ǫ mach, such that fl(x) = x(1+ǫ). In 64-bit floating point arithmetic ǫ mach In matlab, the command eps returns this value. Let the symbols,,, and denote the floating-point operations: addition, subtraction, multiplication, and division. Peter Blomgren, / (13/23)

14 Theorem and Notation Fundamental Axiom of Example ǫ mach All floating-point operations are performed up to some precision, i.e. x y = fl(x +y), x y = fl(x y), x y = fl(x y), x y = fl(x/y) This paired with our definition of ǫ mach gives us Axiom (The Fundamental Axiom of ) For all x,y F (where F is the set of floating point numbers), there exists ǫ with ǫ ǫ mach, such that x y = (x +y)(1+ǫ), x y = (x y)(1+ǫ), x y = (x y)(1+ǫ), x y = (x/y)(1+ǫ) That is every operation of floating point arithmetic is exact up to a relative error of size at most ǫ mach. Peter Blomgren, / (14/23)

15 Theorem and Notation Fundamental Axiom of Example Example: Floating Point Error Scaled by Consider the following polynomial on the interval [1.92, 2.08]: p(x) = (x 2) 9 = x 9 18x x 7 672x x x x x x p(x) = x 9 18x x 7 672x x x x x x 512 p(x) as above p(x) = (x 2) Peter Blomgren, / (15/23)

16 Introduction: What is the correct answer? Accuracy Absolute and Relative Error, and Backward Peter Blomgren, / (16/23)

17 Introduction: What is the correct answer? Accuracy Absolute and Relative Error, and Backward : Introduction 1 of 3 With the knowledge that (floating point) errors happen, we have to re-define the concept of the right answer. Previously, in the context of conditioning we defined a mathematical problem as a map f : X Y where X C n is the set of data (input), and Y C m is the set of solutions. Peter Blomgren, / (17/23)

18 Introduction: What is the correct answer? Accuracy Absolute and Relative Error, and Backward : Introduction 2 of 3 We now define an implementation of an algorithm on a floating-point device, where F satisfies the fundamental axiom of floating point arithmetic as another map f : X Y i.e. f( x) Y is a numerical solution of the problem. Wiki-History: Pentium FDIV bug ( 1994) The Pentium FDIV bug was a bug in Intel s original Pentium FPU. Certain FP division operations performed with these processors would produce incorrect results. According to Intel, there were a few missing entries in the lookup table used by the divide operation algorithm. Although encountering the flaw was extremely rare in practice (Byte Magazine estimated that 1 in 9 billion FP divides with random parameters would produce inaccurate results), both the flaw and Intel s initial handling of the matter were heavily criticized. Intel ultimately recalled the defective processors. Peter Blomgren, / (18/23)

19 Introduction: What is the correct answer? Accuracy Absolute and Relative Error, and Backward : Introduction 3 of 3 The task at hand is to make useful statements about f( x). Even though f( x) is affected by many factors roundoff errors, convergence tolerances, competing processes on the computer, etc; we will be able to make (maybe surprisingly) clear statements about f( x). Note that depending on the memory model, the previous state of a memory location may affect the result in e.g. the case of cancellation errors: If we subtract two 16-digit numbers with 13 common leading digits, we are left with 3 digits of valid information. We tend to view the remaining 13 digits as random. But really, there is nothing random about what happens inside the computer (we hope!) the randomness will depend on what happened previously... Peter Blomgren, / (19/23)

20 Introduction: What is the correct answer? Accuracy Absolute and Relative Error, and Backward Accuracy The absolute error of a computation is and the relative error is f( x) f( x) f( x) f( x) f( x) this latter quantity will be our standard measure of error. If f is a good algorithm, we expect the relative error to be small, of the order ǫ mach. We say that f is accurate if x X f( x) f( x) f( x) = O(ǫ mach ) Peter Blomgren, / (20/23)

21 Introduction: What is the correct answer? Accuracy Absolute and Relative Error, and Backward Interpretation: O(ǫ mach ) Since all floating point errors are functions of ǫ mach (the relative error in each operation is bounded by ǫ mach ), the relative error of the algorithm must be a function of ǫ mach : f( x) f( x) f( x) = e(ǫ mach ) The statement e(ǫ mach ) = O(ǫ mach ) means that C R + such that e(ǫ mach ) Cǫ mach, as ǫ mach 0 In practice ǫ mach is fixed, and the notation means that if we were to decrease ǫ mach, then our error would decrease at least proportionally to ǫ mach. Peter Blomgren, / (21/23)

22 Introduction: What is the correct answer? Accuracy Absolute and Relative Error, and Backward If the problem f : X Y is ill-conditioned, then the accuracy goal f( x) f( x) f( x) may be unreasonably ambitious. = O(ǫ mach ) Instead we aim for stability. We say that f is a stable algorithm if x X f( x) f( x) = O(ǫ mach ) f( x) for some x with x x x = O(ǫ mach ) A stable algorithm gives approximately the right answer, to approximately the right question. Peter Blomgren, / (22/23)

23 Introduction: What is the correct answer? Accuracy Absolute and Relative Error, and Backward Backward For many algorithms we can tighten this somewhat vague concept of stability. An algorithm f is backward stable if x X f( x) = f( x) for some x with x x x = O(ǫ mach ) A backward stable algorithm gives exactly the right answer, to approximately the right question. Next time: Examples of stable and unstable algorithms; of Householder triangularization. Peter Blomgren, / (23/23)

### Measures of Error: for exact x and approximation x Absolute error e = x x. Relative error r = (x x )/x.

ERRORS and COMPUTER ARITHMETIC Types of Error in Numerical Calculations Initial Data Errors: from experiment, modeling, computer representation; problem dependent but need to know at beginning of calculation.

### ECE 0142 Computer Organization. Lecture 3 Floating Point Representations

ECE 0142 Computer Organization Lecture 3 Floating Point Representations 1 Floating-point arithmetic We often incur floating-point programming. Floating point greatly simplifies working with large (e.g.,

### CS321. Introduction to Numerical Methods

CS3 Introduction to Numerical Methods Lecture Number Representations and Errors Professor Jun Zhang Department of Computer Science University of Kentucky Lexington, KY 40506-0633 August 7, 05 Number in

### CHAPTER 5 Round-off errors

CHAPTER 5 Round-off errors In the two previous chapters we have seen how numbers can be represented in the binary numeral system and how this is the basis for representing numbers in computers. Since any

### This Unit: Floating Point Arithmetic. CIS 371 Computer Organization and Design. Readings. Floating Point (FP) Numbers

This Unit: Floating Point Arithmetic CIS 371 Computer Organization and Design Unit 7: Floating Point App App App System software Mem CPU I/O Formats Precision and range IEEE 754 standard Operations Addition

### Divide: Paper & Pencil. Computer Architecture ALU Design : Division and Floating Point. Divide algorithm. DIVIDE HARDWARE Version 1

Divide: Paper & Pencil Computer Architecture ALU Design : Division and Floating Point 1001 Quotient Divisor 1000 1001010 Dividend 1000 10 101 1010 1000 10 (or Modulo result) See how big a number can be

### Binary Number System. 16. Binary Numbers. Base 10 digits: 0 1 2 3 4 5 6 7 8 9. Base 2 digits: 0 1

Binary Number System 1 Base 10 digits: 0 1 2 3 4 5 6 7 8 9 Base 2 digits: 0 1 Recall that in base 10, the digits of a number are just coefficients of powers of the base (10): 417 = 4 * 10 2 + 1 * 10 1

### Binary Division. Decimal Division. Hardware for Binary Division. Simple 16-bit Divider Circuit

Decimal Division Remember 4th grade long division? 43 // quotient 12 521 // divisor dividend -480 41-36 5 // remainder Shift divisor left (multiply by 10) until MSB lines up with dividend s Repeat until

### 2010/9/19. Binary number system. Binary numbers. Outline. Binary to decimal

2/9/9 Binary number system Computer (electronic) systems prefer binary numbers Binary number: represent a number in base-2 Binary numbers 2 3 + 7 + 5 Some terminology Bit: a binary digit ( or ) Hexadecimal

### Correctly Rounded Floating-point Binary-to-Decimal and Decimal-to-Binary Conversion Routines in Standard ML. By Prashanth Tilleti

Correctly Rounded Floating-point Binary-to-Decimal and Decimal-to-Binary Conversion Routines in Standard ML By Prashanth Tilleti Advisor Dr. Matthew Fluet Department of Computer Science B. Thomas Golisano

### Math 348: Numerical Methods with application in finance and economics. Boualem Khouider University of Victoria

Math 348: Numerical Methods with application in finance and economics Boualem Khouider University of Victoria Lecture notes: Updated January 2012 Contents 1 Basics of numerical analysis 9 1.1 Notion of

### Operation Count; Numerical Linear Algebra

10 Operation Count; Numerical Linear Algebra 10.1 Introduction Many computations are limited simply by the sheer number of required additions, multiplications, or function evaluations. If floating-point

### Vector and Matrix Norms

Chapter 1 Vector and Matrix Norms 11 Vector Spaces Let F be a field (such as the real numbers, R, or complex numbers, C) with elements called scalars A Vector Space, V, over the field F is a non-empty

### Figure 1. A typical Laboratory Thermometer graduated in C.

SIGNIFICANT FIGURES, EXPONENTS, AND SCIENTIFIC NOTATION 2004, 1990 by David A. Katz. All rights reserved. Permission for classroom use as long as the original copyright is included. 1. SIGNIFICANT FIGURES

### Computer Science 281 Binary and Hexadecimal Review

Computer Science 281 Binary and Hexadecimal Review 1 The Binary Number System Computers store everything, both instructions and data, by using many, many transistors, each of which can be in one of two

### Data Storage 3.1. Foundations of Computer Science Cengage Learning

3 Data Storage 3.1 Foundations of Computer Science Cengage Learning Objectives After studying this chapter, the student should be able to: List five different data types used in a computer. Describe how

### Monday January 19th 2015 Title: "Transmathematics - a survey of recent results on division by zero" Facilitator: TheNumberNullity / James Anderson, UK

Monday January 19th 2015 Title: "Transmathematics - a survey of recent results on division by zero" Facilitator: TheNumberNullity / James Anderson, UK It has been my pleasure to give two presentations

### Computers. Hardware. The Central Processing Unit (CPU) CMPT 125: Lecture 1: Understanding the Computer

Computers CMPT 125: Lecture 1: Understanding the Computer Tamara Smyth, tamaras@cs.sfu.ca School of Computing Science, Simon Fraser University January 3, 2009 A computer performs 2 basic functions: 1.

### ATheoryofComplexity,Conditionand Roundoff

ATheoryofComplexity,Conditionand Roundoff Felipe Cucker Berkeley 2014 Background L. Blum, M. Shub, and S. Smale [1989] On a theory of computation and complexity over the real numbers: NP-completeness,

### To convert an arbitrary power of 2 into its English equivalent, remember the rules of exponential arithmetic:

Binary Numbers In computer science we deal almost exclusively with binary numbers. it will be very helpful to memorize some binary constants and their decimal and English equivalents. By English equivalents

### This document has been written by Michaël Baudin from the Scilab Consortium. December 2010 The Scilab Consortium Digiteo. All rights reserved.

SCILAB IS NOT NAIVE This document has been written by Michaël Baudin from the Scilab Consortium. December 2010 The Scilab Consortium Digiteo. All rights reserved. December 2010 Abstract Most of the time,

### Data Storage. Chapter 3. Objectives. 3-1 Data Types. Data Inside the Computer. After studying this chapter, students should be able to:

Chapter 3 Data Storage Objectives After studying this chapter, students should be able to: List five different data types used in a computer. Describe how integers are stored in a computer. Describe how

### 1. Give the 16 bit signed (twos complement) representation of the following decimal numbers, and convert to hexadecimal:

Exercises 1 - number representations Questions 1. Give the 16 bit signed (twos complement) representation of the following decimal numbers, and convert to hexadecimal: (a) 3012 (b) - 435 2. For each of

### Principles of Scientific Computing. David Bindel and Jonathan Goodman

Principles of Scientific Computing David Bindel and Jonathan Goodman last revised February 2009, last printed March 6, 2009 2 Preface i ii PREFACE This book grew out of a one semester first course in Scientific

### THE NUMBER OF REPRESENTATIONS OF n OF THE FORM n = x 2 2 y, x > 0, y 0

THE NUMBER OF REPRESENTATIONS OF n OF THE FORM n = x 2 2 y, x > 0, y 0 RICHARD J. MATHAR Abstract. We count solutions to the Ramanujan-Nagell equation 2 y +n = x 2 for fixed positive n. The computational

### Numerical Analysis I

Numerical Analysis I M.R. O Donohoe References: S.D. Conte & C. de Boor, Elementary Numerical Analysis: An Algorithmic Approach, Third edition, 1981. McGraw-Hill. L.F. Shampine, R.C. Allen, Jr & S. Pruess,

### So let us begin our quest to find the holy grail of real analysis.

1 Section 5.2 The Complete Ordered Field: Purpose of Section We present an axiomatic description of the real numbers as a complete ordered field. The axioms which describe the arithmetic of the real numbers

### Useful Number Systems

Useful Number Systems Decimal Base = 10 Digit Set = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} Binary Base = 2 Digit Set = {0, 1} Octal Base = 8 = 2 3 Digit Set = {0, 1, 2, 3, 4, 5, 6, 7} Hexadecimal Base = 16 = 2

### Lies My Calculator and Computer Told Me

Lies My Calculator and Computer Told Me 2 LIES MY CALCULATOR AND COMPUTER TOLD ME Lies My Calculator and Computer Told Me See Section.4 for a discussion of graphing calculators and computers with graphing

parent ROADMAP MATHEMATICS SUPPORTING YOUR CHILD IN HIGH SCHOOL HS America s schools are working to provide higher quality instruction than ever before. The way we taught students in the past simply does

### JUST THE MATHS UNIT NUMBER 1.8. ALGEBRA 8 (Polynomials) A.J.Hobson

JUST THE MATHS UNIT NUMBER 1.8 ALGEBRA 8 (Polynomials) by A.J.Hobson 1.8.1 The factor theorem 1.8.2 Application to quadratic and cubic expressions 1.8.3 Cubic equations 1.8.4 Long division of polynomials

### Math 115 Spring 2011 Written Homework 5 Solutions

. Evaluate each series. a) 4 7 0... 55 Math 5 Spring 0 Written Homework 5 Solutions Solution: We note that the associated sequence, 4, 7, 0,..., 55 appears to be an arithmetic sequence. If the sequence

### Linear Equations and Inequalities

Linear Equations and Inequalities Section 1.1 Prof. Wodarz Math 109 - Fall 2008 Contents 1 Linear Equations 2 1.1 Standard Form of a Linear Equation................ 2 1.2 Solving Linear Equations......................

### Continued Fractions and the Euclidean Algorithm

Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction

### Reproducible Science and Modern Scientific Software Development

Reproducible Science and Modern Scientific Software Development 13 th evita Winter School in escience sponsored by Dr. Holms Hotel, Geilo, Norway January 20-25, 2013 Advanced Topics Dr. André R. Brodtkorb,

### 1 Error in Euler s Method

1 Error in Euler s Method Experience with Euler s 1 method raises some interesting questions about numerical approximations for the solutions of differential equations. 1. What determines the amount of

### Grade 6 Mathematics Performance Level Descriptors

Limited Grade 6 Mathematics Performance Level Descriptors A student performing at the Limited Level demonstrates a minimal command of Ohio s Learning Standards for Grade 6 Mathematics. A student at this

### A new binary floating-point division algorithm and its software implementation on the ST231 processor

19th IEEE Symposium on Computer Arithmetic (ARITH 19) Portland, Oregon, USA, June 8-10, 2009 A new binary floating-point division algorithm and its software implementation on the ST231 processor Claude-Pierre

### 0.8 Rational Expressions and Equations

96 Prerequisites 0.8 Rational Expressions and Equations We now turn our attention to rational expressions - that is, algebraic fractions - and equations which contain them. The reader is encouraged to

### FAST INVERSE SQUARE ROOT

FAST INVERSE SQUARE ROOT CHRIS LOMONT Abstract. Computing reciprocal square roots is necessary in many applications, such as vector normalization in video games. Often, some loss of precision is acceptable

### Chapter 4. Polynomial and Rational Functions. 4.1 Polynomial Functions and Their Graphs

Chapter 4. Polynomial and Rational Functions 4.1 Polynomial Functions and Their Graphs A polynomial function of degree n is a function of the form P = a n n + a n 1 n 1 + + a 2 2 + a 1 + a 0 Where a s

### The string of digits 101101 in the binary number system represents the quantity

Data Representation Section 3.1 Data Types Registers contain either data or control information Control information is a bit or group of bits used to specify the sequence of command signals needed for

### Information Theory and Coding Prof. S. N. Merchant Department of Electrical Engineering Indian Institute of Technology, Bombay

Information Theory and Coding Prof. S. N. Merchant Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture - 17 Shannon-Fano-Elias Coding and Introduction to Arithmetic Coding

### This 3-digit ASCII string could also be calculated as n = (Data[2]-0x30) +10*((Data[1]-0x30)+10*(Data[0]-0x30));

Introduction to Embedded Microcomputer Systems Lecture 5.1 2.9. Conversions ASCII to binary n = 100*(Data[0]-0x30) + 10*(Data[1]-0x30) + (Data[2]-0x30); This 3-digit ASCII string could also be calculated

### Fast Arithmetic Coding (FastAC) Implementations

Fast Arithmetic Coding (FastAC) Implementations Amir Said 1 Introduction This document describes our fast implementations of arithmetic coding, which achieve optimal compression and higher throughput by

### 8 Square matrices continued: Determinants

8 Square matrices continued: Determinants 8. Introduction Determinants give us important information about square matrices, and, as we ll soon see, are essential for the computation of eigenvalues. You

### 1 The Brownian bridge construction

The Brownian bridge construction The Brownian bridge construction is a way to build a Brownian motion path by successively adding finer scale detail. This construction leads to a relatively easy proof

### Number Representation

Number Representation CS10001: Programming & Data Structures Pallab Dasgupta Professor, Dept. of Computer Sc. & Engg., Indian Institute of Technology Kharagpur Topics to be Discussed How are numeric data

### What Every Computer Scientist Should Know About Floating-Point Arithmetic

What Every Computer Scientist Should Know About Floating-Point Arithmetic D Note This document is an edited reprint of the paper What Every Computer Scientist Should Know About Floating-Point Arithmetic,

### Stanford Math Circle: Sunday, May 9, 2010 Square-Triangular Numbers, Pell s Equation, and Continued Fractions

Stanford Math Circle: Sunday, May 9, 00 Square-Triangular Numbers, Pell s Equation, and Continued Fractions Recall that triangular numbers are numbers of the form T m = numbers that can be arranged in

### Numbering Systems. InThisAppendix...

G InThisAppendix... Introduction Binary Numbering System Hexadecimal Numbering System Octal Numbering System Binary Coded Decimal (BCD) Numbering System Real (Floating Point) Numbering System BCD/Binary/Decimal/Hex/Octal

### 1 Short Introduction to Time Series

ECONOMICS 7344, Spring 202 Bent E. Sørensen January 24, 202 Short Introduction to Time Series A time series is a collection of stochastic variables x,.., x t,.., x T indexed by an integer value t. The

### CS101 Lecture 11: Number Systems and Binary Numbers. Aaron Stevens 14 February 2011

CS101 Lecture 11: Number Systems and Binary Numbers Aaron Stevens 14 February 2011 1 2 1 3!!! MATH WARNING!!! TODAY S LECTURE CONTAINS TRACE AMOUNTS OF ARITHMETIC AND ALGEBRA PLEASE BE ADVISED THAT CALCULTORS

### THE EXACT DOT PRODUCT AS BASIC TOOL FOR LONG INTERVAL ARITHMETIC

THE EXACT DOT PRODUCT AS BASIC TOOL FOR LONG INTERVAL ARITHMETIC ULRICH KULISCH AND VAN SNYDER Abstract. Computing with guarantees is based on two arithmetical features. One is fixed (double) precision

### Modeling, Computers, and Error Analysis Mathematical Modeling and Engineering Problem-Solving

Next: Roots of Equations Up: Numerical Analysis for Chemical Previous: Contents Subsections Mathematical Modeling and Engineering Problem-Solving A Simple Mathematical Model Computers and Software The

### A Static Analyzer for Large Safety-Critical Software. Considered Programs and Semantics. Automatic Program Verification by Abstract Interpretation

PLDI 03 A Static Analyzer for Large Safety-Critical Software B. Blanchet, P. Cousot, R. Cousot, J. Feret L. Mauborgne, A. Miné, D. Monniaux,. Rival CNRS École normale supérieure École polytechnique Paris

### MA4001 Engineering Mathematics 1 Lecture 10 Limits and Continuity

MA4001 Engineering Mathematics 1 Lecture 10 Limits and Dr. Sarah Mitchell Autumn 2014 Infinite limits If f(x) grows arbitrarily large as x a we say that f(x) has an infinite limit. Example: f(x) = 1 x

### Notes on Factoring. MA 206 Kurt Bryan

The General Approach Notes on Factoring MA 26 Kurt Bryan Suppose I hand you n, a 2 digit integer and tell you that n is composite, with smallest prime factor around 5 digits. Finding a nontrivial factor

### Zero: If P is a polynomial and if c is a number such that P (c) = 0 then c is a zero of P.

MATH 11011 FINDING REAL ZEROS KSU OF A POLYNOMIAL Definitions: Polynomial: is a function of the form P (x) = a n x n + a n 1 x n 1 + + a x + a 1 x + a 0. The numbers a n, a n 1,..., a 1, a 0 are called

### Roots of Polynomials

Roots of Polynomials (Com S 477/577 Notes) Yan-Bin Jia Sep 24, 2015 A direct corollary of the fundamental theorem of algebra is that p(x) can be factorized over the complex domain into a product a n (x

### Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any.

Algebra 2 - Chapter Prerequisites Vocabulary Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any. P1 p. 1 1. counting(natural) numbers - {1,2,3,4,...}

### 26 Integers: Multiplication, Division, and Order

26 Integers: Multiplication, Division, and Order Integer multiplication and division are extensions of whole number multiplication and division. In multiplying and dividing integers, the one new issue

### Some Functions Computable with a Fused-mac

Some Functions Computable with a Fused-mac Sylvie Boldo and Jean-Michel Muller Laboratoire LIP (CNRS/ENS Lyon/Inria/Univ. lyon ), Projet Arénaire, 46 allée d Italie, 69364 Lyon Cedex 07, FRANCE Sylvie.Boldo@ens-lyon.fr,

### Chapter 5. Binary, octal and hexadecimal numbers

Chapter 5. Binary, octal and hexadecimal numbers A place to look for some of this material is the Wikipedia page http://en.wikipedia.org/wiki/binary_numeral_system#counting_in_binary Another place that

### Arithmetic Coding: Introduction

Data Compression Arithmetic coding Arithmetic Coding: Introduction Allows using fractional parts of bits!! Used in PPM, JPEG/MPEG (as option), Bzip More time costly than Huffman, but integer implementation

### Lecture 2. Binary and Hexadecimal Numbers

Lecture 2 Binary and Hexadecimal Numbers Purpose: Review binary and hexadecimal number representations Convert directly from one base to another base Review addition and subtraction in binary representations

### FMA Implementations of the Compensated Horner Scheme

Reliable Implementation of Real Number Algorithms: Theory and Practice Dagstuhl Seminar 06021 January 08-13, 2006 FMA Implementations of the Compensated Horner Scheme Stef GRAILLAT, Philippe LANGLOIS and

### CONTENTS 1. Peter Kahn. Spring 2007

CONTENTS 1 MATH 304: CONSTRUCTING THE REAL NUMBERS Peter Kahn Spring 2007 Contents 2 The Integers 1 2.1 The basic construction.......................... 1 2.2 Adding integers..............................

### Binary Numbering Systems

Binary Numbering Systems April 1997, ver. 1 Application Note 83 Introduction Binary numbering systems are used in virtually all digital systems, including digital signal processing (DSP), networking, and

### Chapter 1. Binary, octal and hexadecimal numbers

Chapter 1. Binary, octal and hexadecimal numbers This material is covered in the books: Nelson Magor Cooke et al, Basic mathematics for electronics (7th edition), Glencoe, Lake Forest, Ill., 1992. [Hamilton

### LSN 2 Number Systems. ECT 224 Digital Computer Fundamentals. Department of Engineering Technology

LSN 2 Number Systems Department of Engineering Technology LSN 2 Decimal Number System Decimal number system has 10 digits (0-9) Base 10 weighting system... 10 5 10 4 10 3 10 2 10 1 10 0. 10-1 10-2 10-3

### DNA Data and Program Representation. Alexandre David 1.2.05 adavid@cs.aau.dk

DNA Data and Program Representation Alexandre David 1.2.05 adavid@cs.aau.dk Introduction Very important to understand how data is represented. operations limits precision Digital logic built on 2-valued

### 1 Review of Least Squares Solutions to Overdetermined Systems

cs4: introduction to numerical analysis /9/0 Lecture 7: Rectangular Systems and Numerical Integration Instructor: Professor Amos Ron Scribes: Mark Cowlishaw, Nathanael Fillmore Review of Least Squares

### Systems I: Computer Organization and Architecture

Systems I: Computer Organization and Architecture Lecture 2: Number Systems and Arithmetic Number Systems - Base The number system that we use is base : 734 = + 7 + 3 + 4 = x + 7x + 3x + 4x = x 3 + 7x

### Advanced Tutorials. Numeric Data In SAS : Guidelines for Storage and Display Paul Gorrell, Social & Scientific Systems, Inc., Silver Spring, MD

Numeric Data In SAS : Guidelines for Storage and Display Paul Gorrell, Social & Scientific Systems, Inc., Silver Spring, MD ABSTRACT Understanding how SAS stores and displays numeric data is essential

### Number Systems and Radix Conversion

Number Systems and Radix Conversion Sanjay Rajopadhye, Colorado State University 1 Introduction These notes for CS 270 describe polynomial number systems. The material is not in the textbook, but will

### Computer Arithmetic Aliasing issues: Call by reference, Pointer programs

Computer Arithmetic Aliasing issues: Call by reference, Pointer programs Claude Marché Cours MPRI 2-36-1 Preuve de Programme 24 janvier 2014 Outline Exercises from last lecture Computer Arithmetic Handling

### This unit will lay the groundwork for later units where the students will extend this knowledge to quadratic and exponential functions.

Algebra I Overview View unit yearlong overview here Many of the concepts presented in Algebra I are progressions of concepts that were introduced in grades 6 through 8. The content presented in this course

### Reading 13 : Finite State Automata and Regular Expressions

CS/Math 24: Introduction to Discrete Mathematics Fall 25 Reading 3 : Finite State Automata and Regular Expressions Instructors: Beck Hasti, Gautam Prakriya In this reading we study a mathematical model

### Solution of Linear Systems

Chapter 3 Solution of Linear Systems In this chapter we study algorithms for possibly the most commonly occurring problem in scientific computing, the solution of linear systems of equations. We start

### A numerically adaptive implementation of the simplex method

A numerically adaptive implementation of the simplex method József Smidla, Péter Tar, István Maros Department of Computer Science and Systems Technology University of Pannonia 17th of December 2014. 1

### 2.3. Finding polynomial functions. An Introduction:

2.3. Finding polynomial functions. An Introduction: As is usually the case when learning a new concept in mathematics, the new concept is the reverse of the previous one. Remember how you first learned

### RN-coding of Numbers: New Insights and Some Applications

RN-coding of Numbers: New Insights and Some Applications Peter Kornerup Dept. of Mathematics and Computer Science SDU, Odense, Denmark & Jean-Michel Muller LIP/Arénaire (CRNS-ENS Lyon-INRIA-UCBL) Lyon,

### Preliminary Mathematics

Preliminary Mathematics The purpose of this document is to provide you with a refresher over some topics that will be essential for what we do in this class. We will begin with fractions, decimals, and

### CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA

We Can Early Learning Curriculum PreK Grades 8 12 INSIDE ALGEBRA, GRADES 8 12 CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA April 2016 www.voyagersopris.com Mathematical

### FLOATING-POINT ARITHMETIC IN AMD PROCESSORS MICHAEL SCHULTE AMD RESEARCH JUNE 2015

FLOATING-POINT ARITHMETIC IN AMD PROCESSORS MICHAEL SCHULTE AMD RESEARCH JUNE 2015 AGENDA The Kaveri Accelerated Processing Unit (APU) The Graphics Core Next Architecture and its Floating-Point Arithmetic

### CSI 333 Lecture 1 Number Systems

CSI 333 Lecture 1 Number Systems 1 1 / 23 Basics of Number Systems Ref: Appendix C of Deitel & Deitel. Weighted Positional Notation: 192 = 2 10 0 + 9 10 1 + 1 10 2 General: Digit sequence : d n 1 d n 2...

### Today. Binary addition Representing negative numbers. Andrew H. Fagg: Embedded Real- Time Systems: Binary Arithmetic

Today Binary addition Representing negative numbers 2 Binary Addition Consider the following binary numbers: 0 0 1 0 0 1 1 0 0 0 1 0 1 0 1 1 How do we add these numbers? 3 Binary Addition 0 0 1 0 0 1 1

### AMATH 352 Lecture 3 MATLAB Tutorial Starting MATLAB Entering Variables

AMATH 352 Lecture 3 MATLAB Tutorial MATLAB (short for MATrix LABoratory) is a very useful piece of software for numerical analysis. It provides an environment for computation and the visualization. Learning

### Zeros of a Polynomial Function

Zeros of a Polynomial Function An important consequence of the Factor Theorem is that finding the zeros of a polynomial is really the same thing as factoring it into linear factors. In this section we

### Data Storage: Each time you create a variable in memory, a certain amount of memory is allocated for that variable based on its data type (or class).

Data Storage: Computers are made of many small parts, including transistors, capacitors, resistors, magnetic materials, etc. Somehow they have to store information in these materials both temporarily (RAM,

### Outline. hardware components programming environments. installing Python executing Python code. decimal and binary notations running Sage

Outline 1 Computer Architecture hardware components programming environments 2 Getting Started with Python installing Python executing Python code 3 Number Systems decimal and binary notations running

### Levent EREN levent.eren@ieu.edu.tr A-306 Office Phone:488-9882 INTRODUCTION TO DIGITAL LOGIC

Levent EREN levent.eren@ieu.edu.tr A-306 Office Phone:488-9882 1 Number Systems Representation Positive radix, positional number systems A number with radix r is represented by a string of digits: A n

### Zuse's Z3 Square Root Algorithm Talk given at Fall meeting of the Ohio Section of the MAA October 1999 - College of Wooster

Zuse's Z3 Square Root Algorithm Talk given at Fall meeting of the Ohio Section of the MAA October 1999 - College of Wooster Abstract Brian J. Shelburne Dept of Math and Comp Sci Wittenberg University In

### MATH 60 NOTEBOOK CERTIFICATIONS

MATH 60 NOTEBOOK CERTIFICATIONS Chapter #1: Integers and Real Numbers 1.1a 1.1b 1.2 1.3 1.4 1.8 Chapter #2: Algebraic Expressions, Linear Equations, and Applications 2.1a 2.1b 2.1c 2.2 2.3a 2.3b 2.4 2.5

### Oct: 50 8 = 6 (r = 2) 6 8 = 0 (r = 6) Writing the remainders in reverse order we get: (50) 10 = (62) 8

ECE Department Summer LECTURE #5: Number Systems EEL : Digital Logic and Computer Systems Based on lecture notes by Dr. Eric M. Schwartz Decimal Number System: -Our standard number system is base, also