Higher Order Equations
|
|
|
- Britton Rice
- 9 years ago
- Views:
Transcription
1 Higher Order Equations We briefly consider how what we have done with order two equations generalizes to higher order linear equations. Fortunately, the generalization is very straightforward: 1. Theory. Finding Roots 3. Characteristic Equations and Fundamental Solutions 1 Theory The existence theorem for order n linear differential equations contains no suprises: Theorem 3.5: (p. 188) Let p 0 (t), p 1 (t),...,p n 1 (t) and g(t) be continuous functions defined on a < t < b, and let t 0 be in (a, b). Then the initial value problem y (n) + p n 1 (t)y (n 1) + + p (t)y + p 1 (t)y + p 0 (t)y = g(t) y(t 0 ) = y 0, y (t 0 ) = y 0, y (t 0 ) = y 0,...,y (n 1) (t 0 ) = y (n 1) 0 has a unique solution defined on the entire interval (a, b). So suppose we have an n th order linear homogeneous differential equation y (n) (t) + p 1 (t)y (n 1) (t) + p (t)y (n ) (t) + + p n (t)y(t) = 0 defined on some interval I where the p i are continuous and we are therefore guaranteed a solution. Then we will need n fundamental solutions y 1,...,y n, which are to be linearly independent. In that case, we have a general solution y(t) = c 1 y 1 (t) + c y (t) + c n y n (t). 1
2 To check that our proposed fundamental solutions y i are in fact linearly independent, we use the Wronskian, which now takes the form W(y 1, y,...y n )(t) = y 1 (t) y (t) y n (t) y 1 (t) y (t) y n (t) y (n 1) 1 (t) y (n 1) (t) y n (n 1) (t) (To help you remember this, just notice that what you are doing is setting up a matrix equation to solve for the initial conditions y(t 0 ) = y 0 through y (n 1) (t 0 ) = y n 1.) If the Wronskian is nonzero at some point t 0, then the n functions are linearly independent. (And in fact, our linearly independent solutions will have non-zero Wronskian at all points on the interval on which they exist, just as in the order two case.) Finding Roots Dealing with an order n differential equation will require solving an n-degree characteristic equation, which in general may not be easy. However, there are a few techniques that may help. Theorem: If we have a rational root p/q in lowest form to the polynomial equation a n r n + a n 1 + r n a 1 r + a 0 = 0 where the a i are integers, then p is a divisor of a 0 and q is a divisor of a n. Factor r 3 + r 4r 4 = 0. We note that any rational roots must be whole numbers which divide 4, so we have only ±1, ±, and ±4 as possibilities. Plugging in r = 1 gives ( 1) 3 + ( 1) 4( 1) 4 = 0 so r = 1 is a root. We then divide out (r + 1), to get r 3 + r 4r 4 = (r + 1)(r 4). Since r 4 = (r + )(r ), we finally have r 3 + r 4r 4 = (r + 1)(r + )(r )
3 and roots r = 1, r =, and r =. Find the roots of r 4 + 7r 3 3r 18r = 0. (I recommend working on scratch paper; you may need a few attempts.) In general however, the roots of an arbitrary degree n polynomial may be irrational, even with integer coefficients. Factoring an arbitrary polynomial can be a difficult problem. It is not uncommon to have to solve for n th roots of a number. There will be n of these in the complex plane, and can be found by writing the equation in polar form r n e nθi and using the fact that angles are only determined up to a multiple of π. Find the roots of x = 0. We have x 3 = 7, or writing x and 7 in polar form, r 3 e 3it = 7e πi. Since r is the magnitude, we can set it to 7 1/3. We then need to solve e 3ti = e πi. We have 3t = π, or t = π/3. But we might also have 3t = π + π = 3π, so t = π or even 3t = π + 4π = 5π, so t = 5π 3. After that, we reach only 3t = 7π, or t = 7π/3 which is the same as π/3. So the three roots are r 1 = (7) 1/3 e π/3i = (7) 1/3 (cos(π/3) + i sin(π/3)) = (7)1/3 r = (7) 1/3 e πi = (7) 1/3 r 3 = (7) 1/3 e 5π/3i = (7) 1/3 (cos(5π/3) + i sin(5π/3)) = (7)1/3 + i (7)1/3 3 i (7)1/3 3 3
4 See also Solving the Differential Equation y (n) ay = 0 and example 4 in section 3.1 of the text (pp ). This technique is also covered in the Stewart calculus book (5 th edition) on p. A54 of Appendix G. 3 Characteristic Equations and Fundamental Solutions To solve an order n linear homogeneous equation with constant coefficients, we can again turn to the characteristic equation. For the differential equation we have characteristic equation a n y (n) + a n 1 y (n 1) + a 1 y + a 0 y = 0 a n r n + a n 1 r n 1 + a 1 r + a 0 = 0 In general, a degree n polynomial has n roots, which may be real or complex, and which may be repeated. Everything we have done generalizes in a straightforward way, based on the roots of the characteristic equation: 1. Distinct Real Roots: Each simple real root r generates a solution of the form e rt. (Simple roots are roots which are not repeated.). Complex Roots: Each simple complex root conjugate pair a ± bi corresponds to the two solutions e at cos(bt) and e at sin(bt). 3. Repeated Roots: A real root r of multiplicity n generates the original solution e rt, as well as the n 1 additional solutions te rt, t e rt,..., t n 1 e rt. In the case of a repeated complex root pair a ± bi, we get the original solutions e at cos(bt) and e at sin(bt), plus the n 1 additional solutions te at cos(bt), te at sin(bt), t e at cos(bt), t e at sin(bt),..., t n 1 e at cos(bt), t n 1 e at sin(bt). The complete set of solutions mentioned above are linearly independent and form a fundamental set of solutions for the given differential equation. Find the general solution to y (4) 5y + 6y = 0. The characteristic equation is r 4 5r 3 + 6r = 0, which factors to r (r 5r + 6) = r (r 6)(r + 1) = 0 4
5 So we have the roots r = 0 (of multiplicity two), r = 6 and r = 1. Our fundamental set of solutions is Thus, the general solution is y 1 (t) = e 0t = 1 y (t) = te 0t = t y 3 (t) = e 6t y 4 (t) = e t y(t) = c 1 + c t + c 3 e 6t + c 4 e t Find the general solution to y (5) 3y y = 0. The characteristic equation is r 5 3r 3 r = r (r 3 3r ) = 0, so we see we have a root r = 0 of multiplicity two. To find roots of r 3 3r, we will look for rational roots, which we know must be factors of. We try ±1 and ±. We find that 1 works, and dividing out r + 1 from r 3 3r leaves us with r r = (r + 1)(r ). So finally we have factorization r 5 3r 3 r = r (r + 1) (r ) which means we have roots 0 (multiplicity two), 1 (multiplicity two), and. Thus, the general solution is y(t) = c 1 + c t + c 3 e t + c 4 te t + c 5 e t. Solve y (6) y = 0. We have characteristic equation r 6 r = 0. We can factor out an r and be left with r (r 4 1) = 0. So we now need the fourth roots of 1. We can proceed either by noting r 4 1 = (r 1)(r + 1)(r + 1) = (r 1)(r + 1)(r i)(r + i) 5
6 or by our general procedure of setting e 4ti = 1 = e 0 so that we get roots 4t = 0 (so t = 0, and e 0i = 1) 4t = π (so t = π/, and e π/ i = i) 4t = 4π (so t = π, and e πi = 1) 4t = 6π (so t = 3π/, and e 3π/ i = i) In either case, we have the following roots to our characteristic equation: r = 0 (multiplicity ), 1, 1, i, i and so we have general solution y(t) = c 1 + c t + c 3 e t + c 4 e t + c 5 cos(t) + c 6 sin(t) Find the general solution of y (4) + y + y = 0. We have characteristic equation r 4 + r + 1 = (r + 1) = 0, so we have ±i as roots, each with multiplicity two. Thus we have fundamental solutions: y 1 (t) = cos(t) y (t) = t cos(t) y 3 (t) = sin(t) y 4 (t) = t sin(t) (from repeated roots) (from repeated roots) So the general solution is y(t) = c 1 cos(t) + c t cos(t) + c 3 sin(t) + c 4 t sin(t). Find the general solution to y 8y + y 0y = 0. Characteristic equation: Roots: 6
7 Solution: 7
Zeros of Polynomial Functions
Review: Synthetic Division Find (x 2-5x - 5x 3 + x 4 ) (5 + x). Factor Theorem Solve 2x 3-5x 2 + x + 2 =0 given that 2 is a zero of f(x) = 2x 3-5x 2 + x + 2. Zeros of Polynomial Functions Introduction
Complex Eigenvalues. 1 Complex Eigenvalues
Complex Eigenvalues Today we consider how to deal with complex eigenvalues in a linear homogeneous system of first der equations We will also look back briefly at how what we have done with systems recapitulates
March 29, 2011. 171S4.4 Theorems about Zeros of Polynomial Functions
MAT 171 Precalculus Algebra Dr. Claude Moore Cape Fear Community College CHAPTER 4: Polynomial and Rational Functions 4.1 Polynomial Functions and Models 4.2 Graphing Polynomial Functions 4.3 Polynomial
r (t) = 2r(t) + sin t θ (t) = r(t) θ(t) + 1 = 1 1 θ(t) 1 9.4.4 Write the given system in matrix form x = Ax + f ( ) sin(t) x y 1 0 5 z = dy cos(t)
Solutions HW 9.4.2 Write the given system in matrix form x = Ax + f r (t) = 2r(t) + sin t θ (t) = r(t) θ(t) + We write this as ( ) r (t) θ (t) = ( ) ( ) 2 r(t) θ(t) + ( ) sin(t) 9.4.4 Write the given system
Zeros of Polynomial Functions
Zeros of Polynomial Functions The Rational Zero Theorem If f (x) = a n x n + a n-1 x n-1 + + a 1 x + a 0 has integer coefficients and p/q (where p/q is reduced) is a rational zero, then p is a factor of
Zeros of a Polynomial Function
Zeros of a Polynomial Function An important consequence of the Factor Theorem is that finding the zeros of a polynomial is really the same thing as factoring it into linear factors. In this section we
Zero: If P is a polynomial and if c is a number such that P (c) = 0 then c is a zero of P.
MATH 11011 FINDING REAL ZEROS KSU OF A POLYNOMIAL Definitions: Polynomial: is a function of the form P (x) = a n x n + a n 1 x n 1 + + a x + a 1 x + a 0. The numbers a n, a n 1,..., a 1, a 0 are called
System of First Order Differential Equations
CHAPTER System of First Order Differential Equations In this chapter, we will discuss system of first order differential equations. There are many applications that involving find several unknown functions
Second Order Linear Nonhomogeneous Differential Equations; Method of Undetermined Coefficients. y + p(t) y + q(t) y = g(t), g(t) 0.
Second Order Linear Nonhomogeneous Differential Equations; Method of Undetermined Coefficients We will now turn our attention to nonhomogeneous second order linear equations, equations with the standard
by the matrix A results in a vector which is a reflection of the given
Eigenvalues & Eigenvectors Example Suppose Then So, geometrically, multiplying a vector in by the matrix A results in a vector which is a reflection of the given vector about the y-axis We observe that
GREATEST COMMON DIVISOR
DEFINITION: GREATEST COMMON DIVISOR The greatest common divisor (gcd) of a and b, denoted by (a, b), is the largest common divisor of integers a and b. THEOREM: If a and b are nonzero integers, then their
Zeros of Polynomial Functions
Zeros of Polynomial Functions Objectives: 1.Use the Fundamental Theorem of Algebra to determine the number of zeros of polynomial functions 2.Find rational zeros of polynomial functions 3.Find conjugate
0.8 Rational Expressions and Equations
96 Prerequisites 0.8 Rational Expressions and Equations We now turn our attention to rational expressions - that is, algebraic fractions - and equations which contain them. The reader is encouraged to
MATH 52: MATLAB HOMEWORK 2
MATH 52: MATLAB HOMEWORK 2. omplex Numbers The prevalence of the complex numbers throughout the scientific world today belies their long and rocky history. Much like the negative numbers, complex numbers
Homework # 3 Solutions
Homework # 3 Solutions February, 200 Solution (2.3.5). Noting that and ( + 3 x) x 8 = + 3 x) by Equation (2.3.) x 8 x 8 = + 3 8 by Equations (2.3.7) and (2.3.0) =3 x 8 6x2 + x 3 ) = 2 + 6x 2 + x 3 x 8
Differentiation and Integration
This material is a supplement to Appendix G of Stewart. You should read the appendix, except the last section on complex exponentials, before this material. Differentiation and Integration Suppose we have
Continued Fractions and the Euclidean Algorithm
Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction
Math Review. for the Quantitative Reasoning Measure of the GRE revised General Test
Math Review for the Quantitative Reasoning Measure of the GRE revised General Test www.ets.org Overview This Math Review will familiarize you with the mathematical skills and concepts that are important
General Theory of Differential Equations Sections 2.8, 3.1-3.2, 4.1
A B I L E N E C H R I S T I A N U N I V E R S I T Y Department of Mathematics General Theory of Differential Equations Sections 2.8, 3.1-3.2, 4.1 Dr. John Ehrke Department of Mathematics Fall 2012 Questions
Section 1.1 Real Numbers
. Natural numbers (N):. Integer numbers (Z): Section. Real Numbers Types of Real Numbers,, 3, 4,,... 0, ±, ±, ±3, ±4, ±,... REMARK: Any natural number is an integer number, but not any integer number is
CONTINUED FRACTIONS AND PELL S EQUATION. Contents 1. Continued Fractions 1 2. Solution to Pell s Equation 9 References 12
CONTINUED FRACTIONS AND PELL S EQUATION SEUNG HYUN YANG Abstract. In this REU paper, I will use some important characteristics of continued fractions to give the complete set of solutions to Pell s equation.
SECOND-ORDER LINEAR DIFFERENTIAL EQUATIONS
SECOND-ORDER LINEAR DIFFERENTIAL EQUATIONS A second-order linear differential equation has the form 1 Px d y dx dy Qx dx Rxy Gx where P, Q, R, and G are continuous functions. Equations of this type arise
SMT 2014 Algebra Test Solutions February 15, 2014
1. Alice and Bob are painting a house. If Alice and Bob do not take any breaks, they will finish painting the house in 20 hours. If, however, Bob stops painting once the house is half-finished, then the
Linear Algebra Notes for Marsden and Tromba Vector Calculus
Linear Algebra Notes for Marsden and Tromba Vector Calculus n-dimensional Euclidean Space and Matrices Definition of n space As was learned in Math b, a point in Euclidean three space can be thought of
Inner Product Spaces
Math 571 Inner Product Spaces 1. Preliminaries An inner product space is a vector space V along with a function, called an inner product which associates each pair of vectors u, v with a scalar u, v, and
LS.6 Solution Matrices
LS.6 Solution Matrices In the literature, solutions to linear systems often are expressed using square matrices rather than vectors. You need to get used to the terminology. As before, we state the definitions
Systems of Linear Equations
Systems of Linear Equations Beifang Chen Systems of linear equations Linear systems A linear equation in variables x, x,, x n is an equation of the form a x + a x + + a n x n = b, where a, a,, a n and
So far, we have looked at homogeneous equations
Chapter 3.6: equations Non-homogeneous So far, we have looked at homogeneous equations L[y] = y + p(t)y + q(t)y = 0. Homogeneous means that the right side is zero. Linear homogeneous equations satisfy
9. Particular Solutions of Non-homogeneous second order equations Undetermined Coefficients
September 29, 201 9-1 9. Particular Solutions of Non-homogeneous second order equations Undetermined Coefficients We have seen that in order to find the general solution to the second order differential
5.1 Radical Notation and Rational Exponents
Section 5.1 Radical Notation and Rational Exponents 1 5.1 Radical Notation and Rational Exponents We now review how exponents can be used to describe not only powers (such as 5 2 and 2 3 ), but also roots
Math 4310 Handout - Quotient Vector Spaces
Math 4310 Handout - Quotient Vector Spaces Dan Collins The textbook defines a subspace of a vector space in Chapter 4, but it avoids ever discussing the notion of a quotient space. This is understandable
Method To Solve Linear, Polynomial, or Absolute Value Inequalities:
Solving Inequalities An inequality is the result of replacing the = sign in an equation with ,, or. For example, 3x 2 < 7 is a linear inequality. We call it linear because if the < were replaced with
JUST THE MATHS UNIT NUMBER 1.8. ALGEBRA 8 (Polynomials) A.J.Hobson
JUST THE MATHS UNIT NUMBER 1.8 ALGEBRA 8 (Polynomials) by A.J.Hobson 1.8.1 The factor theorem 1.8.2 Application to quadratic and cubic expressions 1.8.3 Cubic equations 1.8.4 Long division of polynomials
POLYNOMIAL FUNCTIONS
POLYNOMIAL FUNCTIONS Polynomial Division.. 314 The Rational Zero Test.....317 Descarte s Rule of Signs... 319 The Remainder Theorem.....31 Finding all Zeros of a Polynomial Function.......33 Writing a
5 Homogeneous systems
5 Homogeneous systems Definition: A homogeneous (ho-mo-jeen -i-us) system of linear algebraic equations is one in which all the numbers on the right hand side are equal to : a x +... + a n x n =.. a m
College Algebra - MAT 161 Page: 1 Copyright 2009 Killoran
College Algebra - MAT 6 Page: Copyright 2009 Killoran Zeros and Roots of Polynomial Functions Finding a Root (zero or x-intercept) of a polynomial is identical to the process of factoring a polynomial.
6. Define log(z) so that π < I log(z) π. Discuss the identities e log(z) = z and log(e w ) = w.
hapter omplex integration. omplex number quiz. Simplify 3+4i. 2. Simplify 3+4i. 3. Find the cube roots of. 4. Here are some identities for complex conjugate. Which ones need correction? z + w = z + w,
Chapter 17. Orthogonal Matrices and Symmetries of Space
Chapter 17. Orthogonal Matrices and Symmetries of Space Take a random matrix, say 1 3 A = 4 5 6, 7 8 9 and compare the lengths of e 1 and Ae 1. The vector e 1 has length 1, while Ae 1 = (1, 4, 7) has length
COMPLEX NUMBERS AND SERIES. Contents
COMPLEX NUMBERS AND SERIES MIKE BOYLE Contents 1. Complex Numbers Definition 1.1. A complex number is a number z of the form z = x + iy, where x and y are real numbers, and i is another number such that
PYTHAGOREAN TRIPLES KEITH CONRAD
PYTHAGOREAN TRIPLES KEITH CONRAD 1. Introduction A Pythagorean triple is a triple of positive integers (a, b, c) where a + b = c. Examples include (3, 4, 5), (5, 1, 13), and (8, 15, 17). Below is an ancient
Review of Intermediate Algebra Content
Review of Intermediate Algebra Content Table of Contents Page Factoring GCF and Trinomials of the Form + b + c... Factoring Trinomials of the Form a + b + c... Factoring Perfect Square Trinomials... 6
0.4 FACTORING POLYNOMIALS
36_.qxd /3/5 :9 AM Page -9 SECTION. Factoring Polynomials -9. FACTORING POLYNOMIALS Use special products and factorization techniques to factor polynomials. Find the domains of radical expressions. Use
Lecture Notes for Math250: Ordinary Differential Equations
Lecture Notes for Math250: Ordinary Differential Equations Wen Shen 2011 NB! These notes are used by myself. They are provided to students as a supplement to the textbook. They can not substitute the textbook.
Discrete Mathematics: Homework 7 solution. Due: 2011.6.03
EE 2060 Discrete Mathematics spring 2011 Discrete Mathematics: Homework 7 solution Due: 2011.6.03 1. Let a n = 2 n + 5 3 n for n = 0, 1, 2,... (a) (2%) Find a 0, a 1, a 2, a 3 and a 4. (b) (2%) Show that
a 1 x + a 0 =0. (3) ax 2 + bx + c =0. (4)
ROOTS OF POLYNOMIAL EQUATIONS In this unit we discuss polynomial equations. A polynomial in x of degree n, where n 0 is an integer, is an expression of the form P n (x) =a n x n + a n 1 x n 1 + + a 1 x
2.3. Finding polynomial functions. An Introduction:
2.3. Finding polynomial functions. An Introduction: As is usually the case when learning a new concept in mathematics, the new concept is the reverse of the previous one. Remember how you first learned
Definition 8.1 Two inequalities are equivalent if they have the same solution set. Add or Subtract the same value on both sides of the inequality.
8 Inequalities Concepts: Equivalent Inequalities Linear and Nonlinear Inequalities Absolute Value Inequalities (Sections 4.6 and 1.1) 8.1 Equivalent Inequalities Definition 8.1 Two inequalities are equivalent
A Brief Review of Elementary Ordinary Differential Equations
1 A Brief Review of Elementary Ordinary Differential Equations At various points in the material we will be covering, we will need to recall and use material normally covered in an elementary course on
Solutions for Math 311 Assignment #1
Solutions for Math 311 Assignment #1 (1) Show that (a) Re(iz) Im(z); (b) Im(iz) Re(z). Proof. Let z x + yi with x Re(z) and y Im(z). Then Re(iz) Re( y + xi) y Im(z) and Im(iz) Im( y + xi) x Re(z). () Verify
2.5 Zeros of a Polynomial Functions
.5 Zeros of a Polynomial Functions Section.5 Notes Page 1 The first rule we will talk about is Descartes Rule of Signs, which can be used to determine the possible times a graph crosses the x-axis and
The Mean Value Theorem
The Mean Value Theorem THEOREM (The Extreme Value Theorem): If f is continuous on a closed interval [a, b], then f attains an absolute maximum value f(c) and an absolute minimum value f(d) at some numbers
MATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix.
MATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix. Nullspace Let A = (a ij ) be an m n matrix. Definition. The nullspace of the matrix A, denoted N(A), is the set of all n-dimensional column
Solving Linear Systems, Continued and The Inverse of a Matrix
, Continued and The of a Matrix Calculus III Summer 2013, Session II Monday, July 15, 2013 Agenda 1. The rank of a matrix 2. The inverse of a square matrix Gaussian Gaussian solves a linear system by reducing
Limits and Continuity
Math 20C Multivariable Calculus Lecture Limits and Continuity Slide Review of Limit. Side limits and squeeze theorem. Continuous functions of 2,3 variables. Review: Limits Slide 2 Definition Given a function
1.3 Algebraic Expressions
1.3 Algebraic Expressions A polynomial is an expression of the form: a n x n + a n 1 x n 1 +... + a 2 x 2 + a 1 x + a 0 The numbers a 1, a 2,..., a n are called coefficients. Each of the separate parts,
Student name: Earlham College. Fall 2011 December 15, 2011
Student name: Earlham College MATH 320: Differential Equations Final exam - In class part Fall 2011 December 15, 2011 Instructions: This is a regular closed-book test, and is to be taken without the use
Understanding Poles and Zeros
MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING 2.14 Analysis and Design of Feedback Control Systems Understanding Poles and Zeros 1 System Poles and Zeros The transfer function
The Method of Partial Fractions Math 121 Calculus II Spring 2015
Rational functions. as The Method of Partial Fractions Math 11 Calculus II Spring 015 Recall that a rational function is a quotient of two polynomials such f(x) g(x) = 3x5 + x 3 + 16x x 60. The method
1 0 5 3 3 A = 0 0 0 1 3 0 0 0 0 0 0 0 0 0 0
Solutions: Assignment 4.. Find the redundant column vectors of the given matrix A by inspection. Then find a basis of the image of A and a basis of the kernel of A. 5 A The second and third columns are
Linear Equations in Linear Algebra
1 Linear Equations in Linear Algebra 1.5 SOLUTION SETS OF LINEAR SYSTEMS HOMOGENEOUS LINEAR SYSTEMS A system of linear equations is said to be homogeneous if it can be written in the form A 0, where A
LIMITS AND CONTINUITY
LIMITS AND CONTINUITY 1 The concept of it Eample 11 Let f() = 2 4 Eamine the behavior of f() as approaches 2 2 Solution Let us compute some values of f() for close to 2, as in the tables below We see from
Objectives. Materials
Activity 4 Objectives Understand what a slope field represents in terms of Create a slope field for a given differential equation Materials TI-84 Plus / TI-83 Plus Graph paper Introduction One of the ways
MATH 21. College Algebra 1 Lecture Notes
MATH 21 College Algebra 1 Lecture Notes MATH 21 3.6 Factoring Review College Algebra 1 Factoring and Foiling 1. (a + b) 2 = a 2 + 2ab + b 2. 2. (a b) 2 = a 2 2ab + b 2. 3. (a + b)(a b) = a 2 b 2. 4. (a
MATH10040 Chapter 2: Prime and relatively prime numbers
MATH10040 Chapter 2: Prime and relatively prime numbers Recall the basic definition: 1. Prime numbers Definition 1.1. Recall that a positive integer is said to be prime if it has precisely two positive
THE COMPLEX EXPONENTIAL FUNCTION
Math 307 THE COMPLEX EXPONENTIAL FUNCTION (These notes assume you are already familiar with the basic properties of complex numbers.) We make the following definition e iθ = cos θ + i sin θ. (1) This formula
Examination paper for TMA4115 Matematikk 3
Department of Mathematical Sciences Examination paper for TMA45 Matematikk 3 Academic contact during examination: Antoine Julien a, Alexander Schmeding b, Gereon Quick c Phone: a 73 59 77 82, b 40 53 99
Lecture 5 Rational functions and partial fraction expansion
S. Boyd EE102 Lecture 5 Rational functions and partial fraction expansion (review of) polynomials rational functions pole-zero plots partial fraction expansion repeated poles nonproper rational functions
Linearly Independent Sets and Linearly Dependent Sets
These notes closely follow the presentation of the material given in David C. Lay s textbook Linear Algebra and its Applications (3rd edition). These notes are intended primarily for in-class presentation
Chapter 4. Polynomial and Rational Functions. 4.1 Polynomial Functions and Their Graphs
Chapter 4. Polynomial and Rational Functions 4.1 Polynomial Functions and Their Graphs A polynomial function of degree n is a function of the form P = a n n + a n 1 n 1 + + a 2 2 + a 1 + a 0 Where a s
Algebra. Exponents. Absolute Value. Simplify each of the following as much as possible. 2x y x + y y. xxx 3. x x x xx x. 1. Evaluate 5 and 123
Algebra Eponents Simplify each of the following as much as possible. 1 4 9 4 y + y y. 1 5. 1 5 4. y + y 4 5 6 5. + 1 4 9 10 1 7 9 0 Absolute Value Evaluate 5 and 1. Eliminate the absolute value bars from
DIFFERENTIABILITY OF COMPLEX FUNCTIONS. Contents
DIFFERENTIABILITY OF COMPLEX FUNCTIONS Contents 1. Limit definition of a derivative 1 2. Holomorphic functions, the Cauchy-Riemann equations 3 3. Differentiability of real functions 5 4. A sufficient condition
MATH 10550, EXAM 2 SOLUTIONS. x 2 + 2xy y 2 + x = 2
MATH 10550, EXAM SOLUTIONS (1) Find an equation for the tangent line to at the point (1, ). + y y + = Solution: The equation of a line requires a point and a slope. The problem gives us the point so we
Linear Programming Problems
Linear Programming Problems Linear programming problems come up in many applications. In a linear programming problem, we have a function, called the objective function, which depends linearly on a number
1 Homework 1. [p 0 q i+j +... + p i 1 q j+1 ] + [p i q j ] + [p i+1 q j 1 +... + p i+j q 0 ]
1 Homework 1 (1) Prove the ideal (3,x) is a maximal ideal in Z[x]. SOLUTION: Suppose we expand this ideal by including another generator polynomial, P / (3, x). Write P = n + x Q with n an integer not
Applications of Second-Order Differential Equations
Applications of Second-Order Differential Equations Second-order linear differential equations have a variety of applications in science and engineering. In this section we explore two of them: the vibration
What are the place values to the left of the decimal point and their associated powers of ten?
The verbal answers to all of the following questions should be memorized before completion of algebra. Answers that are not memorized will hinder your ability to succeed in geometry and algebra. (Everything
minimal polyonomial Example
Minimal Polynomials Definition Let α be an element in GF(p e ). We call the monic polynomial of smallest degree which has coefficients in GF(p) and α as a root, the minimal polyonomial of α. Example: We
Week 13 Trigonometric Form of Complex Numbers
Week Trigonometric Form of Complex Numbers Overview In this week of the course, which is the last week if you are not going to take calculus, we will look at how Trigonometry can sometimes help in working
CHAPTER 3. Methods of Proofs. 1. Logical Arguments and Formal Proofs
CHAPTER 3 Methods of Proofs 1. Logical Arguments and Formal Proofs 1.1. Basic Terminology. An axiom is a statement that is given to be true. A rule of inference is a logical rule that is used to deduce
2.5 ZEROS OF POLYNOMIAL FUNCTIONS. Copyright Cengage Learning. All rights reserved.
2.5 ZEROS OF POLYNOMIAL FUNCTIONS Copyright Cengage Learning. All rights reserved. What You Should Learn Use the Fundamental Theorem of Algebra to determine the number of zeros of polynomial functions.
Core Maths C1. Revision Notes
Core Maths C Revision Notes November 0 Core Maths C Algebra... Indices... Rules of indices... Surds... 4 Simplifying surds... 4 Rationalising the denominator... 4 Quadratic functions... 4 Completing the
Math 319 Problem Set #3 Solution 21 February 2002
Math 319 Problem Set #3 Solution 21 February 2002 1. ( 2.1, problem 15) Find integers a 1, a 2, a 3, a 4, a 5 such that every integer x satisfies at least one of the congruences x a 1 (mod 2), x a 2 (mod
C. Complex Numbers. 1. Complex arithmetic.
C. Complex Numbers. Complex arithmetic. Most people think that complex numbers arose from attempts to solve quadratic equations, but actually it was in connection with cubic equations they first appeared.
(a) Write each of p and q as a polynomial in x with coefficients in Z[y, z]. deg(p) = 7 deg(q) = 9
Homework #01, due 1/20/10 = 9.1.2, 9.1.4, 9.1.6, 9.1.8, 9.2.3 Additional problems for study: 9.1.1, 9.1.3, 9.1.5, 9.1.13, 9.2.1, 9.2.2, 9.2.4, 9.2.5, 9.2.6, 9.3.2, 9.3.3 9.1.1 (This problem was not assigned
Unit 6: Polynomials. 1 Polynomial Functions and End Behavior. 2 Polynomials and Linear Factors. 3 Dividing Polynomials
Date Period Unit 6: Polynomials DAY TOPIC 1 Polynomial Functions and End Behavior Polynomials and Linear Factors 3 Dividing Polynomials 4 Synthetic Division and the Remainder Theorem 5 Solving Polynomial
Homogeneous systems of algebraic equations. A homogeneous (ho-mo-geen -ius) system of linear algebraic equations is one in which
Homogeneous systems of algebraic equations A homogeneous (ho-mo-geen -ius) system of linear algebraic equations is one in which all the numbers on the right hand side are equal to : a x + + a n x n = a
Math 22B, Homework #8 1. y 5y + 6y = 2e t
Math 22B, Homework #8 3.7 Problem # We find a particular olution of the ODE y 5y + 6y 2e t uing the method of variation of parameter and then verify the olution uing the method of undetermined coefficient.
Section 4.4 Inner Product Spaces
Section 4.4 Inner Product Spaces In our discussion of vector spaces the specific nature of F as a field, other than the fact that it is a field, has played virtually no role. In this section we no longer
Partial Fractions. (x 1)(x 2 + 1)
Partial Fractions Adding rational functions involves finding a common denominator, rewriting each fraction so that it has that denominator, then adding. For example, 3x x 1 3x(x 1) (x + 1)(x 1) + 1(x +
MATH 10034 Fundamental Mathematics IV
MATH 0034 Fundamental Mathematics IV http://www.math.kent.edu/ebooks/0034/funmath4.pdf Department of Mathematical Sciences Kent State University January 2, 2009 ii Contents To the Instructor v Polynomials.
Partial Fractions: Undetermined Coefficients
1. Introduction Partial Fractions: Undetermined Coefficients Not every F(s) we encounter is in the Laplace table. Partial fractions is a method for re-writing F(s) in a form suitable for the use of the
South Carolina College- and Career-Ready (SCCCR) Pre-Calculus
South Carolina College- and Career-Ready (SCCCR) Pre-Calculus Key Concepts Arithmetic with Polynomials and Rational Expressions PC.AAPR.2 PC.AAPR.3 PC.AAPR.4 PC.AAPR.5 PC.AAPR.6 PC.AAPR.7 Standards Know
36 CHAPTER 1. LIMITS AND CONTINUITY. Figure 1.17: At which points is f not continuous?
36 CHAPTER 1. LIMITS AND CONTINUITY 1.3 Continuity Before Calculus became clearly de ned, continuity meant that one could draw the graph of a function without having to lift the pen and pencil. While this
Second Order Linear Partial Differential Equations. Part I
Second Order Linear Partial Differential Equations Part I Second linear partial differential equations; Separation of Variables; - point boundary value problems; Eigenvalues and Eigenfunctions Introduction
MATH2210 Notebook 1 Fall Semester 2016/2017. 1 MATH2210 Notebook 1 3. 1.1 Solving Systems of Linear Equations... 3
MATH0 Notebook Fall Semester 06/07 prepared by Professor Jenny Baglivo c Copyright 009 07 by Jenny A. Baglivo. All Rights Reserved. Contents MATH0 Notebook 3. Solving Systems of Linear Equations........................
November 16, 2015. Interpolation, Extrapolation & Polynomial Approximation
Interpolation, Extrapolation & Polynomial Approximation November 16, 2015 Introduction In many cases we know the values of a function f (x) at a set of points x 1, x 2,..., x N, but we don t have the analytic
The degree of a polynomial function is equal to the highest exponent found on the independent variables.
DETAILED SOLUTIONS AND CONCEPTS - POLYNOMIAL FUNCTIONS Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to [email protected]. Thank you! PLEASE NOTE
Copyrighted Material. Chapter 1 DEGREE OF A CURVE
Chapter 1 DEGREE OF A CURVE Road Map The idea of degree is a fundamental concept, which will take us several chapters to explore in depth. We begin by explaining what an algebraic curve is, and offer two
Math 2280 - Assignment 6
Math 2280 - Assignment 6 Dylan Zwick Spring 2014 Section 3.8-1, 3, 5, 8, 13 Section 4.1-1, 2, 13, 15, 22 Section 4.2-1, 10, 19, 28 1 Section 3.8 - Endpoint Problems and Eigenvalues 3.8.1 For the eigenvalue
