Investigating Parametric Curves with MATLAB
|
|
|
- Matilda Reeves
- 9 years ago
- Views:
Transcription
1 MTHH229 Fall 2006 The College of Staten Island Department of Mathematics Investigating Parametric Curves with MATLAB 1 Introduction In this project we investigate curves in the plane. Specifically, we want to think about graphs of curves that are not necessarily given by simple functions y = f(x). Such things fascinated ancient Greeks, confounded Enlightenment scholars, and often annoy students in Calculus 2 or 3. They are, however, very easy to visualize in Matlab. 1.1 New Math/MATLAB Topics a. Defining parametric curves, C : (x(t), y(t)) b. Plotting parametric curves. c. Exploring the calculus of curves 2 A parametric curve. We are used to thinking about graphs of functions in the Cartesian plane (x, y) where y = f(x). We all know that a function is a rule that assigns one and only one output value (y) for any allowable input value (x). While one can spend one s entire life stuing such things, there is an whole different world of graceful, curious and important objects (curves) defined by collections of points (x, y) which do NOT fit the catagory of functions. For example, let s consider the circle. This object is defined by the algebraic equation: x 2 + y 2 = r 2 for some value of the constant r which is the radius of the circle. How can we get Matlab to plot such a thing? Well, one way would be to solve for y as a function of x and use what we alrea know about plotting graphs. Try to do this and we immediately run into trouble! y 2 = r 2 x 2 y = ± r 2 x 2 What to do with the ±? What to do with the limited domain of the function defined above? If we wanted to plot the circle, we would need to carefully define the input values proj 11 page 1
2 of x and then plot BOTH the y values of the positive square root and the negative square root. Try doing this in Matlab for some convenient value of r. For example, for r = 2 >> x=linspace(-2,2);plot(x,sqrt(4 - x.^2)) >> hold on >> plot(x,-sqrt(4-x.^2)); Yuck! That is an ugly looking circle and a lot of work. The reason the graph looks like an egg instead of a circle is because Matlab choses its own aspect ratio for the plot. (x is longer than y, for aesthetic reasons.) This is easily fixed with the axis command. Try typing: >> axis( equal ) Better looking circle, but there is something unnatural about forcing our elegant curve which is NOT a function into being a function so we may plot it. The way around this is to define x and y in terms of a third variable, t. This is what we mean by parameterizing the curve (x, y) by t. Knowing something about trigonemtry and the unit circle, we should recognize that a easy parameterization of the circle of radius r is given by: x(t) = r cos t y(t) = r sin t 0 < t < 2π Now this is elegant and also convenient to enter into Matlab should we wish to look at the curve. For a circle of radius 2: >> r = 2; >> t=linspace(0,2*pi); >> x = r*cos(t); >> y = r*sin(t); >> plot(x,y) >> axis( equal ) Voila, the same circle. Note that the parameterization of the curve is not unique. What would happen if you redefined x and y but left t as it is? What would happen if you left x and y alone, but changed the definition of t? Exercise 1: Consider the curve defined by: x(t) = r sin t y(t) = r cos t 0 < t < 2π a. Use Matlab to plot this curve for some value of r. proj 11 page 2
3 b. Where does the curve start? In other words, what is the value of (x(0), y(0))? Compare this to the more standard parameterization given above. Exercise 2: Consider the curve defined by: x(t) = r cos t y(t) = r sin t π < t < π a. Use Matlab to plot this curve for some value of r. b. Compare this curve to the others. Are they different? c. Where does the curve start? 3 Some interesting curves What happens if we let the radius of the circle grow (or shrink) depending upon the value of t? Try this out. Consider the following curve: x(t) = t cos t y(t) = t sin t 0 < t What will the shape of this be? Thinking in terms of the circle, we see that now the radius is increasing linearly with time. Exercise 3: Use Matlab to plot the curve defined above. a. What is this curve? b. What happens to the curve as t increases? Look at different definitions of t, ie: t = linspace(0,2*pi), t = linspace(0,8*pi,1000) Exercise 4: Consider the following curve: x(t) = t cos t y(t) = r sin t 0 < t where r = constant What will the shape of this curve be? Think about it before asking Matlab. proj 11 page 3
4 a. Use Matlab to plot the curve for 0 t 10π. Do not use the >> axis( equal ) command. b. Describe the curve Exercise 5: A Lissajous Curve (sometimes called a Bowditch Curve, if you are an Anglophile) is a parametric curve defined by: for constants a, b, n. x(t) = a sin(nt) y(t) = b sin(t) a. For n = 1, predict what the curve will look like. In this case, it easy to solve for y = f(x). What is f(x)? What effect do a and b have on the curve? b. Use Matlab to plot the curve for n = 2. Start with a = b = 1. What happens when you change these? c. If t starts at 0, at what value of t does the curve begin to repeat itself? (In other words, what is the period of the curve?) d. What will change when n = 1/2? e. Experiment with different values of n Try n = 4, 6 Try an odd value of n. What happens? What is the period of the curve for these integer values? f. Try n = 3/2, 2/3, 3/4 etc. EXTRA CREDIT: Can you figure out a general formula for the period of the curve? g. What happens when n is irrational? Try n = π (or n = e, or n = 2) and use a very large range of t, say 0 < t < 200π). What happens? Any idea why? If we want to think of the parameter t as time, then we can visualize our curve as the line traced out by a point that moves along the position (x(t), y(t)). In Matlab, it is easy to make a movie of the moving point using the movie command. For example, let us take the Lissajous curve defined above, with a = b = 1 and n = 7/2. >> a = 1; b = 1; >> t=linspace(0,4*pi,500); >> x = a*sin(n*t); >> y = b*sin(t); >> plot(x,y) >> axis( equal ) proj 11 page 4
5 If we wanted to watch the curve evolve, we could now try: >> M = moviein(50); % Set up movie in M >> for i =1:50 % Make 50 frames of a Movie >> plot(x(1:10*i),y(1:10*i)); % Plot the first 10*i points of x,y >> hold on >> plot(x(10*i),y(10*i), r* ); % plot the last point so far with a red star >> axis([-a,a,-b,b]) >> M(:,i) = getframe; >> hold off >> end Whew... that may take a moment or ten, but now we have an animation of our curve. To view the animation, try: >> movie(m,2) %% View the movie two times. or >> movie(m,-2) %% View the movie, forward and backward, two times. Exercise 6: Make a movie of one of your other curves. Or make up a curve and make a movie of it. Back to calculus, given the parametric curve, we can now ask and answer reasonable questions about the speed and acceleration of our moving point. We can also easily ask, and answer, questions about the shape of the curve, such as the slope of the curve at any point. For example, let us consider the simple paramterized form of the circle: x(t) = r cos(t) y(t) = r sin(t) for 0 t < 2 π. Where is the slope of the tangent to this curve identically equal to zero? Well, we know that the slope is given by the derivative, /dx. But the rate of change of y with respect to x is nothing but the ratio of the rate of change of y with respect to t to the rate of change of x with respect to t. In other words: dx = dt dx dt In this example: dx = dt = dx dt r cos(t) r sin t = cos(t) sin t So, /dx = 0 whenever cos t = 0, namely at t = π/2 and t = 3π/2. Does this make sense? Check it. x(π/2) = 0, y(π/2) = r. The slope of the circle is zero there and at (0, r). It works. proj 11 page 5
6 Exercise 7: Consider Talbot s curve : x(t) = (sin 2 (t) + 1) cos(t) y(t) = (sin 2 (t) 1) sin(t) for 0 t < 2π. a. Analytically, find all the points where the slope of the tangent to the curve is equal to 0. b. Graph the curve. On the curve, mark the point(s) where the slope of the tangent line is zero. Where are the points where the slope of the tangent line tends to or is not defined. How many such points are there? Mark these points with red * s on the graph. If any of this is of any interest, go check out the Web Repository of groovy curves located at: history/curves Also, if you ever played with SPRIROGRAPH, you may be curious about cycloids, regular cycliods, epicycloids and hypocycloids. There is some simple Matlab code for investigating these creatures available at: poje/cycloids Download the two Matlab functions epicycloid.m and hypocycloid.m to the folder where Matlab saves your m-files. To run the demos, type >> epicycloid(a,b,rev) % put in values for a b and rev! or >> hypocycloid(a,b,rev) % put in values for a b and rev! where a is the radius of the wheel, b is the radius of the point of interest, rev is the number of revolutions you would like to see displayed. proj 11 page 6
x 2 + y 2 = 1 y 1 = x 2 + 2x y = x 2 + 2x + 1
Implicit Functions Defining Implicit Functions Up until now in this course, we have only talked about functions, which assign to every real number x in their domain exactly one real number f(x). The graphs
GRAPHING IN POLAR COORDINATES SYMMETRY
GRAPHING IN POLAR COORDINATES SYMMETRY Recall from Algebra and Calculus I that the concept of symmetry was discussed using Cartesian equations. Also remember that there are three types of symmetry - y-axis,
Math 241, Exam 1 Information.
Math 241, Exam 1 Information. 9/24/12, LC 310, 11:15-12:05. Exam 1 will be based on: Sections 12.1-12.5, 14.1-14.3. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/241fa12/241.html)
Solutions to Practice Problems for Test 4
olutions to Practice Problems for Test 4 1. Let be the line segmentfrom the point (, 1, 1) to the point (,, 3). Evaluate the line integral y ds. Answer: First, we parametrize the line segment from (, 1,
Readings this week. 1 Parametric Equations Supplement. 2 Section 10.1. 3 Sections 2.1-2.2. Professor Christopher Hoffman Math 124
Readings this week 1 Parametric Equations Supplement 2 Section 10.1 3 Sections 2.1-2.2 Precalculus Review Quiz session Thursday equations of lines and circles worksheet available at http://www.math.washington.edu/
10 Polar Coordinates, Parametric Equations
Polar Coordinates, Parametric Equations ½¼º½ ÈÓÐ Ö ÓÓÖ Ò Ø Coordinate systems are tools that let us use algebraic methods to understand geometry While the rectangular (also called Cartesian) coordinates
Exam 1 Sample Question SOLUTIONS. y = 2x
Exam Sample Question SOLUTIONS. Eliminate the parameter to find a Cartesian equation for the curve: x e t, y e t. SOLUTION: You might look at the coordinates and notice that If you don t see it, we can
Numerical Solution of Differential Equations
Numerical Solution of Differential Equations Dr. Alvaro Islas Applications of Calculus I Spring 2008 We live in a world in constant change We live in a world in constant change We live in a world in constant
Differentiation of vectors
Chapter 4 Differentiation of vectors 4.1 Vector-valued functions In the previous chapters we have considered real functions of several (usually two) variables f : D R, where D is a subset of R n, where
This unit will lay the groundwork for later units where the students will extend this knowledge to quadratic and exponential functions.
Algebra I Overview View unit yearlong overview here Many of the concepts presented in Algebra I are progressions of concepts that were introduced in grades 6 through 8. The content presented in this course
3 Contour integrals and Cauchy s Theorem
3 ontour integrals and auchy s Theorem 3. Line integrals of complex functions Our goal here will be to discuss integration of complex functions = u + iv, with particular regard to analytic functions. Of
Scientific Programming
1 The wave equation Scientific Programming Wave Equation The wave equation describes how waves propagate: light waves, sound waves, oscillating strings, wave in a pond,... Suppose that the function h(x,t)
Graphs of Polar Equations
Graphs of Polar Equations In the last section, we learned how to graph a point with polar coordinates (r, θ). We will now look at graphing polar equations. Just as a quick review, the polar coordinate
PYTHAGOREAN TRIPLES KEITH CONRAD
PYTHAGOREAN TRIPLES KEITH CONRAD 1. Introduction A Pythagorean triple is a triple of positive integers (a, b, c) where a + b = c. Examples include (3, 4, 5), (5, 1, 13), and (8, 15, 17). Below is an ancient
Review of Fundamental Mathematics
Review of Fundamental Mathematics As explained in the Preface and in Chapter 1 of your textbook, managerial economics applies microeconomic theory to business decision making. The decision-making tools
Copyrighted Material. Chapter 1 DEGREE OF A CURVE
Chapter 1 DEGREE OF A CURVE Road Map The idea of degree is a fundamental concept, which will take us several chapters to explore in depth. We begin by explaining what an algebraic curve is, and offer two
Fundamental Theorems of Vector Calculus
Fundamental Theorems of Vector Calculus We have studied the techniques for evaluating integrals over curves and surfaces. In the case of integrating over an interval on the real line, we were able to use
Mark Howell Gonzaga High School, Washington, D.C.
Be Prepared for the Calculus Exam Mark Howell Gonzaga High School, Washington, D.C. Martha Montgomery Fremont City Schools, Fremont, Ohio Practice exam contributors: Benita Albert Oak Ridge High School,
The Math in Laser Light Math
The Math in Laser Light Math When graphed, many mathematical curves are eautiful to view. These curves are usually rought into graphic form y incorporating such devices as a plotter, printer, video screen,
What are the place values to the left of the decimal point and their associated powers of ten?
The verbal answers to all of the following questions should be memorized before completion of algebra. Answers that are not memorized will hinder your ability to succeed in geometry and algebra. (Everything
By Clicking on the Worksheet you are in an active Math Region. In order to insert a text region either go to INSERT -TEXT REGION or simply
Introduction and Basics Tet Regions By Clicking on the Worksheet you are in an active Math Region In order to insert a tet region either go to INSERT -TEXT REGION or simply start typing --the first time
www.mathsbox.org.uk ab = c a If the coefficients a,b and c are real then either α and β are real or α and β are complex conjugates
Further Pure Summary Notes. Roots of Quadratic Equations For a quadratic equation ax + bx + c = 0 with roots α and β Sum of the roots Product of roots a + b = b a ab = c a If the coefficients a,b and c
Math 2280 - Assignment 6
Math 2280 - Assignment 6 Dylan Zwick Spring 2014 Section 3.8-1, 3, 5, 8, 13 Section 4.1-1, 2, 13, 15, 22 Section 4.2-1, 10, 19, 28 1 Section 3.8 - Endpoint Problems and Eigenvalues 3.8.1 For the eigenvalue
Zero: If P is a polynomial and if c is a number such that P (c) = 0 then c is a zero of P.
MATH 11011 FINDING REAL ZEROS KSU OF A POLYNOMIAL Definitions: Polynomial: is a function of the form P (x) = a n x n + a n 1 x n 1 + + a x + a 1 x + a 0. The numbers a n, a n 1,..., a 1, a 0 are called
GRE Prep: Precalculus
GRE Prep: Precalculus Franklin H.J. Kenter 1 Introduction These are the notes for the Precalculus section for the GRE Prep session held at UCSD in August 2011. These notes are in no way intended to teach
Scalar Valued Functions of Several Variables; the Gradient Vector
Scalar Valued Functions of Several Variables; the Gradient Vector Scalar Valued Functions vector valued function of n variables: Let us consider a scalar (i.e., numerical, rather than y = φ(x = φ(x 1,
Calculus with Parametric Curves
Calculus with Parametric Curves Suppose f and g are differentiable functions and we want to find the tangent line at a point on the parametric curve x f(t), y g(t) where y is also a differentiable function
2008 AP Calculus AB Multiple Choice Exam
008 AP Multiple Choice Eam Name 008 AP Calculus AB Multiple Choice Eam Section No Calculator Active AP Calculus 008 Multiple Choice 008 AP Calculus AB Multiple Choice Eam Section Calculator Active AP Calculus
MATH 52: MATLAB HOMEWORK 2
MATH 52: MATLAB HOMEWORK 2. omplex Numbers The prevalence of the complex numbers throughout the scientific world today belies their long and rocky history. Much like the negative numbers, complex numbers
MATLAB Workshop 3 - Vectors in MATLAB
MATLAB: Workshop - Vectors in MATLAB page 1 MATLAB Workshop - Vectors in MATLAB Objectives: Learn about vector properties in MATLAB, methods to create row and column vectors, mathematical functions with
1.2 GRAPHS OF EQUATIONS. Copyright Cengage Learning. All rights reserved.
1.2 GRAPHS OF EQUATIONS Copyright Cengage Learning. All rights reserved. What You Should Learn Sketch graphs of equations. Find x- and y-intercepts of graphs of equations. Use symmetry to sketch graphs
Algebra. Exponents. Absolute Value. Simplify each of the following as much as possible. 2x y x + y y. xxx 3. x x x xx x. 1. Evaluate 5 and 123
Algebra Eponents Simplify each of the following as much as possible. 1 4 9 4 y + y y. 1 5. 1 5 4. y + y 4 5 6 5. + 1 4 9 10 1 7 9 0 Absolute Value Evaluate 5 and 1. Eliminate the absolute value bars from
Homework 2 Solutions
Homework Solutions 1. (a) Find the area of a regular heagon inscribed in a circle of radius 1. Then, find the area of a regular heagon circumscribed about a circle of radius 1. Use these calculations to
RADIUS OF CURVATURE AND EVOLUTE OF THE FUNCTION y=f(x)
RADIUS OF CURVATURE AND EVOLUTE OF THE FUNCTION y=f( In introductory calculus one learns about the curvature of a function y=f( also about the path (evolute that the center of curvature traces out as x
COMPLEX NUMBERS AND SERIES. Contents
COMPLEX NUMBERS AND SERIES MIKE BOYLE Contents 1. Complex Numbers Definition 1.1. A complex number is a number z of the form z = x + iy, where x and y are real numbers, and i is another number such that
Worksheet 1. What You Need to Know About Motion Along the x-axis (Part 1)
Worksheet 1. What You Need to Know About Motion Along the x-axis (Part 1) In discussing motion, there are three closely related concepts that you need to keep straight. These are: If x(t) represents the
Experiment 9. The Pendulum
Experiment 9 The Pendulum 9.1 Objectives Investigate the functional dependence of the period (τ) 1 of a pendulum on its length (L), the mass of its bob (m), and the starting angle (θ 0 ). Use a pendulum
Beginner s Matlab Tutorial
Christopher Lum [email protected] Introduction Beginner s Matlab Tutorial This document is designed to act as a tutorial for an individual who has had no prior experience with Matlab. For any questions
Irrational Numbers. A. Rational Numbers 1. Before we discuss irrational numbers, it would probably be a good idea to define rational numbers.
Irrational Numbers A. Rational Numbers 1. Before we discuss irrational numbers, it would probably be a good idea to define rational numbers. Definition: Rational Number A rational number is a number that
Microeconomics Sept. 16, 2010 NOTES ON CALCULUS AND UTILITY FUNCTIONS
DUSP 11.203 Frank Levy Microeconomics Sept. 16, 2010 NOTES ON CALCULUS AND UTILITY FUNCTIONS These notes have three purposes: 1) To explain why some simple calculus formulae are useful in understanding
6.1. The Exponential Function. Introduction. Prerequisites. Learning Outcomes. Learning Style
The Exponential Function 6.1 Introduction In this block we revisit the use of exponents. We consider how the expression a x is defined when a is a positive number and x is irrational. Previously we have
SAT Math Facts & Formulas Review Quiz
Test your knowledge of SAT math facts, formulas, and vocabulary with the following quiz. Some questions are more challenging, just like a few of the questions that you ll encounter on the SAT; these questions
Determine If An Equation Represents a Function
Question : What is a linear function? The term linear function consists of two parts: linear and function. To understand what these terms mean together, we must first understand what a function is. The
How To Draw A Circle Of Radius 1 On A Computer (For A Computer)
1. Objective University of Cincinnati Department of Electrical & Computer Engineering and Computer Science 20 ENFD 112 Fundamentals of Programming Laboratory 2: Modeling, Scripting, Visualization Spring
Biggar High School Mathematics Department. National 5 Learning Intentions & Success Criteria: Assessing My Progress
Biggar High School Mathematics Department National 5 Learning Intentions & Success Criteria: Assessing My Progress Expressions & Formulae Topic Learning Intention Success Criteria I understand this Approximation
CIRCLE COORDINATE GEOMETRY
CIRCLE COORDINATE GEOMETRY (EXAM QUESTIONS) Question 1 (**) A circle has equation x + y = 2x + 8 Determine the radius and the coordinates of the centre of the circle. r = 3, ( 1,0 ) Question 2 (**) A circle
12.6 Logarithmic and Exponential Equations PREPARING FOR THIS SECTION Before getting started, review the following:
Section 1.6 Logarithmic and Exponential Equations 811 1.6 Logarithmic and Exponential Equations PREPARING FOR THIS SECTION Before getting started, review the following: Solve Quadratic Equations (Section
2.2 Derivative as a Function
2.2 Derivative as a Function Recall that we defined the derivative as f (a) = lim h 0 f(a + h) f(a) h But since a is really just an arbitrary number that represents an x-value, why don t we just use x
An Introduction to Calculus. Jackie Nicholas
Mathematics Learning Centre An Introduction to Calculus Jackie Nicholas c 2004 University of Sydney Mathematics Learning Centre, University of Sydney 1 Some rules of differentiation and how to use them
Compute the derivative by definition: The four step procedure
Compute te derivative by definition: Te four step procedure Given a function f(x), te definition of f (x), te derivative of f(x), is lim 0 f(x + ) f(x), provided te limit exists Te derivative function
ANALYTICAL METHODS FOR ENGINEERS
UNIT 1: Unit code: QCF Level: 4 Credit value: 15 ANALYTICAL METHODS FOR ENGINEERS A/601/1401 OUTCOME - TRIGONOMETRIC METHODS TUTORIAL 1 SINUSOIDAL FUNCTION Be able to analyse and model engineering situations
Euler s Method and Functions
Chapter 3 Euler s Method and Functions The simplest method for approximately solving a differential equation is Euler s method. One starts with a particular initial value problem of the form dx dt = f(t,
MATH 221 FIRST SEMESTER CALCULUS. fall 2007
MATH 22 FIRST SEMESTER CALCULUS fall 2007 Typeset:December, 2007 2 Math 22 st Semester Calculus Lecture notes version.0 (Fall 2007) This is a self contained set of lecture notes for Math 22. The notes
Zeros of Polynomial Functions
Review: Synthetic Division Find (x 2-5x - 5x 3 + x 4 ) (5 + x). Factor Theorem Solve 2x 3-5x 2 + x + 2 =0 given that 2 is a zero of f(x) = 2x 3-5x 2 + x + 2. Zeros of Polynomial Functions Introduction
y cos 3 x dx y cos 2 x cos x dx y 1 sin 2 x cos x dx
Trigonometric Integrals In this section we use trigonometric identities to integrate certain combinations of trigonometric functions. We start with powers of sine and cosine. EXAMPLE Evaluate cos 3 x dx.
88 CHAPTER 2. VECTOR FUNCTIONS. . First, we need to compute T (s). a By definition, r (s) T (s) = 1 a sin s a. sin s a, cos s a
88 CHAPTER. VECTOR FUNCTIONS.4 Curvature.4.1 Definitions and Examples The notion of curvature measures how sharply a curve bends. We would expect the curvature to be 0 for a straight line, to be very small
Lateral Acceleration. Chris Garner
Chris Garner Forward Acceleration Forward acceleration is easy to quantify and understand. Forward acceleration is simply the rate of change in speed. In car terms, the quicker the car accelerates, the
3.2. Solving quadratic equations. Introduction. Prerequisites. Learning Outcomes. Learning Style
Solving quadratic equations 3.2 Introduction A quadratic equation is one which can be written in the form ax 2 + bx + c = 0 where a, b and c are numbers and x is the unknown whose value(s) we wish to find.
2013 MBA Jump Start Program
2013 MBA Jump Start Program Module 2: Mathematics Thomas Gilbert Mathematics Module Algebra Review Calculus Permutations and Combinations [Online Appendix: Basic Mathematical Concepts] 2 1 Equation of
AP Calculus BC 2001 Free-Response Questions
AP Calculus BC 001 Free-Response Questions The materials included in these files are intended for use by AP teachers for course and exam preparation in the classroom; permission for any other use must
PRACTICE FINAL. Problem 1. Find the dimensions of the isosceles triangle with largest area that can be inscribed in a circle of radius 10cm.
PRACTICE FINAL Problem 1. Find the dimensions of the isosceles triangle with largest area that can be inscribed in a circle of radius 1cm. Solution. Let x be the distance between the center of the circle
Trigonometry Review with the Unit Circle: All the trig. you ll ever need to know in Calculus
Trigonometry Review with the Unit Circle: All the trig. you ll ever need to know in Calculus Objectives: This is your review of trigonometry: angles, six trig. functions, identities and formulas, graphs:
Find the Square Root
verview Math Concepts Materials Students who understand the basic concept of square roots learn how to evaluate expressions and equations that have expressions and equations TI-30XS MultiView rational
1.7 Graphs of Functions
64 Relations and Functions 1.7 Graphs of Functions In Section 1.4 we defined a function as a special type of relation; one in which each x-coordinate was matched with only one y-coordinate. We spent most
Solving Rational Equations
Lesson M Lesson : Student Outcomes Students solve rational equations, monitoring for the creation of extraneous solutions. Lesson Notes In the preceding lessons, students learned to add, subtract, multiply,
Notice numbers may change randomly in your assignments and you may have to recalculate solutions for your specific case.
HW1 Possible Solutions Notice numbers may change randomly in your assignments and you may have to recalculate solutions for your specific case. Tipler 14.P.003 An object attached to a spring has simple
FSMQ Additional Mathematics. OCR Report to Centres June 2015. Unit 6993: Paper 1. Free Standing Mathematics Qualification
FSMQ Additional Mathematics Unit 6993: Paper 1 Free Standing Mathematics Qualification OCR Report to Centres June 2015 Oxford Cambridge and RSA Examinations OCR (Oxford Cambridge and RSA) is a leading
Application of Function Composition
Math Objectives Given functions f and g, the student will be able to determine the domain and range of each as well as the composite functions defined by f ( g( x )) and g( f ( x )). Students will interpret
MA107 Precalculus Algebra Exam 2 Review Solutions
MA107 Precalculus Algebra Exam 2 Review Solutions February 24, 2008 1. The following demand equation models the number of units sold, x, of a product as a function of price, p. x = 4p + 200 a. Please write
The Method of Least Squares. Lectures INF2320 p. 1/80
The Method of Least Squares Lectures INF2320 p. 1/80 Lectures INF2320 p. 2/80 The method of least squares We study the following problem: Given n points (t i,y i ) for i = 1,...,n in the (t,y)-plane. How
MAT12X Intermediate Algebra
MAT12X Intermediate Algebra Workshop I - Exponential Functions LEARNING CENTER Overview Workshop I Exponential Functions of the form y = ab x Properties of the increasing and decreasing exponential functions
DERIVATIVES AS MATRICES; CHAIN RULE
DERIVATIVES AS MATRICES; CHAIN RULE 1. Derivatives of Real-valued Functions Let s first consider functions f : R 2 R. Recall that if the partial derivatives of f exist at the point (x 0, y 0 ), then we
Geometry in architecture and building
Geometry in architecture and building Hans Sterk Faculteit Wiskunde en Informatica Technische Universiteit Eindhoven ii Lecture notes for 2DB60 Meetkunde voor Bouwkunde The picture on the cover was kindly
Chapter 2. Parameterized Curves in R 3
Chapter 2. Parameterized Curves in R 3 Def. A smooth curve in R 3 is a smooth map σ : (a, b) R 3. For each t (a, b), σ(t) R 3. As t increases from a to b, σ(t) traces out a curve in R 3. In terms of components,
Week 1: Functions and Equations
Week 1: Functions and Equations Goals: Review functions Introduce modeling using linear and quadratic functions Solving equations and systems Suggested Textbook Readings: Chapter 2: 2.1-2.2, and Chapter
Supplemental Worksheet Problems To Accompany: The Pre-Algebra Tutor: Volume 1 Section 1 Real Numbers
Supplemental Worksheet Problems To Accompany: The Pre-Algebra Tutor: Volume 1 Please watch Section 1 of this DVD before working these problems. The DVD is located at: http://www.mathtutordvd.com/products/item66.cfm
1.(6pts) Find symmetric equations of the line L passing through the point (2, 5, 1) and perpendicular to the plane x + 3y z = 9.
.(6pts Find symmetric equations of the line L passing through the point (, 5, and perpendicular to the plane x + 3y z = 9. (a x = y + 5 3 = z (b x (c (x = ( 5(y 3 = z + (d x (e (x + 3(y 3 (z = 9 = y 3
Electrical Resonance
Electrical Resonance (R-L-C series circuit) APPARATUS 1. R-L-C Circuit board 2. Signal generator 3. Oscilloscope Tektronix TDS1002 with two sets of leads (see Introduction to the Oscilloscope ) INTRODUCTION
POLYNOMIAL FUNCTIONS
POLYNOMIAL FUNCTIONS Polynomial Division.. 314 The Rational Zero Test.....317 Descarte s Rule of Signs... 319 The Remainder Theorem.....31 Finding all Zeros of a Polynomial Function.......33 Writing a
A QUICK GUIDE TO THE FORMULAS OF MULTIVARIABLE CALCULUS
A QUIK GUIDE TO THE FOMULAS OF MULTIVAIABLE ALULUS ontents 1. Analytic Geometry 2 1.1. Definition of a Vector 2 1.2. Scalar Product 2 1.3. Properties of the Scalar Product 2 1.4. Length and Unit Vectors
Year 9 set 1 Mathematics notes, to accompany the 9H book.
Part 1: Year 9 set 1 Mathematics notes, to accompany the 9H book. equations 1. (p.1), 1.6 (p. 44), 4.6 (p.196) sequences 3. (p.115) Pupils use the Elmwood Press Essential Maths book by David Raymer (9H
AP Calculus AB 2010 Free-Response Questions Form B
AP Calculus AB 2010 Free-Response Questions Form B The College Board The College Board is a not-for-profit membership association whose mission is to connect students to college success and opportunity.
THE COMPLEX EXPONENTIAL FUNCTION
Math 307 THE COMPLEX EXPONENTIAL FUNCTION (These notes assume you are already familiar with the basic properties of complex numbers.) We make the following definition e iθ = cos θ + i sin θ. (1) This formula
Contents. 2 Lines and Circles 3 2.1 Cartesian Coordinates... 3 2.2 Distance and Midpoint Formulas... 3 2.3 Lines... 3 2.4 Circles...
Contents Lines and Circles 3.1 Cartesian Coordinates.......................... 3. Distance and Midpoint Formulas.................... 3.3 Lines.................................. 3.4 Circles..................................
Visualizing Differential Equations Slope Fields. by Lin McMullin
Visualizing Differential Equations Slope Fields by Lin McMullin The topic of slope fields is new to the AP Calculus AB Course Description for the 2004 exam. Where do slope fields come from? How should
Week 13 Trigonometric Form of Complex Numbers
Week Trigonometric Form of Complex Numbers Overview In this week of the course, which is the last week if you are not going to take calculus, we will look at how Trigonometry can sometimes help in working
Calculus 1st Semester Final Review
Calculus st Semester Final Review Use the graph to find lim f ( ) (if it eists) 0 9 Determine the value of c so that f() is continuous on the entire real line if f ( ) R S T, c /, > 0 Find the limit: lim
TWO-DIMENSIONAL TRANSFORMATION
CHAPTER 2 TWO-DIMENSIONAL TRANSFORMATION 2.1 Introduction As stated earlier, Computer Aided Design consists of three components, namely, Design (Geometric Modeling), Analysis (FEA, etc), and Visualization
M 1310 4.1 Polynomial Functions 1
M 1310 4.1 Polynomial Functions 1 Polynomial Functions and Their Graphs Definition of a Polynomial Function Let n be a nonnegative integer and let a, a,..., a, a, a n n1 2 1 0, be real numbers, with a
1 2 3 1 1 2 x = + x 2 + x 4 1 0 1
(d) If the vector b is the sum of the four columns of A, write down the complete solution to Ax = b. 1 2 3 1 1 2 x = + x 2 + x 4 1 0 0 1 0 1 2. (11 points) This problem finds the curve y = C + D 2 t which
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION MATHEMATICS B. Thursday, January 29, 2004 9:15 a.m. to 12:15 p.m.
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION MATHEMATICS B Thursday, January 9, 004 9:15 a.m. to 1:15 p.m., only Print Your Name: Print Your School s Name: Print your name and
Chapter 3 RANDOM VARIATE GENERATION
Chapter 3 RANDOM VARIATE GENERATION In order to do a Monte Carlo simulation either by hand or by computer, techniques must be developed for generating values of random variables having known distributions.
L 2 : x = s + 1, y = s, z = 4s + 4. 3. Suppose that C has coordinates (x, y, z). Then from the vector equality AC = BD, one has
The line L through the points A and B is parallel to the vector AB = 3, 2, and has parametric equations x = 3t + 2, y = 2t +, z = t Therefore, the intersection point of the line with the plane should satisfy:
SOLVING TRIGONOMETRIC INEQUALITIES (CONCEPT, METHODS, AND STEPS) By Nghi H. Nguyen
SOLVING TRIGONOMETRIC INEQUALITIES (CONCEPT, METHODS, AND STEPS) By Nghi H. Nguyen DEFINITION. A trig inequality is an inequality in standard form: R(x) > 0 (or < 0) that contains one or a few trig functions
Higher Order Equations
Higher Order Equations We briefly consider how what we have done with order two equations generalizes to higher order linear equations. Fortunately, the generalization is very straightforward: 1. Theory.
Georgia Department of Education Kathy Cox, State Superintendent of Schools 7/19/2005 All Rights Reserved 1
Accelerated Mathematics 3 This is a course in precalculus and statistics, designed to prepare students to take AB or BC Advanced Placement Calculus. It includes rational, circular trigonometric, and inverse
Microeconomic Theory: Basic Math Concepts
Microeconomic Theory: Basic Math Concepts Matt Van Essen University of Alabama Van Essen (U of A) Basic Math Concepts 1 / 66 Basic Math Concepts In this lecture we will review some basic mathematical concepts
Solutions for Review Problems
olutions for Review Problems 1. Let be the triangle with vertices A (,, ), B (4,, 1) and C (,, 1). (a) Find the cosine of the angle BAC at vertex A. (b) Find the area of the triangle ABC. (c) Find a vector
