# AC CIRCUITS - CAPACITORS AND INDUCTORS

Size: px
Start display at page:

Transcription

1 EXPRIMENT#8 AC CIRCUITS - CAPACITORS AND INDUCTORS NOTE: Two weeks are allocated for this experiment. Before performing this experiment, review the Proper Oscilloscope Use section of Experiment #7. Objective : To become familiar with the current and voltage relationship of capacitors and inductors and to learn how to use the oscilloscope to measure phase differences and differential voltages. * Equipment list : 1. MB Board and components 2. Oscilloscope 3. Function Generator 4. Resistor 100Ω, 1kΩ 5. Capacitor 0.01µF 6. Inductor 1mH * Introduction: In the last experiment you became familiar with instrumentation used to generate and measure AC signals and examined the frequency response of a multimeter. In this experiment you will examine the current voltage relationship for capacitors and inductors using sinusoidal excitation. You will examine not only the magnitude of the voltages in the circuits but also the relationships between the phases of different circuit voltages and current. Part I. AC Circuit Components Capacitors and Inductors A. Capacitor Impedance In this section you will examine the relationship between the current and voltage for a capacitor using sinusoidal waveforms. Capacitors store electrostatic energy, and the current through them is determined by the rate of change of the voltage. If the voltage across the capacitor is sinusoidal then so is its current, but they will have different phases. The relationship between the peak amplitude of the current and voltage sinusoids is determined by the magnitude of the capacitor s AC impedance which is a function of frequency. Both the amplitude and phase relationship between a capacitor s current and voltage are expressed in the capacitor s complex impedance which is defined as: Vˆ( ω) Z ˆ( ω) = Iˆ( ω) Page 1 of 7 11/07/14

2 where ω = 2πf is the angular frequency. The voltage across the capacitor can be viewed directly with an oscilloscope. However, to measure the current through the capacitor, we must use either special current probes or another technique since oscilloscopes typically only measure voltage. For this experiment, we will put a known resistor in series with the capacitor as shown below in Figure 1. Since the series resistor and capacitor must have the same current, and the resistor current is directly proportional to the resistor voltage, we can determine the capacitor current by observing the resistor voltage. A series resistor used for measuring current is sometimes referred to as a current viewing resistor. We ve chosen a resistor that is a power of 10 to simplify converting voltage to current. One additional complication is that we cannot connect a single oscilloscope probe across the resistor in order to measure its voltage because as seen in Figure 1 neither end of the resistor is connected to ground (the negative terminal of the voltage source). Connecting the ground lead of the oscilloscope probe to either end of the resistor would short that point to ground thus shorting out either the function generator or the capacitor. Instead, we will measure the voltage across the capacitor, V C, and the voltage across the source, Vin, since both of these elements are connected to ground. Then we will use the ability of the oscilloscope to display a difference (i.e. subtraction) signal, Vin- V C, to show the voltage across the resistor. 1. Construct the circuit shown in the Figure 1 using R=1kΩ and C=0.01µF. Drive the circuit with a sinusoidal signal of amplitude 10V peak-to-peak from the function generator. Connect channel 1 of the oscilloscope across the source voltage, Vin, and channel 2 of the oscilloscope across the capacitor, making sure to connect both oscilloscope probe grounds to the common node between the function generator and capacitor. (This should also be the ground terminal of the function generator.) Make sure that both channels are set to the same vertical Volts/Div setting. Throughout this experiment, you may adjust the vertical Volts/Div settings, but both channels must have the same setting or else the channel subtraction will give you erroneous readings. You should also adjust the vertical position of both channels so that the zero level indicated by a small ground symbol at the right edge of the screen is exactly in the middle. Do this for both channels. Turn on the display for channel 1 and channel 2. Now, press the +/- key between the two channels and select 1-2. Page 2 of 7 11/07/14

3 This will show the difference in the voltage between the two channels, i.e. the voltage across the resistor. There will now be three sinusoidal traces on the screen. One of the difficulties in this experiment is keeping track of which trace corresponds to which voltage. Be sure that channel 1 is connected across the function generator. You should also make sure that channel 1 is selected as the source for triggering. To reduce confusion over the traces, it is best to disable the display of channel 1 unless you are using it to check the amplitude of the signal from the function generator. To disable the display of channel 1, press the 1 button next to the channel 1 controls and then use the soft keys to toggle the display of channel 1 to off. Even though channel 1 is not displayed, the difference between channel 2 and channel 1 (i.e. 2-1) will still be correctly displayed as long as both channels are set to the same vertical Volts/Div setting. You may still become confused even with only two traces displayed. To determine which trace is the capacitor voltage, you may squeeze the orange button on the channel 2 oscilloscope probe connected to the capacitor. The oscilloscope probe will be disconnected (open circuited) while the orange button is depressed. Thus momentarily pressing the channel 2 probe button will make the capacitor voltage trace drop to zero temporarily, allowing you to identify it. IMPORTANT LAST WARNING: IF YOU HAVE NOT ALREADY CAREFULLY READ EVERY WORD ABOVE AND REREAD THE SECTION ON PROPER OSCILLOSCOPE USE YOU ARE LIKELY TO MAKE MISTAKES THAT WILL WASTE YOUR TIME. 2. Vary the frequency of the signal according to the table shown below, then measure the peak voltage across the capacitor, V C, and the resistor, V R, using a method of your choice (e.g cursors, built-in measurements, etc.). Record the values of the peak voltages in the lefthand columns of the table. Frequency (khz) (30 points) V in (V ) Vc(V) V R (V) I =V R /1kΩ Z = Vc / I (Ω) Δt V-I (s) Phase of VC phase of I 3. Now calculate the current through the capacitor (which is the same as the current through the resistor) at each frequency and enter it in the appropriate column above. Finally, calculate the magnitude of the capacitor s impedance, Z, by dividing the peak amplitude of the capacitor voltage by the peak amplitude of the capacitor current, and enter this value in the appropriate column. Page 3 of 7 11/07/14

4 4. Graph Z vs. frequency on both a linear-linear plot and log-log plot and attach the plot to your report. (10 points) 5. What function do you think fits this data? Write an equation for Z as a function of frequency. Hopefully your equation will include the value of the capacitor, the frequency, and some constants. (5 points) Z should be a complex number, i.e. a phasor. So far, you have determined the magnitude of Z, but still need to determine the phase of Z. To do this, you will need to look at the phase difference between VC and I in the circuit above. Set the source frequency to 100 khz. Measure the length of one period of VC by positioning the time cursors onto the zero crossings of VC one cycle apart. What is the period of the signal? Does this agree with the value you would expect from the frequency setting? (1 points) Now you need to measure the phase difference between the capacitor voltage, V C, and the capacitor current, I. Place cursor t1 on the zero crossing of V C where V C is increasing with time. Place cursor t2 on the zero crossing of I where I is increasing with time. Remember that V R is proportional to I, so use the V R waveform to determine the zero crossing of I. Choose the zero crossing that is closest to t1 but make sure that it is a zero crossing where I is increasing. Record the time difference in the Δt V-I the time column of the table above. Be sure to include the appropriate sign; if t1 occurs before t2, then the voltage leads the current and Δt V-I is positive. If t1 occurs after t2, then the voltage lags the current and and Δt V-I is negative. Finally, divide Δt V-I by the period and multiply by 2π radians to calculate the phase difference. Enter the phase difference in the final column. Draw a sketch below of the VC and I waveforms showing the phase difference. (1 point) Page 4 of 7 11/07/14

5 8. Repeat steps 6 and 7 for the other frequencies in the table. Be sure and divide by the correct period to calculate the phase difference. You may be tempted to change one of the channel s vertical scales to increase the signal for a more accurate measurement of the zero crossings. Remember that both channels must be on the same vertical scales (Volts/Div) in order for channel subtraction to work correctly. (A feature of our oscilloscopes.) Of course, you may change the horizontal time base scale (Secs/Div) to get more accurate readings as horizontal scale setting changes all channels together. 9. What happens to the phase difference as a function of frequency? Does this agree with the expression you ve learned in class for the complex impedance of a capacitor? Note that the phases you measured at the maximum and minimum frequencies may not be accurate because of the small amplitude of the voltage across one of the components causing measurement errors (3 points) B. Inductor Impedance You will now repeat the same type of measurement you did above for an inductor. Inductors store magnetic energy, and the voltage across them is determined by the rate of change of the current. Again, both voltage and current will be sinusoidal in this experiment, but they will have different phases. The ratio of the voltage magnitude to current magnitude as well as the phase relationship will again determine the inductor s complex impedance. Please follow the same precautions mentioned above when connecting oscilloscope probes to the circuit shown in Figure 3. Connect channel 1 across Vin and channel 2 across the inductor. 1. Construct the circuit shown in the Figure 3 using R=100Ω and L=1mH. Drive the circuit with a signal of amplitude 10V peak-to-peak from the function generator. Connect channel 1 of the oscilloscope across Vin and channel 2 of the oscilloscope across the inductor, making sure to connect both oscilloscope probe grounds to the common node between these two elements. Turn on the difference between the two channels to display the voltage across the resistor. 2. Vary the frequency of the signal according to the table shown below, then measure the peak voltage across the inductor, V L, and the resistor, V R. Record the values of the peak voltages in the left-hand columns of the table. Page 5 of 7 11/07/14

6 Frequency (khz) 0.1 V in (V ) V L (V) V R (V) I =V R /100Ω Z = V L / I (Ω) Δt V-I (s) Phase of VL phase of I (30 points) 3. Calculate the current through the inductor (and thus the resistor) as well as the magnitude of the inductor s impedance Z at each frequency and enter these data in the appropriate columns above. Graph Z vs. frequency on both a linear-linear plot and log-log plot and attach the plots to your report. (10 points) 4. What function do you think fits this data? Write an equation for Z as a function of frequency. Hopefully your equation will include the value of the inductor and some constants. (5 points) Perform phase difference measurements for each frequency as described above in the section on capacitors. Remember, if the positive-going zero-crossing of V L occurs before the positivegoing zero-crossing of I, then the voltage leads the current and Δt V-I is positive; otherwise, the opposite is true. Draw a sketch below of the V L and I waveforms showing the phase difference at f=10khz. (1 point) Page 6 of 7 11/07/14

7 6. What happens to the phase difference as a function of frequency? Does this agree with the expression you ve learned in class for the complex impedance of an inductor? Again, remember that the phases calculated at the minimum and maximum frequencies may not be accurate due to measurement errors. (4 points) Page 7 of 7 11/07/14

### ε: Voltage output of Signal Generator (also called the Source voltage or Applied

Experiment #10: LR & RC Circuits Frequency Response EQUIPMENT NEEDED Science Workshop Interface Power Amplifier (2) Voltage Sensor graph paper (optional) (3) Patch Cords Decade resistor, capacitor, and

### Electrical Resonance

Electrical Resonance (R-L-C series circuit) APPARATUS 1. R-L-C Circuit board 2. Signal generator 3. Oscilloscope Tektronix TDS1002 with two sets of leads (see Introduction to the Oscilloscope ) INTRODUCTION

### EXPERIMENT NUMBER 8 CAPACITOR CURRENT-VOLTAGE RELATIONSHIP

1 EXPERIMENT NUMBER 8 CAPACITOR CURRENT-VOLTAGE RELATIONSHIP Purpose: To demonstrate the relationship between the voltage and current of a capacitor. Theory: A capacitor is a linear circuit element whose

### Experiment #11: LRC Circuit (Power Amplifier, Voltage Sensor)

Experiment #11: LRC Circuit (Power Amplifier, Voltage Sensor) Concept: circuits Time: 30 m SW Interface: 750 Windows file: RLC.SWS EQUIPMENT NEEDED Science Workshop Interface Power Amplifier (2) Voltage

### RLC Series Resonance

RLC Series Resonance 11EM Object: The purpose of this laboratory activity is to study resonance in a resistor-inductor-capacitor (RLC) circuit by examining the current through the circuit as a function

### EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 4 - ALTERNATING CURRENT

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 4 - ALTERNATING CURRENT 4 Understand single-phase alternating current (ac) theory Single phase AC

### EXPERIMENT NUMBER 5 BASIC OSCILLOSCOPE OPERATIONS

1 EXPERIMENT NUMBER 5 BASIC OSCILLOSCOPE OPERATIONS The oscilloscope is the most versatile and most important tool in this lab and is probably the best tool an electrical engineer uses. This outline guides

### EE 1202 Experiment #4 Capacitors, Inductors, and Transient Circuits

EE 1202 Experiment #4 Capacitors, Inductors, and Transient Circuits 1. Introduction and Goal: Exploring transient behavior due to inductors and capacitors in DC circuits; gaining experience with lab instruments.

### Beginners Guide to the TDS 210 and TDS 220 Oscilloscopes

Beginners Guide to the TDS 210 and TDS 220 Oscilloscopes By David S. Lay P. Eng Foreword This guide contains information to help you become familiar with using digital oscilloscopes. You should work through

### CIRCUITS LABORATORY EXPERIMENT 3. AC Circuit Analysis

CIRCUITS LABORATORY EXPERIMENT 3 AC Circuit Analysis 3.1 Introduction The steady-state behavior of circuits energized by sinusoidal sources is an important area of study for several reasons. First, the

### MATERIALS. Multisim screen shots sent to TA.

Page 1/8 Revision 0 9-Jun-10 OBJECTIVES Learn new Multisim components and instruments. Conduct a Multisim transient analysis. Gain proficiency in the function generator and oscilloscope. MATERIALS Multisim

### Using an Oscilloscope

Using an Oscilloscope The oscilloscope is used to measure a voltage that changes in time. It has two probes, like a voltmeter. You put these probes on either side of the thing that you want to measure

### RC & RL Transient Response

EE 2006 University of Minnesota Duluth ab 8 1. Introduction R & R Transient Response The student will analyze series R and R circuits. A step input will excite these respective circuits, producing a transient

### Lab 3 Rectifier Circuits

ECET 242 Electronic Circuits Lab 3 Rectifier Circuits Page 1 of 5 Name: Objective: Students successfully completing this lab exercise will accomplish the following objectives: 1. Learn how to construct

### Lab #9: AC Steady State Analysis

Theory & Introduction Lab #9: AC Steady State Analysis Goals for Lab #9 The main goal for lab 9 is to make the students familar with AC steady state analysis, db scale and the NI ELVIS frequency analyzer.

### SERIES-PARALLEL DC CIRCUITS

Name: Date: Course and Section: Instructor: EXPERIMENT 1 SERIES-PARALLEL DC CIRCUITS OBJECTIVES 1. Test the theoretical analysis of series-parallel networks through direct measurements. 2. Improve skills

### ANADOLU UNIVERSITY DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

ANADOLU UNIVERSITY DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EEM 102 INTRODUCTION TO ELECTRICAL ENGINEERING EXPERIMENT 9: DIODES AND DC POWER SUPPLY OBJECTIVE: To observe how a diode functions

### Using the Impedance Method

Using the Impedance Method The impedance method allows us to completely eliminate the differential equation approach for the determination of the response of circuits. In fact the impedance method even

### Measuring Impedance and Frequency Response of Guitar Pickups

Measuring Impedance and Frequency Response of Guitar Pickups Peter D. Hiscocks Syscomp Electronic Design Limited phiscock@ee.ryerson.ca www.syscompdesign.com April 30, 2011 Introduction The CircuitGear

10. A ircuits* Objective: To learn how to analyze current and voltage relationships in alternating current (a.c.) circuits. You will use the method of phasors, or the vector addition of rotating vectors

### Inductors in AC Circuits

Inductors in AC Circuits Name Section Resistors, inductors, and capacitors all have the effect of modifying the size of the current in an AC circuit and the time at which the current reaches its maximum

### Frequency Response of Filters

School of Engineering Department of Electrical and Computer Engineering 332:224 Principles of Electrical Engineering II Laboratory Experiment 2 Frequency Response of Filters 1 Introduction Objectives To

### Step Response of RC Circuits

Step Response of RC Circuits 1. OBJECTIVES...2 2. REFERENCE...2 3. CIRCUITS...2 4. COMPONENTS AND SPECIFICATIONS...3 QUANTITY...3 DESCRIPTION...3 COMMENTS...3 5. DISCUSSION...3 5.1 SOURCE RESISTANCE...3

### Frequency response: Resonance, Bandwidth, Q factor

Frequency response: esonance, Bandwidth, Q factor esonance. Let s continue the exploration of the frequency response of circuits by investigating the series circuit shown on Figure. C + V - Figure The

### Q1. The graph below shows how a sinusoidal alternating voltage varies with time when connected across a resistor, R.

Q1. The graph below shows how a sinusoidal alternating voltage varies with time when connected across a resistor, R. (a) (i) State the peak-to-peak voltage. peak-to-peak voltage...v (1) (ii) State the

### Lab E1: Introduction to Circuits

E1.1 Lab E1: Introduction to Circuits The purpose of the this lab is to introduce you to some basic instrumentation used in electrical circuits. You will learn to use a DC power supply, a digital multimeter

### AC Measurements Using the Oscilloscope and Multimeter by Mr. David Fritz

AC Measurements Using the Oscilloscope and Multimeter by Mr. David Fritz 1 Sine wave with a DC offset f = frequency in Hz A = DC offset voltage (average voltage) B = Sine amplitude Vpp = 2B Vmax = A +

### Diode Circuits. Operating in the Reverse Breakdown region. (Zener Diode)

Diode Circuits Operating in the Reverse Breakdown region. (Zener Diode) In may applications, operation in the reverse breakdown region is highly desirable. The reverse breakdown voltage is relatively insensitive

### Experiment 2 Diode Applications: Rectifiers

ECE 3550 - Practicum Fall 2007 Experiment 2 Diode Applications: Rectifiers Objectives 1. To investigate the characteristics of half-wave and full-wave rectifier circuits. 2. To recognize the usefulness

### RC Circuits and The Oscilloscope Physics Lab X

Objective RC Circuits and The Oscilloscope Physics Lab X In this series of experiments, the time constant of an RC circuit will be measured experimentally and compared with the theoretical expression for

### Oscilloscope, Function Generator, and Voltage Division

1. Introduction Oscilloscope, Function Generator, and Voltage Division In this lab the student will learn to use the oscilloscope and function generator. The student will also verify the concept of voltage

### EE 242 EXPERIMENT 5: COMPUTER SIMULATION OF THREE-PHASE CIRCUITS USING PSPICE SCHEMATICS 1

EE 242 EXPERIMENT 5: COMPUTER SIMULATION OF THREE-PHASE CIRCUITS USING PSPICE SCHEMATICS 1 Objective: To build, simulate, and analyze three-phase circuits using OrCAD Capture Pspice Schematics under balanced

### See Horenstein 4.3 and 4.4

EE 462: Laboratory # 4 DC Power Supply Circuits Using Diodes by Drs. A.V. Radun and K.D. Donohue (2/14/07) Department of Electrical and Computer Engineering University of Kentucky Lexington, KY 40506 Updated

### Laboratory 4: Feedback and Compensation

Laboratory 4: Feedback and Compensation To be performed during Week 9 (Oct. 20-24) and Week 10 (Oct. 27-31) Due Week 11 (Nov. 3-7) 1 Pre-Lab This Pre-Lab should be completed before attending your regular

### Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science. 6.002 Electronic Circuits Spring 2007

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.002 Electronic Circuits Spring 2007 Lab 4: Audio Playback System Introduction In this lab, you will construct,

### ANALYTICAL METHODS FOR ENGINEERS

UNIT 1: Unit code: QCF Level: 4 Credit value: 15 ANALYTICAL METHODS FOR ENGINEERS A/601/1401 OUTCOME - TRIGONOMETRIC METHODS TUTORIAL 1 SINUSOIDAL FUNCTION Be able to analyse and model engineering situations

### = V peak 2 = 0.707V peak

BASIC ELECTRONICS - RECTIFICATION AND FILTERING PURPOSE Suppose that you wanted to build a simple DC electronic power supply, which operated off of an AC input (e.g., something you might plug into a standard

### 1. Oscilloscope is basically a graph-displaying device-it draws a graph of an electrical signal.

CHAPTER 3: OSCILLOSCOPE AND SIGNAL GENERATOR 3.1 Introduction to oscilloscope 1. Oscilloscope is basically a graph-displaying device-it draws a graph of an electrical signal. 2. The graph show signal change

### Laboratory Manual for AC Electrical Circuits

AC Electrical Circuits Laboratory Manual James M. Fiore 2 Laboratory Manual for AC Electrical Circuits Laboratory Manual for AC Electrical Circuits by James M. Fiore Version 1.3.1, 01 March 2016 Laboratory

### Chapter 12: Three Phase Circuits

Chapter 12: Three Phase Circuits 12.1 What Is a Three Phase Circuit? 12.2 Balance Three Phase Voltages 12.3 Balance Three Phase Y to Y Connection 12.4 Other Balance Three Phase Connections 12.5 Power in

### The Time Constant of an RC Circuit

The Time Constant of an RC Circuit 1 Objectives 1. To determine the time constant of an RC Circuit, and 2. To determine the capacitance of an unknown capacitor. 2 Introduction What the heck is a capacitor?

### Lesson 3 DIRECT AND ALTERNATING CURRENTS. Task. The skills and knowledge taught in this lesson are common to all missile repairer tasks.

Lesson 3 DIRECT AND ALTERNATING CURRENTS Task. The skills and knowledge taught in this lesson are common to all missile repairer tasks. Objectives. When you have completed this lesson, you should be able

### 7.1 POWER IN AC CIRCUITS

C H A P T E R 7 AC POWER he aim of this chapter is to introduce the student to simple AC power calculations and to the generation and distribution of electric power. The chapter builds on the material

### PHYSICS 360 - LAB #2 Passive Low-pass and High-pass Filter Circuits and Integrator and Differentiator Circuits

PHYSICS 360 - LAB #2 Passie Low-pass and High-pass Filter Circuits and Integrator and Differentiator Circuits Objectie: Study the behaior of low-pass and high-pass filters. Study the differentiator and

### EE362L, Power Electronics Triac Light Dimmer

1 EE362L, Power Electronics Triac Light Dimmer Rochelle Stortz and Brian Taraba, Team 277 2/2/05 Abstract - This document presents the construction of a light dimmer circuit that utilizes the current-regulating

### Operational Amplifier - IC 741

Operational Amplifier - IC 741 Tabish December 2005 Aim: To study the working of an 741 operational amplifier by conducting the following experiments: (a) Input bias current measurement (b) Input offset

### Circuits with inductors and alternating currents. Chapter 20 #45, 46, 47, 49

Circuits with inductors and alternating currents Chapter 20 #45, 46, 47, 49 RL circuits Ch. 20 (last section) Symbol for inductor looks like a spring. An inductor is a circuit element that has a large

### Fundamentals of Signature Analysis

Fundamentals of Signature Analysis An In-depth Overview of Power-off Testing Using Analog Signature Analysis www.huntron.com 1 www.huntron.com 2 Table of Contents SECTION 1. INTRODUCTION... 7 PURPOSE...

### ECEN 1400, Introduction to Analog and Digital Electronics

ECEN 1400, Introduction to Analog and Digital Electronics Lab 4: Power supply 1 INTRODUCTION This lab will span two lab periods. In this lab, you will create the power supply that transforms the AC wall

### BASIC ELECTRONICS AC CIRCUIT ANALYSIS. December 2011

AM 5-202 BASIC ELECTRONICS AC CIRCUIT ANALYSIS December 2011 DISTRIBUTION RESTRICTION: Approved for Pubic Release. Distribution is unlimited. DEPARTMENT OF THE ARMY MILITARY AUXILIARY RADIO SYSTEM FORT

### Unit2: Resistor/Capacitor-Filters

Unit2: Resistor/Capacitor-Filters Physics335 Student October 3, 27 Physics 335-Section Professor J. Hobbs Partner: Physics335 Student2 Abstract Basic RC-filters were constructed and properties such as

### Chapter 7 Direct-Current Circuits

Chapter 7 Direct-Current Circuits 7. Introduction...7-7. Electromotive Force...7-3 7.3 Resistors in Series and in Parallel...7-5 7.4 Kirchhoff s Circuit Rules...7-7 7.5 Voltage-Current Measurements...7-9

### Basic Op Amp Circuits

Basic Op Amp ircuits Manuel Toledo INEL 5205 Instrumentation August 3, 2008 Introduction The operational amplifier (op amp or OA for short) is perhaps the most important building block for the design of

### Objectives The purpose of this lab is build and analyze Differential amplifiers based on NPN transistors (or NMOS transistors).

1 Lab 03: Differential Amplifiers (BJT) (20 points) NOTE: 1) Please use the basic current mirror from Lab01 for the second part of the lab (Fig. 3). 2) You can use the same chip as the basic current mirror;

### DIODE CIRCUITS LABORATORY. Fig. 8.1a Fig 8.1b

DIODE CIRCUITS LABORATORY A solid state diode consists of a junction of either dissimilar semiconductors (pn junction diode) or a metal and a semiconductor (Schottky barrier diode). Regardless of the type,

### Output Ripple and Noise Measurement Methods for Ericsson Power Modules

Output Ripple and Noise Measurement Methods for Ericsson Power Modules Design Note 022 Ericsson Power Modules Ripple and Noise Abstract There is no industry-wide standard for measuring output ripple and

### Electronic WorkBench tutorial

Electronic WorkBench tutorial Introduction Electronic WorkBench (EWB) is a simulation package for electronic circuits. It allows you to design and analyze circuits without using breadboards, real components

### Positive Feedback and Oscillators

Physics 3330 Experiment #6 Fall 1999 Positive Feedback and Oscillators Purpose In this experiment we will study how spontaneous oscillations may be caused by positive feedback. You will construct an active

### Analog Electronics I. Laboratory

Analog Electronics I Laboratory Exercise 1 DC Power Supply Circuits Aim of the exercise The aim of this laboratory exercise is to become familiar with rectifying circuits and voltage stabilization techniques

### LAB 7 MOSFET CHARACTERISTICS AND APPLICATIONS

LAB 7 MOSFET CHARACTERISTICS AND APPLICATIONS Objective In this experiment you will study the i-v characteristics of an MOS transistor. You will use the MOSFET as a variable resistor and as a switch. BACKGROUND

### Lab 1: The Digital Oscilloscope

PHYSICS 220 Physical Electronics Lab 1: The Digital Oscilloscope Object: To become familiar with the oscilloscope, a ubiquitous instrument for observing and measuring electronic signals. Apparatus: Tektronix

### Bode Diagrams of Transfer Functions and Impedances ECEN 2260 Supplementary Notes R. W. Erickson

Bode Diagrams of Transfer Functions and Impedances ECEN 2260 Supplementary Notes. W. Erickson In the design of a signal processing network, control system, or other analog system, it is usually necessary

### Use and Application of Output Limiting Amplifiers (HFA1115, HFA1130, HFA1135)

Use and Application of Output Limiting Amplifiers (HFA111, HFA110, HFA11) Application Note November 1996 AN96 Introduction Amplifiers with internal voltage clamps, also known as limiting amplifiers, have

### Chapter 22 Further Electronics

hapter 22 Further Electronics washing machine has a delay on the door opening after a cycle of washing. Part of this circuit is shown below. s the cycle ends, switch S closes. t this stage the capacitor

### CIRCUITS LABORATORY EXPERIMENT 2

CIRCUITS LABORATORY EXPERIMENT 2 The Oscilloscope and Transient Analysis 2.1 Introduction In the first experiment, the utility of the DMM to measure many simple DC quantities was demonstrated. However,

### CHAPTER 6 Frequency Response, Bode Plots, and Resonance

ELECTRICAL CHAPTER 6 Frequency Response, Bode Plots, and Resonance 1. State the fundamental concepts of Fourier analysis. 2. Determine the output of a filter for a given input consisting of sinusoidal

### Lab 5 Operational Amplifiers

Lab 5 Operational Amplifiers By: Gary A. Ybarra Christopher E. Cramer Duke University Department of Electrical and Computer Engineering Durham, NC. Purpose The purpose of this lab is to examine the properties

### 30. Bode Plots. Introduction

0. Bode Plots Introduction Each of the circuits in this problem set is represented by a magnitude Bode plot. The network function provides a connection between the Bode plot and the circuit. To solve these

### Experiment 8: Undriven & Driven RLC Circuits

Experiment 8: Undriven & Driven RLC Circuits Answer these questions on a separate sheet of paper and turn them in before the lab 1. RLC Circuits Consider the circuit at left, consisting of an AC function

### Lecture 24. Inductance and Switching Power Supplies (how your solar charger voltage converter works)

Lecture 24 Inductance and Switching Power Supplies (how your solar charger voltage converter works) Copyright 2014 by Mark Horowitz 1 Roadmap: How Does This Work? 2 Processor Board 3 More Detailed Roadmap

### Homework Assignment 03

Question 1 (2 points each unless noted otherwise) Homework Assignment 03 1. A 9-V dc power supply generates 10 W in a resistor. What peak-to-peak amplitude should an ac source have to generate the same

### CHAPTER 11: Flip Flops

CHAPTER 11: Flip Flops In this chapter, you will be building the part of the circuit that controls the command sequencing. The required circuit must operate the counter and the memory chip. When the teach

### LM 358 Op Amp. If you have small signals and need a more useful reading we could amplify it using the op amp, this is commonly used in sensors.

LM 358 Op Amp S k i l l L e v e l : I n t e r m e d i a t e OVERVIEW The LM 358 is a duel single supply operational amplifier. As it is a single supply it eliminates the need for a duel power supply, thus

### ENGINEERING COMMITTEE Interface Practices Subcommittee AMERICAN NATIONAL STANDARD ANSI/SCTE 46 2007. Test Method for AC to DC Power Supplies

ENGINEERING COMMITTEE Interface Practices Subcommittee AMERICAN NATIONAL STANDARD ANSI/SCTE 46 2007 Test Method for AC to DC Power Supplies NOTICE The Society of Cable Telecommunications Engineers (SCTE)

### LABORATORY 2 THE DIFFERENTIAL AMPLIFIER

LABORATORY 2 THE DIFFERENTIAL AMPLIFIER OBJECTIVES 1. To understand how to amplify weak (small) signals in the presence of noise. 1. To understand how a differential amplifier rejects noise and common

### Lab 3 - DC Circuits and Ohm s Law

Lab 3 DC Circuits and Ohm s Law L3-1 Name Date Partners Lab 3 - DC Circuits and Ohm s Law OBJECTIES To learn to apply the concept of potential difference (voltage) to explain the action of a battery in

### Experiment1: Introduction to laboratory equipment and basic components.

Experiment1: Introduction to laboratory equipment and basic components. 1 OBJECTIVES. This experiment will provide exposure to the various test equipment to be used in subsequent experiments. A primary

### Years after 2000. US Student to Teacher Ratio 0 16.048 1 15.893 2 15.900 3 15.900 4 15.800 5 15.657 6 15.540

To complete this technology assignment, you should already have created a scatter plot for your data on your calculator and/or in Excel. You could do this with any two columns of data, but for demonstration

### Chapter 11. Inductors ISU EE. C.Y. Lee

Chapter 11 Inductors Objectives Describe the basic structure and characteristics of an inductor Discuss various types of inductors Analyze series inductors Analyze parallel inductors Analyze inductive

### PHASOR DIAGRAMS HANDS-ON RELAY SCHOOL WSU PULLMAN, WA. RON ALEXANDER - BPA

PHASOR DIAGRAMS HANDS-ON RELAY SCHOOL WSU PULLMAN, WA. RON ALEXANDER - BPA What are phasors??? In normal practice, the phasor represents the rms maximum value of the positive half cycle of the sinusoid

### BSNL TTA Question Paper-Instruments and Measurement Specialization 2007

BSNL TTA Question Paper-Instruments and Measurement Specialization 2007 (1) Instrument is a device for determining (a) the magnitude of a quantity (b) the physics of a variable (c) either of the above

### Let s examine the response of the circuit shown on Figure 1. The form of the source voltage Vs is shown on Figure 2. R. Figure 1.

Examples of Transient and RL Circuits. The Series RLC Circuit Impulse response of Circuit. Let s examine the response of the circuit shown on Figure 1. The form of the source voltage Vs is shown on Figure.

### Basic oscilloscope operation

asic oscilloscope operation This worksheet and all related files are licensed under the Creative Commons ttribution License, version.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/.0/,

### More Op-Amp Circuits; Temperature Sensing

ECE 2A Lab #5 Lab 5 More OpAmp Circuits; Temperature Sensing Overview In this lab we will continue our exploration of opamps but this time in the context of a specific application: temperature sensing.

### Selecting IHLP Composite Inductors for Non-Isolated Converters Utilizing Vishay s Application Sheet

VISHAY DALE www.vishay.com Magnetics Selecting IHLP Composite Inductors for Non-Isolated Converters INTRODUCTION This application note will provide information to assist in the specification of IHLP composite

### Episode 126: Capacitance and the equation C =Q/V

Episode 126: Capacitance and the equation C =Q/V Having established that there is charge on each capacitor plate, the next stage is to establish the relationship between charge and potential difference

### FREQUENCY RESPONSE OF AN AUDIO AMPLIFIER

2014 Amplifier - 1 FREQUENCY RESPONSE OF AN AUDIO AMPLIFIER The objectives of this experiment are: To understand the concept of HI-FI audio equipment To generate a frequency response curve for an audio

### Pulse Width Modulation (PWM) LED Dimmer Circuit. Using a 555 Timer Chip

Pulse Width Modulation (PWM) LED Dimmer Circuit Using a 555 Timer Chip Goals of Experiment Demonstrate the operation of a simple PWM circuit that can be used to adjust the intensity of a green LED by varying

### Critical thin-film processes such as deposition and etching take place in a vacuum

WHITEPAPER INTRODUCING POWER SUPPLIES AND PLASMA Critical thin-film processes such as deposition and etching take place in a vacuum SYSTEMS chamber in the presence of a plasma. A plasma is an electrically

### AMERICAN NATIONAL STANDARD

ENGINEERING COMMITTEE Interface Practice Subcommittee AMERICAN NATIONAL STANDARD ANSI/SCTE 46 2014 Test Method for AC to DC Outdoor Power Supplies NOTICE The Society of Cable Telecommunications Engineers

### 45. The peak value of an alternating current in a 1500-W device is 5.4 A. What is the rms voltage across?

PHYS Practice Problems hapters 8- hapter 8. 45. The peak value of an alternating current in a 5-W device is 5.4 A. What is the rms voltage across? The power and current can be used to find the peak voltage,

### Op-Amp Simulation EE/CS 5720/6720. Read Chapter 5 in Johns & Martin before you begin this assignment.

Op-Amp Simulation EE/CS 5720/6720 Read Chapter 5 in Johns & Martin before you begin this assignment. This assignment will take you through the simulation and basic characterization of a simple operational

### Electronics. Basic Concepts. Yrd. Doç. Dr. Aytaç GÖREN Yrd. Doç. Dr. Levent ÇETİN

Electronics Basic Concepts Electric charge Ordinary matter is made up of atoms which have positively charged nuclei and negatively charged electrons surrounding them. Charge is quantized as the subtraction

Germanium Diode AM Radio LAB 3 3.1 Introduction In this laboratory exercise you will build a germanium diode based AM (Medium Wave) radio. Earliest radios used simple diode detector circuits. The diodes

### Chapter 3. Diodes and Applications. Introduction [5], [6]

Chapter 3 Diodes and Applications Introduction [5], [6] Diode is the most basic of semiconductor device. It should be noted that the term of diode refers to the basic p-n junction diode. All other diode

### Chapter 10. RC Circuits ISU EE. C.Y. Lee

Chapter 10 RC Circuits Objectives Describe the relationship between current and voltage in an RC circuit Determine impedance and phase angle in a series RC circuit Analyze a series RC circuit Determine

### LABORATORY 10 TIME AVERAGES, RMS VALUES AND THE BRIDGE RECTIFIER. Bridge Rectifier

LABORATORY 10 TIME AVERAGES, RMS VALUES AND THE BRIDGE RECTIFIER Full-wave Rectification: Bridge Rectifier For many electronic circuits, DC supply voltages are required but only AC voltages are available.

### Experiment: Series and Parallel Circuits

Phy203: General Physics Lab page 1 of 6 Experiment: Series and Parallel Circuits OBJECTVES MATERALS To study current flow and voltages in series and parallel circuits. To use Ohm s law to calculate equivalent