Digital Signal Processing IIR Filter Design via Impulse Invariance

Size: px
Start display at page:

Download "Digital Signal Processing IIR Filter Design via Impulse Invariance"

Transcription

1 Digital Signal Processing IIR Filter Design via Impulse Invariance D. Richard Brown III D. Richard Brown III 1 / 11

2 Basic Procedure We assume here that we ve already decided to use an IIR filter. The basic procedure for IIR filter design via impulse invariance is: 1. Determine the CT filter design method: 1.1 Butterworth 1.2 Chebychev Type I or Type II 1.3 Elliptic Transform the DT filter specifications to CT (sampling period T d is arbitrary) 3. Design CT filter based on the magnitude squared response H c (jω) 2 Determine filter order Determine cutoff frequency 4. Determine H c (s) h c (t) corresponding to a stable causal filter 5. Convert to DT filter H(z) h[n] via impulse invariance such that h[n] = h c (nt d ) D. Richard Brown III 2 / 11

3 Determining the Continuous-Time Filter Design Method passband stopband Butterworth monotonic monotonic Chebychev Type I equiripple monotonic Chebychev Type II monotonic equiripple equiripple equiripple equiripple D. Richard Brown III 3 / 11

4 Impulse-Invariant Lowpass Butterworth Filter Design Ex. H(ω) 1 1 δ 1 δ 2 ω p ω s π ω We start with the desired specifications of the DT filter. For this example, we will use ω p = 0.2π, ω s = 0.3π, 1 δ 1 = , and δ 2 = D. Richard Brown III 4 / 11

5 Convert DT Filter Specs to CT Filter Specs We will use the Butterworth filter approach in this example. A CT Butterworth filter has a squared magnitude response given by H c (jω) 2 1 = ( ) 2N (1) 1 + jω jω c where Ω c is the cutoff frequency (radians/second) and N is the filter order. When designing filters via impulse invariance, the sampling period T d is arbitrary. It is often convenient to just set T d = 1 so that Ω = ω. This implies the CT filter specs can be written as Ω p = 0.2π and Ω s = 0.3π. Along with our magnitude specifications 1 δ 1 = and δ 2 = , we can substitute these results directly into (1) to write ( ) 2N ( ) 2 0.2π Ω c ( ) 2N ( 0.3π 1 + Ω c ) 2 D. Richard Brown III 5 / 11

6 Determine the N and Ω c We can take the previous inequalities and write them as equalities as ( ) 0.2π 2N ( ) = (2) Ω c ( ) 0.3π 2N ( ) =. (3) Ω c We have two equations and two unknowns. By taking logarithms, we can isolate N and Ω c to get N = Ω c = Note that N must be an integer, so we can choose N = 6. We now can decide whether to pick Ω c to match the passband spec (and exceed the stopband spec) or match the stopband spec (and exceed the passband spec). To minimize the effect of aliasing, we usually choose the former. D. Richard Brown III 6 / 11

7 Determine H c (s) (part 1 of 3) Given N = 6 and our choice to match the passband spec, we have the equality ( ) 0.2π 12 ( ) = (4) Ω c which gives Ω c = Now, to determine H c (s), we can write H c (s)h c ( s) = 1 ( ) 2N. 1 + s jω c The pole locations of H c (s)h c ( s) follow from the fact that 1 + ( x a) M = 0 has M solutions given by x = {ae jπ/m, ae j3π/m,..., ae j(π+(m 1)2π)/M }. The M 2 poles corresponding to H c(s) are those in the left half plane. D. Richard Brown III 7 / 11

8 Determine H c (s) (part 2 of 3) D. Richard Brown III 8 / 11

9 Determine H c (s) (part 3 of 3) Choosing the poles from the left half plane and doing a little bit of algebra, we can write H c (s) = (s s )(s s )(s s ) Since all of the poles are simple (non-repeated), we can write the partial fraction expansion 6 A k H c (s) = s s k which implies that h c (t) = k=1 { 6 k=1 A ke s kt t 0 0 t < 0. D. Richard Brown III 9 / 11

10 Determine H(z) via Impulse Invariance Impulse invariance requires h[n] = h c (nt d ) where we have previously chosen T d = 1. Hence we have { 6 k=1 h[n] = A ke s kn n 0 0 t < 0. and it follows that H(z) = 6 k=1 A k 1 e s k z 1 with ROC z > largest magnitude pole. A bit of algebra yields the final result z 1 H(z) = z z z z z z z z 2 which can immediately be realized in parallel form or rearranged to be realized in cascade or direct forms. D. Richard Brown III 10 / 11

11 Impulse-Invariant Lowpass Butterworth Filter Design Ex CT Butterworth LPF DT Butterworth LPF via impulse invariance magnitude response normalized frequency (times π) D. Richard Brown III 11 / 11

First, we show how to use known design specifications to determine filter order and 3dB cut-off

First, we show how to use known design specifications to determine filter order and 3dB cut-off Butterworth Low-Pass Filters In this article, we describe the commonly-used, n th -order Butterworth low-pass filter. First, we show how to use known design specifications to determine filter order and

More information

Digital Signal Processing Complete Bandpass Filter Design Example

Digital Signal Processing Complete Bandpass Filter Design Example Digital Signal Processing Complete Bandpass Filter Design Example D. Richard Brown III D. Richard Brown III 1 / 10 General Filter Design Procedure discrete-time filter specifications prewarp DT frequency

More information

UNIVERSITY OF CALIFORNIA, SAN DIEGO Electrical & Computer Engineering Department ECE 101 - Fall 2010 Linear Systems Fundamentals

UNIVERSITY OF CALIFORNIA, SAN DIEGO Electrical & Computer Engineering Department ECE 101 - Fall 2010 Linear Systems Fundamentals UNIVERSITY OF CALIFORNIA, SAN DIEGO Electrical & Computer Engineering Department ECE 101 - Fall 2010 Linear Systems Fundamentals FINAL EXAM WITH SOLUTIONS (YOURS!) You are allowed one 2-sided sheet of

More information

Design of Efficient Digital Interpolation Filters for Integer Upsampling. Daniel B. Turek

Design of Efficient Digital Interpolation Filters for Integer Upsampling. Daniel B. Turek Design of Efficient Digital Interpolation Filters for Integer Upsampling by Daniel B. Turek Submitted to the Department of Electrical Engineering and Computer Science in partial fulfillment of the requirements

More information

24 Butterworth Filters

24 Butterworth Filters 24 Butterworth Filters To illustrate some of the ideas developed in Lecture 23, we introduce in this lecture a simple and particularly useful class of filters referred to as Butterworthfilters. Filters

More information

Lecture 9. Poles, Zeros & Filters (Lathi 4.10) Effects of Poles & Zeros on Frequency Response (1) Effects of Poles & Zeros on Frequency Response (3)

Lecture 9. Poles, Zeros & Filters (Lathi 4.10) Effects of Poles & Zeros on Frequency Response (1) Effects of Poles & Zeros on Frequency Response (3) Effects of Poles & Zeros on Frequency Response (1) Consider a general system transfer function: zeros at z1, z2,..., zn Lecture 9 Poles, Zeros & Filters (Lathi 4.10) The value of the transfer function

More information

Transition Bandwidth Analysis of Infinite Impulse Response Filters

Transition Bandwidth Analysis of Infinite Impulse Response Filters Transition Bandwidth Analysis of Infinite Impulse Response Filters Sujata Prabhakar Department of Electronics and Communication UCOE Punjabi University, Patiala Dr. Amandeep Singh Sappal Associate Professor

More information

ELEN E4810: Digital Signal Processing Topic 8: Filter Design: IIR

ELEN E4810: Digital Signal Processing Topic 8: Filter Design: IIR ELEN E48: Digital Signal Processing Topic 8: Filter Design: IIR. Filter Design Specifications 2. Analog Filter Design 3. Digital Filters from Analog Prototypes . Filter Design Specifications The filter

More information

Sophomore Physics Laboratory (PH005/105)

Sophomore Physics Laboratory (PH005/105) CALIFORNIA INSTITUTE OF TECHNOLOGY PHYSICS MATHEMATICS AND ASTRONOMY DIVISION Sophomore Physics Laboratory (PH5/15) Analog Electronics Active Filters Copyright c Virgínio de Oliveira Sannibale, 23 (Revision

More information

Time series analysis Matlab tutorial. Joachim Gross

Time series analysis Matlab tutorial. Joachim Gross Time series analysis Matlab tutorial Joachim Gross Outline Terminology Sampling theorem Plotting Baseline correction Detrending Smoothing Filtering Decimation Remarks Focus on practical aspects, exercises,

More information

chapter Introduction to Digital Signal Processing and Digital Filtering 1.1 Introduction 1.2 Historical Perspective

chapter Introduction to Digital Signal Processing and Digital Filtering 1.1 Introduction 1.2 Historical Perspective Introduction to Digital Signal Processing and Digital Filtering chapter 1 Introduction to Digital Signal Processing and Digital Filtering 1.1 Introduction Digital signal processing (DSP) refers to anything

More information

Analog IIR Filter Design

Analog IIR Filter Design Filter Deign - IIR [email protected] Analog IIR Filter Deign Commonly ued analog filter : Lowpa Butterworth filter all-pole filter characterized by magnitude repone. Nfilter order Pole of HH- are

More information

Analog Filters. A common instrumentation filter application is the attenuation of high frequencies to avoid frequency aliasing in the sampled data.

Analog Filters. A common instrumentation filter application is the attenuation of high frequencies to avoid frequency aliasing in the sampled data. Analog Filters Filters can be used to attenuate unwanted signals such as interference or noise or to isolate desired signals from unwanted. They use the frequency response of a measuring system to alter

More information

The Z transform (3) 1

The Z transform (3) 1 The Z transform (3) 1 Today Analysis of stability and causality of LTI systems in the Z domain The inverse Z Transform Section 3.3 (read class notes first) Examples 3.9, 3.11 Properties of the Z Transform

More information

Using the Impedance Method

Using the Impedance Method Using the Impedance Method The impedance method allows us to completely eliminate the differential equation approach for the determination of the response of circuits. In fact the impedance method even

More information

Design of FIR Filters

Design of FIR Filters Design of FIR Filters Elena Punskaya www-sigproc.eng.cam.ac.uk/~op205 Some material adapted from courses by Prof. Simon Godsill, Dr. Arnaud Doucet, Dr. Malcolm Macleod and Prof. Peter Rayner 68 FIR as

More information

Combining the ADS1202 with an FPGA Digital Filter for Current Measurement in Motor Control Applications

Combining the ADS1202 with an FPGA Digital Filter for Current Measurement in Motor Control Applications Application Report SBAA094 June 2003 Combining the ADS1202 with an FPGA Digital Filter for Current Measurement in Motor Control Applications Miroslav Oljaca, Tom Hendrick Data Acquisition Products ABSTRACT

More information

DSP-I DSP-I DSP-I DSP-I

DSP-I DSP-I DSP-I DSP-I DSP-I DSP-I DSP-I DSP-I Digital Signal Proessing I (8-79) Fall Semester, 005 IIR FILER DESIG EXAMPLE hese notes summarize the design proedure for IIR filters as disussed in lass on ovember. Introdution:

More information

How to Design 10 khz filter. (Using Butterworth filter design) Application notes. By Vadim Kim

How to Design 10 khz filter. (Using Butterworth filter design) Application notes. By Vadim Kim How to Design 10 khz filter. (Using Butterworth filter design) Application notes. By Vadim Kim This application note describes how to build a 5 th order low pass, high pass Butterworth filter for 10 khz

More information

BJT Amplifier Circuits

BJT Amplifier Circuits JT Amplifier ircuits As we have developed different models for D signals (simple large-signal model) and A signals (small-signal model), analysis of JT circuits follows these steps: D biasing analysis:

More information

2.161 Signal Processing: Continuous and Discrete Fall 2008

2.161 Signal Processing: Continuous and Discrete Fall 2008 MT OpenCourseWare http://ocw.mit.edu.6 Signal Processing: Continuous and Discrete Fall 00 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. MASSACHUSETTS

More information

TTT4110 Information and Signal Theory Solution to exam

TTT4110 Information and Signal Theory Solution to exam Norwegian University of Science and Technology Department of Electronics and Telecommunications TTT4 Information and Signal Theory Solution to exam Problem I (a The frequency response is found by taking

More information

Frequency Response of FIR Filters

Frequency Response of FIR Filters Frequency Response of FIR Filters Chapter 6 This chapter continues the study of FIR filters from Chapter 5, but the emphasis is frequency response, which relates to how the filter responds to an input

More information

Chapter 8 - Power Density Spectrum

Chapter 8 - Power Density Spectrum EE385 Class Notes 8/8/03 John Stensby Chapter 8 - Power Density Spectrum Let X(t) be a WSS random process. X(t) has an average power, given in watts, of E[X(t) ], a constant. his total average power is

More information

Section 1.1 Linear Equations: Slope and Equations of Lines

Section 1.1 Linear Equations: Slope and Equations of Lines Section. Linear Equations: Slope and Equations of Lines Slope The measure of the steepness of a line is called the slope of the line. It is the amount of change in y, the rise, divided by the amount of

More information

Analog signals are those which are naturally occurring. Any analog signal can be converted to a digital signal.

Analog signals are those which are naturally occurring. Any analog signal can be converted to a digital signal. 3.3 Analog to Digital Conversion (ADC) Analog signals are those which are naturally occurring. Any analog signal can be converted to a digital signal. 1 3.3 Analog to Digital Conversion (ADC) WCB/McGraw-Hill

More information

Bode Diagrams of Transfer Functions and Impedances ECEN 2260 Supplementary Notes R. W. Erickson

Bode Diagrams of Transfer Functions and Impedances ECEN 2260 Supplementary Notes R. W. Erickson Bode Diagrams of Transfer Functions and Impedances ECEN 2260 Supplementary Notes. W. Erickson In the design of a signal processing network, control system, or other analog system, it is usually necessary

More information

NAPIER University School of Engineering. Electronic Systems Module : SE32102 Analogue Filters Design And Simulation. 4 th order Butterworth response

NAPIER University School of Engineering. Electronic Systems Module : SE32102 Analogue Filters Design And Simulation. 4 th order Butterworth response NAPIER University School of Engineering Electronic Systems Module : SE32102 Analogue Filters Design And Simulation. 4 th order Butterworth response In R1 R2 C2 C1 + Opamp A - R1 R2 C2 C1 + Opamp B - Out

More information

CHAPTER 8 ANALOG FILTERS

CHAPTER 8 ANALOG FILTERS ANALOG FILTERS CHAPTER 8 ANALOG FILTERS SECTION 8.: INTRODUCTION 8. SECTION 8.2: THE TRANSFER FUNCTION 8.5 THE SPLANE 8.5 F O and Q 8.7 HIGHPASS FILTER 8.8 BANDPASS FILTER 8.9 BANDREJECT (NOTCH) FILTER

More information

BJT Amplifier Circuits

BJT Amplifier Circuits JT Amplifier ircuits As we have developed different models for D signals (simple large-signal model) and A signals (small-signal model), analysis of JT circuits follows these steps: D biasing analysis:

More information

SECTION 6 DIGITAL FILTERS

SECTION 6 DIGITAL FILTERS SECTION 6 DIGITAL FILTERS Finite Impulse Response (FIR) Filters Infinite Impulse Response (IIR) Filters Multirate Filters Adaptive Filters 6.a 6.b SECTION 6 DIGITAL FILTERS Walt Kester INTRODUCTION Digital

More information

(Refer Slide Time: 01:11-01:27)

(Refer Slide Time: 01:11-01:27) Digital Signal Processing Prof. S. C. Dutta Roy Department of Electrical Engineering Indian Institute of Technology, Delhi Lecture - 6 Digital systems (contd.); inverse systems, stability, FIR and IIR,

More information

Section 3. Sensor to ADC Design Example

Section 3. Sensor to ADC Design Example Section 3 Sensor to ADC Design Example 3-1 This section describes the design of a sensor to ADC system. The sensor measures temperature, and the measurement is interfaced into an ADC selected by the systems

More information

Part IB Paper 6: Information Engineering LINEAR SYSTEMS AND CONTROL Dr Glenn Vinnicombe HANDOUT 3. Stability and pole locations.

Part IB Paper 6: Information Engineering LINEAR SYSTEMS AND CONTROL Dr Glenn Vinnicombe HANDOUT 3. Stability and pole locations. Part IB Paper 6: Information Engineering LINEAR SYSTEMS AND CONTROL Dr Glenn Vinnicombe HANDOUT 3 Stability and pole locations asymptotically stable marginally stable unstable Imag(s) repeated poles +

More information

Filter Comparison. Match #1: Analog vs. Digital Filters

Filter Comparison. Match #1: Analog vs. Digital Filters CHAPTER 21 Filter Comparison Decisions, decisions, decisions! With all these filters to choose from, how do you know which to use? This chapter is a head-to-head competition between filters; we'll select

More information

Controller Design in Frequency Domain

Controller Design in Frequency Domain ECSE 4440 Control System Engineering Fall 2001 Project 3 Controller Design in Frequency Domain TA 1. Abstract 2. Introduction 3. Controller design in Frequency domain 4. Experiment 5. Colclusion 1. Abstract

More information

Analysis/resynthesis with the short time Fourier transform

Analysis/resynthesis with the short time Fourier transform Analysis/resynthesis with the short time Fourier transform summer 2006 lecture on analysis, modeling and transformation of audio signals Axel Röbel Institute of communication science TU-Berlin IRCAM Analysis/Synthesis

More information

EQUATIONS and INEQUALITIES

EQUATIONS and INEQUALITIES EQUATIONS and INEQUALITIES Linear Equations and Slope 1. Slope a. Calculate the slope of a line given two points b. Calculate the slope of a line parallel to a given line. c. Calculate the slope of a line

More information

Laboratory #5: RF Filter Design

Laboratory #5: RF Filter Design EEE 194 RF Laboratory Exercise 5 1 Laboratory #5: RF Filter Design I. OBJECTIVES A. Design a third order low-pass Chebyshev filter with a cutoff frequency of 330 MHz and 3 db ripple with equal terminations

More information

3.6. Partial Fractions. Introduction. Prerequisites. Learning Outcomes

3.6. Partial Fractions. Introduction. Prerequisites. Learning Outcomes Partial Fractions 3.6 Introduction It is often helpful to break down a complicated algebraic fraction into a sum of simpler fractions. For 4x + 7 example it can be shown that x 2 + 3x + 2 has the same

More information

Partial Fractions. p(x) q(x)

Partial Fractions. p(x) q(x) Partial Fractions Introduction to Partial Fractions Given a rational function of the form p(x) q(x) where the degree of p(x) is less than the degree of q(x), the method of partial fractions seeks to break

More information

Practice with Proofs

Practice with Proofs Practice with Proofs October 6, 2014 Recall the following Definition 0.1. A function f is increasing if for every x, y in the domain of f, x < y = f(x) < f(y) 1. Prove that h(x) = x 3 is increasing, using

More information

Positive Feedback and Oscillators

Positive Feedback and Oscillators Physics 3330 Experiment #6 Fall 1999 Positive Feedback and Oscillators Purpose In this experiment we will study how spontaneous oscillations may be caused by positive feedback. You will construct an active

More information

14: FM Radio Receiver

14: FM Radio Receiver (1) (2) (3) DSP and Digital Filters (2015-7310) FM Radio: 14 1 / 12 (1) (2) (3) FM spectrum: 87.5 to 108 MHz Each channel: ±100 khz Baseband signal: Mono (L + R): ±15kHz Pilot tone: 19 khz Stereo (L R):

More information

IIR Half-band Filter Design with TMS320VC33 DSP

IIR Half-band Filter Design with TMS320VC33 DSP IIR Half-band Filter Design with TMS320VC33 DSP Ottó Nyári, Tibor Szakáll, Péter Odry Polytechnical Engineering College, Marka Oreskovica 16, Subotica, Serbia and Montenegro [email protected], [email protected],

More information

Signal Detection C H A P T E R 14 14.1 SIGNAL DETECTION AS HYPOTHESIS TESTING

Signal Detection C H A P T E R 14 14.1 SIGNAL DETECTION AS HYPOTHESIS TESTING C H A P T E R 4 Signal Detection 4. SIGNAL DETECTION AS HYPOTHESIS TESTING In Chapter 3 we considered hypothesis testing in the context of random variables. The detector resulting in the minimum probability

More information

min ǫ = E{e 2 [n]}. (11.2)

min ǫ = E{e 2 [n]}. (11.2) C H A P T E R 11 Wiener Filtering INTRODUCTION In this chapter we will consider the use of LTI systems in order to perform minimum mean-square-error (MMSE) estimation of a WSS random process of interest,

More information

Homework # 3 Solutions

Homework # 3 Solutions Homework # 3 Solutions February, 200 Solution (2.3.5). Noting that and ( + 3 x) x 8 = + 3 x) by Equation (2.3.) x 8 x 8 = + 3 8 by Equations (2.3.7) and (2.3.0) =3 x 8 6x2 + x 3 ) = 2 + 6x 2 + x 3 x 8

More information

Clutter Filter Design for Ultrasound Color Flow Imaging

Clutter Filter Design for Ultrasound Color Flow Imaging Clutter Filter Design for Ultrasound Color Flow Imaging by Steinar Bjærum (Corresponding author) Department of Physiology and Biomedical Engineering Norwegian University of Science and Technology Trondheim,

More information

1995 Mixed-Signal Products SLAA013

1995 Mixed-Signal Products SLAA013 Application Report 995 Mixed-Signal Products SLAA03 IMPORTANT NOTICE Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service

More information

UNIVERSITY OF CALIFORNIA AT BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences. EE105 Lab Experiments

UNIVERSITY OF CALIFORNIA AT BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences. EE105 Lab Experiments UNIVERSITY OF CALIFORNIA AT BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences EE15 Lab Experiments Bode Plot Tutorial Contents 1 Introduction 1 2 Bode Plots Basics

More information

G(s) = Y (s)/u(s) In this representation, the output is always the Transfer function times the input. Y (s) = G(s)U(s).

G(s) = Y (s)/u(s) In this representation, the output is always the Transfer function times the input. Y (s) = G(s)U(s). Transfer Functions The transfer function of a linear system is the ratio of the Laplace Transform of the output to the Laplace Transform of the input, i.e., Y (s)/u(s). Denoting this ratio by G(s), i.e.,

More information

Pacific Journal of Mathematics

Pacific Journal of Mathematics Pacific Journal of Mathematics GLOBAL EXISTENCE AND DECREASING PROPERTY OF BOUNDARY VALUES OF SOLUTIONS TO PARABOLIC EQUATIONS WITH NONLOCAL BOUNDARY CONDITIONS Sangwon Seo Volume 193 No. 1 March 2000

More information

6. Define log(z) so that π < I log(z) π. Discuss the identities e log(z) = z and log(e w ) = w.

6. Define log(z) so that π < I log(z) π. Discuss the identities e log(z) = z and log(e w ) = w. hapter omplex integration. omplex number quiz. Simplify 3+4i. 2. Simplify 3+4i. 3. Find the cube roots of. 4. Here are some identities for complex conjugate. Which ones need correction? z + w = z + w,

More information

LM833,LMF100,MF10. Application Note 779 A Basic Introduction to Filters - Active, Passive,and. Switched Capacitor. Literature Number: SNOA224A

LM833,LMF100,MF10. Application Note 779 A Basic Introduction to Filters - Active, Passive,and. Switched Capacitor. Literature Number: SNOA224A LM833,LMF100,MF10 Application Note 779 A Basic Introduction to Filters - Active, Passive,and Switched Capacitor Literature Number: SNOA224A A Basic Introduction to Filters Active, Passive, and Switched-Capacitor

More information

SAMPLE SOLUTIONS DIGITAL SIGNAL PROCESSING: Signals, Systems, and Filters Andreas Antoniou

SAMPLE SOLUTIONS DIGITAL SIGNAL PROCESSING: Signals, Systems, and Filters Andreas Antoniou SAMPLE SOLUTIONS DIGITAL SIGNAL PROCESSING: Signals, Systems, and Filters Andreas Antoniou (Revision date: February 7, 7) SA. A periodic signal can be represented by the equation x(t) k A k sin(ω k t +

More information

Review of Scientific Notation and Significant Figures

Review of Scientific Notation and Significant Figures II-1 Scientific Notation Review of Scientific Notation and Significant Figures Frequently numbers that occur in physics and other sciences are either very large or very small. For example, the speed of

More information

CHAPTER 6 Frequency Response, Bode Plots, and Resonance

CHAPTER 6 Frequency Response, Bode Plots, and Resonance ELECTRICAL CHAPTER 6 Frequency Response, Bode Plots, and Resonance 1. State the fundamental concepts of Fourier analysis. 2. Determine the output of a filter for a given input consisting of sinusoidal

More information

Let s examine the response of the circuit shown on Figure 1. The form of the source voltage Vs is shown on Figure 2. R. Figure 1.

Let s examine the response of the circuit shown on Figure 1. The form of the source voltage Vs is shown on Figure 2. R. Figure 1. Examples of Transient and RL Circuits. The Series RLC Circuit Impulse response of Circuit. Let s examine the response of the circuit shown on Figure 1. The form of the source voltage Vs is shown on Figure.

More information

3 Signals and Systems: Part II

3 Signals and Systems: Part II 3 Signals and Systems: Part II Recommended Problems P3.1 Sketch each of the following signals. (a) x[n] = b[n] + 3[n - 3] (b) x[n] = u[n] - u[n - 5] (c) x[n] = 6[n] + 1n + (i)2 [n - 2] + (i)ag[n - 3] (d)

More information

AN-837 APPLICATION NOTE

AN-837 APPLICATION NOTE APPLICATION NOTE One Technology Way P.O. Box 916 Norwood, MA 262-916, U.S.A. Tel: 781.329.47 Fax: 781.461.3113 www.analog.com DDS-Based Clock Jitter Performance vs. DAC Reconstruction Filter Performance

More information

TTT4120 Digital Signal Processing Suggested Solution to Exam Fall 2008

TTT4120 Digital Signal Processing Suggested Solution to Exam Fall 2008 Norwegian University of Science and Technology Department of Electronics and Telecommunications TTT40 Digital Signal Processing Suggested Solution to Exam Fall 008 Problem (a) The input and the input-output

More information

Chapter 4: Passive Analog Signal Processing

Chapter 4: Passive Analog Signal Processing hapter 4: Passive Analog Signal Processing In this chapter we introduce filters and signal transmission theory. Filters are essential components of most analog circuits and are used to remove unwanted

More information

Chapter 16. Active Filter Design Techniques. Excerpted from Op Amps for Everyone. Literature Number SLOA088. Literature Number: SLOD006A

Chapter 16. Active Filter Design Techniques. Excerpted from Op Amps for Everyone. Literature Number SLOA088. Literature Number: SLOD006A hapter 16 Active Filter Design Techniques Literature Number SLOA088 Excerpted from Op Amps for Everyone Literature Number: SLOD006A hapter 16 Active Filter Design Techniques Thomas Kugelstadt 16.1 Introduction

More information

Stanford Math Circle: Sunday, May 9, 2010 Square-Triangular Numbers, Pell s Equation, and Continued Fractions

Stanford Math Circle: Sunday, May 9, 2010 Square-Triangular Numbers, Pell s Equation, and Continued Fractions Stanford Math Circle: Sunday, May 9, 00 Square-Triangular Numbers, Pell s Equation, and Continued Fractions Recall that triangular numbers are numbers of the form T m = numbers that can be arranged in

More information

Oscillations. Vern Lindberg. June 10, 2010

Oscillations. Vern Lindberg. June 10, 2010 Oscillations Vern Lindberg June 10, 2010 You have discussed oscillations in Vibs and Waves: we will therefore touch lightly on Chapter 3, mainly trying to refresh your memory and extend the concepts. 1

More information

What you will do. Build a 3-band equalizer. Connect to a music source (mp3 player) Low pass filter High pass filter Band pass filter

What you will do. Build a 3-band equalizer. Connect to a music source (mp3 player) Low pass filter High pass filter Band pass filter Audio Filters What you will do Build a 3-band equalizer Low pass filter High pass filter Band pass filter Connect to a music source (mp3 player) Adjust the strength of low, high, and middle frequencies

More information

Chapter 20 Quasi-Resonant Converters

Chapter 20 Quasi-Resonant Converters Chapter 0 Quasi-Resonant Converters Introduction 0.1 The zero-current-switching quasi-resonant switch cell 0.1.1 Waveforms of the half-wave ZCS quasi-resonant switch cell 0.1. The average terminal waveforms

More information

This is a square root. The number under the radical is 9. (An asterisk * means multiply.)

This is a square root. The number under the radical is 9. (An asterisk * means multiply.) Page of Review of Radical Expressions and Equations Skills involving radicals can be divided into the following groups: Evaluate square roots or higher order roots. Simplify radical expressions. Rationalize

More information

Impedance 50 (75 connectors via adapters)

Impedance 50 (75 connectors via adapters) VECTOR NETWORK ANALYZER PLANAR TR1300/1 DATA SHEET Frequency range: 300 khz to 1.3 GHz Measured parameters: S11, S21 Dynamic range of transmission measurement magnitude: 130 db Measurement time per point:

More information

Trend and Seasonal Components

Trend and Seasonal Components Chapter 2 Trend and Seasonal Components If the plot of a TS reveals an increase of the seasonal and noise fluctuations with the level of the process then some transformation may be necessary before doing

More information

Integrals of Rational Functions

Integrals of Rational Functions Integrals of Rational Functions Scott R. Fulton Overview A rational function has the form where p and q are polynomials. For example, r(x) = p(x) q(x) f(x) = x2 3 x 4 + 3, g(t) = t6 + 4t 2 3, 7t 5 + 3t

More information

Lecture 6 - Design of Digital Filters

Lecture 6 - Design of Digital Filters Lecture 6 - Design of Digital Filters 6.1 Simple filters There are two methods for smoothing a sequence of numbers in order to approximate a low-pass filter: the polynomial fit, as just described, and

More information

Method To Solve Linear, Polynomial, or Absolute Value Inequalities:

Method To Solve Linear, Polynomial, or Absolute Value Inequalities: Solving Inequalities An inequality is the result of replacing the = sign in an equation with ,, or. For example, 3x 2 < 7 is a linear inequality. We call it linear because if the < were replaced with

More information

Mark Scheme (Results) January 2014. Pearson Edexcel International GCSE Mathematics A (4MA0/3H) Paper 3H

Mark Scheme (Results) January 2014. Pearson Edexcel International GCSE Mathematics A (4MA0/3H) Paper 3H Mark Scheme (Results) January 014 Pearson Edexcel International GCSE Mathematics A (4MA0/3H) Paper 3H Pearson Edexcel Certificate Mathematics A (KMA0/3H) Edexcel and BTEC Qualifications Edexcel and BTEC

More information

SMT 2014 Algebra Test Solutions February 15, 2014

SMT 2014 Algebra Test Solutions February 15, 2014 1. Alice and Bob are painting a house. If Alice and Bob do not take any breaks, they will finish painting the house in 20 hours. If, however, Bob stops painting once the house is half-finished, then the

More information

19 LINEAR QUADRATIC REGULATOR

19 LINEAR QUADRATIC REGULATOR 19 LINEAR QUADRATIC REGULATOR 19.1 Introduction The simple form of loopshaping in scalar systems does not extend directly to multivariable (MIMO) plants, which are characterized by transfer matrices instead

More information

Em bedded DSP : I ntroduction to Digital Filters

Em bedded DSP : I ntroduction to Digital Filters Embedded DSP : Introduction to Digital Filters 1 Em bedded DSP : I ntroduction to Digital Filters Digital filters are a important part of DSP. In fact their extraordinary performance is one of the keys

More information

Infinite Impulse Response Filter Structures in Xilinx FPGAs

Infinite Impulse Response Filter Structures in Xilinx FPGAs White Paper: Spartan -3A DSP, Virtex -5/Virtex-4 FPGAs, LogiCOE IP WP330 (v1.2) August 10, 2009 Infinite Impulse esponse Filter Structures in Xilinx FPGAs By: Michael Francis A large percentage of filters

More information

Introduction to Schrödinger Equation: Harmonic Potential

Introduction to Schrödinger Equation: Harmonic Potential Introduction to Schrödinger Equation: Harmonic Potential Chia-Chun Chou May 2, 2006 Introduction to Schrödinger Equation: Harmonic Potential Time-Dependent Schrödinger Equation For a nonrelativistic particle

More information

is identically equal to x 2 +3x +2

is identically equal to x 2 +3x +2 Partial fractions 3.6 Introduction It is often helpful to break down a complicated algebraic fraction into a sum of simpler fractions. 4x+7 For example it can be shown that has the same value as 1 + 3

More information

The Calculation of G rms

The Calculation of G rms The Calculation of G rms QualMark Corp. Neill Doertenbach The metric of G rms is typically used to specify and compare the energy in repetitive shock vibration systems. However, the method of arriving

More information

Basic Op Amp Circuits

Basic Op Amp Circuits Basic Op Amp ircuits Manuel Toledo INEL 5205 Instrumentation August 3, 2008 Introduction The operational amplifier (op amp or OA for short) is perhaps the most important building block for the design of

More information

Frequency Response of Filters

Frequency Response of Filters School of Engineering Department of Electrical and Computer Engineering 332:224 Principles of Electrical Engineering II Laboratory Experiment 2 Frequency Response of Filters 1 Introduction Objectives To

More information

DESIGN AND SIMULATION OF TWO CHANNEL QMF FILTER BANK FOR ALMOST PERFECT RECONSTRUCTION

DESIGN AND SIMULATION OF TWO CHANNEL QMF FILTER BANK FOR ALMOST PERFECT RECONSTRUCTION DESIGN AND SIMULATION OF TWO CHANNEL QMF FILTER BANK FOR ALMOST PERFECT RECONSTRUCTION Meena Kohli 1, Rajesh Mehra 2 1 M.E student, ECE Deptt., NITTTR, Chandigarh, India 2 Associate Professor, ECE Deptt.,

More information

Section 9.5: Equations of Lines and Planes

Section 9.5: Equations of Lines and Planes Lines in 3D Space Section 9.5: Equations of Lines and Planes Practice HW from Stewart Textbook (not to hand in) p. 673 # 3-5 odd, 2-37 odd, 4, 47 Consider the line L through the point P = ( x, y, ) that

More information

Design of a TL431-Based Controller for a Flyback Converter

Design of a TL431-Based Controller for a Flyback Converter Design of a TL431-Based Controller for a Flyback Converter Dr. John Schönberger Plexim GmbH Technoparkstrasse 1 8005 Zürich 1 Introduction The TL431 is a reference voltage source that is commonly used

More information

3.1 Solving Systems Using Tables and Graphs

3.1 Solving Systems Using Tables and Graphs Algebra 2 Chapter 3 3.1 Solve Systems Using Tables & Graphs 3.1 Solving Systems Using Tables and Graphs A solution to a system of linear equations is an that makes all of the equations. To solve a system

More information

5.4 Solving Percent Problems Using the Percent Equation

5.4 Solving Percent Problems Using the Percent Equation 5. Solving Percent Problems Using the Percent Equation In this section we will develop and use a more algebraic equation approach to solving percent equations. Recall the percent proportion from the last

More information

PIEZO FILTERS INTRODUCTION

PIEZO FILTERS INTRODUCTION For more than two decades, ceramic filter technology has been instrumental in the proliferation of solid state electronics. A view of the future reveals that even greater expectations will be placed on

More information

Linear Equations and Inequalities

Linear Equations and Inequalities Linear Equations and Inequalities Section 1.1 Prof. Wodarz Math 109 - Fall 2008 Contents 1 Linear Equations 2 1.1 Standard Form of a Linear Equation................ 2 1.2 Solving Linear Equations......................

More information

Understanding Poles and Zeros

Understanding Poles and Zeros MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING 2.14 Analysis and Design of Feedback Control Systems Understanding Poles and Zeros 1 System Poles and Zeros The transfer function

More information

Practice problems for Homework 11 - Point Estimation

Practice problems for Homework 11 - Point Estimation Practice problems for Homework 11 - Point Estimation 1. (10 marks) Suppose we want to select a random sample of size 5 from the current CS 3341 students. Which of the following strategies is the best:

More information

Introduction to Digital Filters

Introduction to Digital Filters CHAPTER 14 Introduction to Digital Filters Digital filters are used for two general purposes: (1) separation of signals that have been combined, and (2) restoration of signals that have been distorted

More information

Design of op amp sine wave oscillators

Design of op amp sine wave oscillators Design of op amp sine wave oscillators By on Mancini Senior Application Specialist, Operational Amplifiers riteria for oscillation The canonical form of a feedback system is shown in Figure, and Equation

More information

Lecture 24: Oscillators. Clapp Oscillator. VFO Startup

Lecture 24: Oscillators. Clapp Oscillator. VFO Startup Whites, EE 322 Lecture 24 Page 1 of 10 Lecture 24: Oscillators. Clapp Oscillator. VFO Startup Oscillators are circuits that produce periodic output voltages, such as sinusoids. They accomplish this feat

More information

Lecture 5 Rational functions and partial fraction expansion

Lecture 5 Rational functions and partial fraction expansion S. Boyd EE102 Lecture 5 Rational functions and partial fraction expansion (review of) polynomials rational functions pole-zero plots partial fraction expansion repeated poles nonproper rational functions

More information

UNIVERSITY OF CALIFORNIA, SAN DIEGO Electrical & Computer Engineering Department ECE 101 - Fall 2009 Linear Systems Fundamentals

UNIVERSITY OF CALIFORNIA, SAN DIEGO Electrical & Computer Engineering Department ECE 101 - Fall 2009 Linear Systems Fundamentals UNIVERSITY OF CALIFORNIA, SAN DIEGO Electrical & Computer Engineering Department ECE 101 - Fall 2009 Linear Systems Fundamentals MIDTERM EXAM You are allowed one 2-sided sheet of notes. No books, no other

More information