1 Solution of Homework
|
|
|
- Tyler Martin
- 9 years ago
- Views:
Transcription
1 Math 3181 Dr. Franz Rothe February 4, 2011 Name: 1 Solution of Homework 10 Problem 1.1 (Common tangents of two circles). How many common tangents do two circles have. Informally draw all different cases, with 0, 1, 2, 3, 4 common tangents. Describe how they arise. Answer. For any two different circles, there are five possibilities regarding their common tangents: (0) One circle lies inside the other. They have no common tangents. (1) One circle touches the other from inside. There is one common tangent, located at this touching point. (2) The two circles intersect in two points. They have two common tangents, which lie symmetrically to the axis connecting the two centers. (3) The two circles touch each other from outside. They have three common tangents. (4) The two circles lie outside of each other. They have four common tangents. These are two pairs lying symmetrically to the axis connecting the two centers. Figure 1: Two circles with no common tangents. 1
2 Figure 2: Two circles with one common tangent. Figure 3: Two circles with two common tangents. 2
3 Figure 4: Two circles with three common tangents. Figure 5: Two circles with four common tangents. 3
4 10 Problem 1.2 (Common tangents of two circles). Given are two circles, with center O and radius a, and center Q and radius b. They lie outside of each other. Explain how to construct, with Euclidean tools, the common tangents of the two circles. Actually do and describe the construction! Figure 6: Construction of two of the four common tangents for two circles lying outside each other. The drawing on page 4 constructs just two common tangents, using construction 1. The other two are their mirror images by line OQ connecting the centers. Construction 1 (Common tangents of two circles). One constructs two new circles around one of the given centers, say Q, choosing as their radii the sum a + b and difference a b of the radii a and b of two given circles. Next one constructs the tangents from the second center O to these two new circles. Too, one needs the radii where these tangents touch. The common tangents are produced by parallel shifts of these tangents, to both sides, by a distance given by the radius of the original circle around O. Shifting the tangents to the circle of radius a + b yields the inner common tangents, whereas shifting the tangents to the circle of radius a b results in the outer common tangents. 4
5 Figure 7: Halfing an angle with an isosceles triangle. Proposition 1. Assume that the angle sum for every triangle is 2R. Then the base angle of an isosceles triangle is half of the exterior angle at the top. 10 Problem 1.3. Prove proposition 1 from the assumptions that the angle sum of any triangle is 2R, and the base angles of an isosceles triangle are congruent. Answer (Reason for proposition 1). Let δ be the exterior angle at the top vertex A of triangle ABC. Thus δ is the supplement of the interior angle α at that vertex. It was assumed that the angle sum of any triangle is 2R. Hence δ = 2R α = α + β + γ α = β + γ which is the sum of the two nonadjacent interior angles. For an isosceles triangle with top F = A, the two base angles β and γ are congruent by Euclid I.5. Hence the exterior angle at the top is δ = 2β double the base angle. Hence the base angle β = δ is half of 2 the exterior angle δ. Theorem 1 (Angles in a circle). The angle subtending any circular arc with vertex at the center of the circle is twice the angle subtending the same arc with vertex on the circle (Euclid III.20). Hence, if two angles inscribed in a circle subtend the same arc, they are congruent (Euclid III.21). We call the angle with vertex at the center central angle, and the angle with vertex on the circle circumference angle of the given arc. In short, Euclid III.20 says: The central angle is twice the circumference angle. 10 Problem 1.4. In the drawing on page 6 the circumference angle is γ = α + β and the central angle is ω = x + y. Provide a drawing with appropriate notation for the case that the circumference angle is γ = α β and the central angle is ω = x y. How are points A, B, C, O located in this case? 5
6 Figure 8: Central and circumference angle of a circular arc Figure 9: Central and circumference angle of a circular arc, both obtained as differences. 6
7 Answer. In the figure on page 6, the circumference angle is γ = α β and the central angle is ω = x y. Since points A and O lie on different sides of line BC, central and circumference angle are both obtained as differences. 10 Problem 1.5 (A construction using an altitude). Using Euclid III.21, construct a triangle ABC with the three following pieces given: side c = AB = 6, opposite angle γ = BCA = 30, and altitude h c = 4. (h c is the altitude dropped from vertex C onto the opposite side AB). (a) Do the construction and measure your angles α and β. (b) Describe the steps for your construction. Answer. Figure 10: A triangle construction Construction 2. Draw side AB = 6 and its perpendicular bisector p. Let M be the midpoint of AB. The center O of the circum circle lies on the perpendicular bisector. The center angle is double the circumference angle γ. Hence AOB = 2γ = 60, and AOM = 30. For the example given, the point O is especially easy to find because the AOB is equilateral. Next, we draw the circle around O through A and B. This is the circum circle of ABC, on which vertex C lies. Because of the given altitude h c = 4, vertex C lies on a parallel q to AB of distance MD = h c. Finally, vertex C is an intersection point of this parallel with the circum circle. One can choose any one of the two intersection points. 7
8 10 Problem 1.6 (The midpoints of chords). Given is a circle C with center O, and a point P inside C. Describe the location of the midpoints of all chords through point P. Give a reason based on Thales Theorem or its converse. Figure 11: Where lie the midpoints of all chords through point P? Answer. The midpoints of all chords in the given circle C through the point P lie on a circle with diameter OP. Here is the reason: The midpoints are the foot points F of the perpendiculars dropped from the center O of the circle onto the respective chords. By the converse of Thales Theorem, all the vertices F of the right angles with sides through the two points O and P lie on Thales circle with diameter OP. 8
9 Figure 12: The midpoints of chords lie on Thales circle with diameter OP. 9
10 Remark. Let the circles have center O and radius a, and center Q and radius b. These cases correspond to: (0) OQ < b a : One circle lies inside the other. (1) 0 < OQ = b a : One circle touches the other from inside. (2) b a < OQ < a + b: The two circles intersect in two points. (3) b a < OQ = a + b: The two circles touch each other from outside. (4) a + b < OQ : The two circles lie outside of each other. ( ) 0 = OQ = b a : The two circles are equal to each other. Figure 13: Construction of a common tangent by a different method. The drawing on page 10 constructs just one common tangent, with a different method using similar triangles. Construction 3 (A second way to get the common tangents of two circles). To get the two outer common tangents, we begin by constructing their intersection point I. We draw an arbitrary pair of parallel radii OS and QT, and get point I as intersection of the lines S T and OQ. A special case occurs for two circles of equal radii in that case the lines S T, OQ and the common tangent ST, are all three parallel. 10
11 To get the two inner common tangents, we draw a pair of any two anti-parallel radii OS and QT. The lines S T and OQ intersect in the intersection point J of the two inner tangents. Finally we construct the tangents from points I and J to anyone of the two circles, and obtain their common tangents as well as the touching points. The idea behind the second construction. Because of symmetry, the intersection point I lies on the line OQ through the two centers. Since the radii of the two circles to their touching points S and T on one common tangent are parallel, we get equiangular triangles IOS and IQT. By Thales (second) theorem, their sides are proportional: OI OS = QI QT The second pair of equiangular triangles XOS and XQT is obtained from an arbitrary pair of parallel radii OS and QT and the intersection point X of the lines S T and OQ. For these two equiangular triangles, we get now the proportions OX OS = OX OS = QX QT = QX QT Both proportions can only hold for X = I and hence we get the intersection point I. Alternatively, we can use the Converse Desargues Theorem: If the sides of two triangles are pairwise parallel, then the two triangles are either in perspective from a point, or the three lines through pairs of corresponding vertices are parallel. Indeed, the two triangles OSS and QT T have pairwise parallel sides. Hence they are either in perspective, or the three lines OQ, ST and S T are parallel. 11
Chapter 6 Notes: Circles
Chapter 6 Notes: Circles IMPORTANT TERMS AND DEFINITIONS A circle is the set of all points in a plane that are at a fixed distance from a given point known as the center of the circle. Any line segment
Chapters 6 and 7 Notes: Circles, Locus and Concurrence
Chapters 6 and 7 Notes: Circles, Locus and Concurrence IMPORTANT TERMS AND DEFINITIONS A circle is the set of all points in a plane that are at a fixed distance from a given point known as the center of
Definitions, Postulates and Theorems
Definitions, s and s Name: Definitions Complementary Angles Two angles whose measures have a sum of 90 o Supplementary Angles Two angles whose measures have a sum of 180 o A statement that can be proven
1. A student followed the given steps below to complete a construction. Which type of construction is best represented by the steps given above?
1. A student followed the given steps below to complete a construction. Step 1: Place the compass on one endpoint of the line segment. Step 2: Extend the compass from the chosen endpoint so that the width
Selected practice exam solutions (part 5, item 2) (MAT 360)
Selected practice exam solutions (part 5, item ) (MAT 360) Harder 8,91,9,94(smaller should be replaced by greater )95,103,109,140,160,(178,179,180,181 this is really one problem),188,193,194,195 8. On
For the circle above, EOB is a central angle. So is DOE. arc. The (degree) measure of ù DE is the measure of DOE.
efinition: circle is the set of all points in a plane that are equidistant from a given point called the center of the circle. We use the symbol to represent a circle. The a line segment from the center
Conjectures. Chapter 2. Chapter 3
Conjectures Chapter 2 C-1 Linear Pair Conjecture If two angles form a linear pair, then the measures of the angles add up to 180. (Lesson 2.5) C-2 Vertical Angles Conjecture If two angles are vertical
39 Symmetry of Plane Figures
39 Symmetry of Plane Figures In this section, we are interested in the symmetric properties of plane figures. By a symmetry of a plane figure we mean a motion of the plane that moves the figure so that
Math 531, Exam 1 Information.
Math 531, Exam 1 Information. 9/21/11, LC 310, 9:05-9:55. Exam 1 will be based on: Sections 1A - 1F. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/531fa11/531.html)
Section 9-1. Basic Terms: Tangents, Arcs and Chords Homework Pages 330-331: 1-18
Chapter 9 Circles Objectives A. Recognize and apply terms relating to circles. B. Properly use and interpret the symbols for the terms and concepts in this chapter. C. Appropriately apply the postulates,
2006 Geometry Form A Page 1
2006 Geometry Form Page 1 1. he hypotenuse of a right triangle is 12" long, and one of the acute angles measures 30 degrees. he length of the shorter leg must be: () 4 3 inches () 6 3 inches () 5 inches
Class-10 th (X) Mathematics Chapter: Tangents to Circles
Class-10 th (X) Mathematics Chapter: Tangents to Circles 1. Q. AB is line segment of length 24 cm. C is its midpoint. On AB, AC and BC semicircles are described. Find the radius of the circle which touches
Angles that are between parallel lines, but on opposite sides of a transversal.
GLOSSARY Appendix A Appendix A: Glossary Acute Angle An angle that measures less than 90. Acute Triangle Alternate Angles A triangle that has three acute angles. Angles that are between parallel lines,
Conjectures for Geometry for Math 70 By I. L. Tse
Conjectures for Geometry for Math 70 By I. L. Tse Chapter Conjectures 1. Linear Pair Conjecture: If two angles form a linear pair, then the measure of the angles add up to 180. Vertical Angle Conjecture:
Lesson 2: Circles, Chords, Diameters, and Their Relationships
Circles, Chords, Diameters, and Their Relationships Student Outcomes Identify the relationships between the diameters of a circle and other chords of the circle. Lesson Notes Students are asked to construct
Contents. 2 Lines and Circles 3 2.1 Cartesian Coordinates... 3 2.2 Distance and Midpoint Formulas... 3 2.3 Lines... 3 2.4 Circles...
Contents Lines and Circles 3.1 Cartesian Coordinates.......................... 3. Distance and Midpoint Formulas.................... 3.3 Lines.................................. 3.4 Circles..................................
Solutions to Practice Problems
Higher Geometry Final Exam Tues Dec 11, 5-7:30 pm Practice Problems (1) Know the following definitions, statements of theorems, properties from the notes: congruent, triangle, quadrilateral, isosceles
Warm-up Tangent circles Angles inside circles Power of a point. Geometry. Circles. Misha Lavrov. ARML Practice 12/08/2013
Circles ARML Practice 12/08/2013 Solutions Warm-up problems 1 A circular arc with radius 1 inch is rocking back and forth on a flat table. Describe the path traced out by the tip. 2 A circle of radius
3.1 Triangles, Congruence Relations, SAS Hypothesis
Chapter 3 Foundations of Geometry 2 3.1 Triangles, Congruence Relations, SAS Hypothesis Definition 3.1 A triangle is the union of three segments ( called its side), whose end points (called its vertices)
alternate interior angles
alternate interior angles two non-adjacent angles that lie on the opposite sides of a transversal between two lines that the transversal intersects (a description of the location of the angles); alternate
Inversion. Chapter 7. 7.1 Constructing The Inverse of a Point: If P is inside the circle of inversion: (See Figure 7.1)
Chapter 7 Inversion Goal: In this chapter we define inversion, give constructions for inverses of points both inside and outside the circle of inversion, and show how inversion could be done using Geometer
IMO Geomety Problems. (IMO 1999/1) Determine all finite sets S of at least three points in the plane which satisfy the following condition:
IMO Geomety Problems (IMO 1999/1) Determine all finite sets S of at least three points in the plane which satisfy the following condition: for any two distinct points A and B in S, the perpendicular bisector
DEFINITIONS. Perpendicular Two lines are called perpendicular if they form a right angle.
DEFINITIONS Degree A degree is the 1 th part of a straight angle. 180 Right Angle A 90 angle is called a right angle. Perpendicular Two lines are called perpendicular if they form a right angle. Congruent
Chapter 3.1 Angles. Geometry. Objectives: Define what an angle is. Define the parts of an angle.
Chapter 3.1 Angles Define what an angle is. Define the parts of an angle. Recall our definition for a ray. A ray is a line segment with a definite starting point and extends into infinity in only one direction.
Grade 7 & 8 Math Circles Circles, Circles, Circles March 19/20, 2013
Faculty of Mathematics Waterloo, Ontario N2L 3G Introduction Grade 7 & 8 Math Circles Circles, Circles, Circles March 9/20, 203 The circle is a very important shape. In fact of all shapes, the circle is
Circle Name: Radius: Diameter: Chord: Secant:
12.1: Tangent Lines Congruent Circles: circles that have the same radius length Diagram of Examples Center of Circle: Circle Name: Radius: Diameter: Chord: Secant: Tangent to A Circle: a line in the plane
11 th Annual Harvard-MIT Mathematics Tournament
11 th nnual Harvard-MIT Mathematics Tournament Saturday February 008 Individual Round: Geometry Test 1. [] How many different values can take, where,, are distinct vertices of a cube? nswer: 5. In a unit
MATHEMATICS Grade 12 EUCLIDEAN GEOMETRY: CIRCLES 02 JULY 2014
EUCLIDEAN GEOMETRY: CIRCLES 02 JULY 2014 Checklist Make sure you learn proofs of the following theorems: The line drawn from the centre of a circle perpendicular to a chord bisects the chord The angle
CSU Fresno Problem Solving Session. Geometry, 17 March 2012
CSU Fresno Problem Solving Session Problem Solving Sessions website: http://zimmer.csufresno.edu/ mnogin/mfd-prep.html Math Field Day date: Saturday, April 21, 2012 Math Field Day website: http://www.csufresno.edu/math/news
Geometry Enduring Understandings Students will understand 1. that all circles are similar.
High School - Circles Essential Questions: 1. Why are geometry and geometric figures relevant and important? 2. How can geometric ideas be communicated using a variety of representations? ******(i.e maps,
Chapter 1. The Medial Triangle
Chapter 1. The Medial Triangle 2 The triangle formed by joining the midpoints of the sides of a given triangle is called the medial triangle. Let A 1 B 1 C 1 be the medial triangle of the triangle ABC
GEOMETRIC MENSURATION
GEOMETRI MENSURTION Question 1 (**) 8 cm 6 cm θ 6 cm O The figure above shows a circular sector O, subtending an angle of θ radians at its centre O. The radius of the sector is 6 cm and the length of the
GEOMETRY. Constructions OBJECTIVE #: G.CO.12
GEOMETRY Constructions OBJECTIVE #: G.CO.12 OBJECTIVE Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic
4. How many integers between 2004 and 4002 are perfect squares?
5 is 0% of what number? What is the value of + 3 4 + 99 00? (alternating signs) 3 A frog is at the bottom of a well 0 feet deep It climbs up 3 feet every day, but slides back feet each night If it started
Geometry - Semester 2. Mrs. Day-Blattner 1/20/2016
Geometry - Semester 2 Mrs. Day-Blattner 1/20/2016 Agenda 1/20/2016 1) 20 Question Quiz - 20 minutes 2) Jan 15 homework - self-corrections 3) Spot check sheet Thales Theorem - add to your response 4) Finding
Advanced Euclidean Geometry
dvanced Euclidean Geometry What is the center of a triangle? ut what if the triangle is not equilateral?? Circumcenter Equally far from the vertices? P P Points are on the perpendicular bisector of a line
GEOMETRY CONCEPT MAP. Suggested Sequence:
CONCEPT MAP GEOMETRY August 2011 Suggested Sequence: 1. Tools of Geometry 2. Reasoning and Proof 3. Parallel and Perpendicular Lines 4. Congruent Triangles 5. Relationships Within Triangles 6. Polygons
Circle Theorems. This circle shown is described an OT. As always, when we introduce a new topic we have to define the things we wish to talk about.
Circle s circle is a set of points in a plane that are a given distance from a given point, called the center. The center is often used to name the circle. T This circle shown is described an OT. s always,
New York State Student Learning Objective: Regents Geometry
New York State Student Learning Objective: Regents Geometry All SLOs MUST include the following basic components: Population These are the students assigned to the course section(s) in this SLO all students
15. Appendix 1: List of Definitions
page 321 15. Appendix 1: List of Definitions Definition 1: Interpretation of an axiom system (page 12) Suppose that an axiom system consists of the following four things an undefined object of one type,
1. Find the length of BC in the following triangles. It will help to first find the length of the segment marked X.
1 Find the length of BC in the following triangles It will help to first find the length of the segment marked X a: b: Given: the diagonals of parallelogram ABCD meet at point O The altitude OE divides
The Geometry of Piles of Salt Thinking Deeply About Simple Things
The Geometry of Piles of Salt Thinking Deeply About Simple Things PCMI SSTP Tuesday, July 15 th, 2008 By Troy Jones Willowcreek Middle School Important Terms (the word line may be replaced by the word
Curriculum Map by Block Geometry Mapping for Math Block Testing 2007-2008. August 20 to August 24 Review concepts from previous grades.
Curriculum Map by Geometry Mapping for Math Testing 2007-2008 Pre- s 1 August 20 to August 24 Review concepts from previous grades. August 27 to September 28 (Assessment to be completed by September 28)
Tangent circles in the hyperbolic disk
Rose- Hulman Undergraduate Mathematics Journal Tangent circles in the hyperbolic disk Megan Ternes a Volume 14, No. 1, Spring 2013 Sponsored by Rose-Hulman Institute of Technology Department of Mathematics
Lesson 5-3: Concurrent Lines, Medians and Altitudes
Playing with bisectors Yesterday we learned some properties of perpendicular bisectors of the sides of triangles, and of triangle angle bisectors. Today we are going to use those skills to construct special
Lesson 1: Introducing Circles
IRLES N VOLUME Lesson 1: Introducing ircles ommon ore Georgia Performance Standards M9 12.G..1 M9 12.G..2 Essential Questions 1. Why are all circles similar? 2. What are the relationships among inscribed
Test on Circle Geometry (Chapter 15)
Test on Circle Geometry (Chapter 15) Chord Properties of Circles A chord of a circle is any interval that joins two points on the curve. The largest chord of a circle is its diameter. 1. Chords of equal
Arc Length and Areas of Sectors
Student Outcomes When students are provided with the angle measure of the arc and the length of the radius of the circle, they understand how to determine the length of an arc and the area of a sector.
CIRCLE COORDINATE GEOMETRY
CIRCLE COORDINATE GEOMETRY (EXAM QUESTIONS) Question 1 (**) A circle has equation x + y = 2x + 8 Determine the radius and the coordinates of the centre of the circle. r = 3, ( 1,0 ) Question 2 (**) A circle
GEOMETRY COMMON CORE STANDARDS
1st Nine Weeks Experiment with transformations in the plane G-CO.1 Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point,
Visualizing Triangle Centers Using Geogebra
Visualizing Triangle Centers Using Geogebra Sanjay Gulati Shri Shankaracharya Vidyalaya, Hudco, Bhilai India http://mathematicsbhilai.blogspot.com/ [email protected] ABSTRACT. In this paper, we will
Projective Geometry - Part 2
Projective Geometry - Part 2 Alexander Remorov [email protected] Review Four collinear points A, B, C, D form a harmonic bundle (A, C; B, D) when CA : DA CB DB = 1. A pencil P (A, B, C, D) is the
Geometry. Higher Mathematics Courses 69. Geometry
The fundamental purpose of the course is to formalize and extend students geometric experiences from the middle grades. This course includes standards from the conceptual categories of and Statistics and
Unit 3: Circles and Volume
Unit 3: Circles and Volume This unit investigates the properties of circles and addresses finding the volume of solids. Properties of circles are used to solve problems involving arcs, angles, sectors,
POTENTIAL REASONS: Definition of Congruence:
Sec 6 CC Geometry Triangle Pros Name: POTENTIAL REASONS: Definition Congruence: Having the exact same size and shape and there by having the exact same measures. Definition Midpoint: The point that divides
Postulate 17 The area of a square is the square of the length of a. Postulate 18 If two figures are congruent, then they have the same.
Chapter 11: Areas of Plane Figures (page 422) 11-1: Areas of Rectangles (page 423) Rectangle Rectangular Region Area is measured in units. Postulate 17 The area of a square is the square of the length
Analytical Geometry (4)
Analytical Geometry (4) Learning Outcomes and Assessment Standards Learning Outcome 3: Space, shape and measurement Assessment Standard As 3(c) and AS 3(a) The gradient and inclination of a straight line
Intermediate Math Circles October 10, 2012 Geometry I: Angles
Intermediate Math Circles October 10, 2012 Geometry I: Angles Over the next four weeks, we will look at several geometry topics. Some of the topics may be familiar to you while others, for most of you,
Angles in a Circle and Cyclic Quadrilateral
130 Mathematics 19 Angles in a Circle and Cyclic Quadrilateral 19.1 INTRODUCTION You must have measured the angles between two straight lines, let us now study the angles made by arcs and chords in a circle
Conjunction is true when both parts of the statement are true. (p is true, q is true. p^q is true)
Mathematical Sentence - a sentence that states a fact or complete idea Open sentence contains a variable Closed sentence can be judged either true or false Truth value true/false Negation not (~) * Statement
MATH STUDENT BOOK. 8th Grade Unit 6
MATH STUDENT BOOK 8th Grade Unit 6 Unit 6 Measurement Math 806 Measurement Introduction 3 1. Angle Measures and Circles 5 Classify and Measure Angles 5 Perpendicular and Parallel Lines, Part 1 12 Perpendicular
Name Date Class. Lines and Segments That Intersect Circles. AB and CD are chords. Tangent Circles. Theorem Hypothesis Conclusion
Section. Lines That Intersect Circles Lines and Segments That Intersect Circles A chord is a segment whose endpoints lie on a circle. A secant is a line that intersects a circle at two points. A tangent
Basic Geometry Review For Trigonometry Students. 16 June 2010 Ventura College Mathematics Department 1
Basic Geometry Review For Trigonometry Students 16 June 2010 Ventura College Mathematics Department 1 Undefined Geometric Terms Point A Line AB Plane ABC 16 June 2010 Ventura College Mathematics Department
IMO Training 2008 Circles Yufei Zhao. Circles. Yufei Zhao.
ircles Yufei Zhao [email protected] 1 Warm up problems 1. Let and be two segments, and let lines and meet at X. Let the circumcircles of X and X meet again at O. Prove that triangles O and O are similar.
Geometry of 2D Shapes
Name: Geometry of 2D Shapes Answer these questions in your class workbook: 1. Give the definitions of each of the following shapes and draw an example of each one: a) equilateral triangle b) isosceles
Objectives. Cabri Jr. Tools
^Åíáîáíó=NO Objectives To learn how to construct all types of triangles using the Cabri Jr. application To reinforce the difference between a construction and a drawing Cabri Jr. Tools fåíêççìåíáçå `çåëíêìåíáåö
The Euler Line in Hyperbolic Geometry
The Euler Line in Hyperbolic Geometry Jeffrey R. Klus Abstract- In Euclidean geometry, the most commonly known system of geometry, a very interesting property has been proven to be common among all triangles.
San Jose Math Circle April 25 - May 2, 2009 ANGLE BISECTORS
San Jose Math Circle April 25 - May 2, 2009 ANGLE BISECTORS Recall that the bisector of an angle is the ray that divides the angle into two congruent angles. The most important results about angle bisectors
Geometry Chapter 10 Study Guide Name
eometry hapter 10 Study uide Name Terms and Vocabulary: ill in the blank and illustrate. 1. circle is defined as the set of all points in a plane that are equidistant from a fixed point called the center.
CCGPS UNIT 3 Semester 1 ANALYTIC GEOMETRY Page 1 of 32. Circles and Volumes Name:
GPS UNIT 3 Semester 1 NLYTI GEOMETRY Page 1 of 3 ircles and Volumes Name: ate: Understand and apply theorems about circles M9-1.G..1 Prove that all circles are similar. M9-1.G.. Identify and describe relationships
SIMSON S THEOREM MARY RIEGEL
SIMSON S THEOREM MARY RIEGEL Abstract. This paper is a presentation and discussion of several proofs of Simson s Theorem. Simson s Theorem is a statement about a specific type of line as related to a given
MA 408 Computer Lab Two The Poincaré Disk Model of Hyperbolic Geometry. Figure 1: Lines in the Poincaré Disk Model
MA 408 Computer Lab Two The Poincaré Disk Model of Hyperbolic Geometry Put your name here: Score: Instructions: For this lab you will be using the applet, NonEuclid, created by Castellanos, Austin, Darnell,
Trigonometric Functions and Triangles
Trigonometric Functions and Triangles Dr. Philippe B. Laval Kennesaw STate University August 27, 2010 Abstract This handout defines the trigonometric function of angles and discusses the relationship between
Geometry Progress Ladder
Geometry Progress Ladder Maths Makes Sense Foundation End-of-year objectives page 2 Maths Makes Sense 1 2 End-of-block objectives page 3 Maths Makes Sense 3 4 End-of-block objectives page 4 Maths Makes
Chapter 11. Areas of Plane Figures You MUST draw diagrams and show formulas for every applicable homework problem!
Chapter 11 Areas of Plane Figures You MUST draw diagrams and show formulas for every applicable homework problem! Objectives A. Use the terms defined in the chapter correctly. B. Properly use and interpret
The Triangle and its Properties
THE TRINGLE ND ITS PROPERTIES 113 The Triangle and its Properties Chapter 6 6.1 INTRODUCTION triangle, you have seen, is a simple closed curve made of three line segments. It has three vertices, three
Geometry Course Summary Department: Math. Semester 1
Geometry Course Summary Department: Math Semester 1 Learning Objective #1 Geometry Basics Targets to Meet Learning Objective #1 Use inductive reasoning to make conclusions about mathematical patterns Give
Tangent Properties. Line m is a tangent to circle O. Point T is the point of tangency.
CONDENSED LESSON 6.1 Tangent Properties In this lesson you will Review terms associated with circles Discover how a tangent to a circle and the radius to the point of tangency are related Make a conjecture
EUCLIDEAN GEOMETRY: (±50 marks)
ULIN GMTRY: (±50 marks) Grade theorems:. The line drawn from the centre of a circle perpendicular to a chord bisects the chord. 2. The perpendicular bisector of a chord passes through the centre of the
The Inversion Transformation
The Inversion Transformation A non-linear transformation The transformations of the Euclidean plane that we have studied so far have all had the property that lines have been mapped to lines. Transformations
Incenter Circumcenter
TRIANGLE: Centers: Incenter Incenter is the center of the inscribed circle (incircle) of the triangle, it is the point of intersection of the angle bisectors of the triangle. The radius of incircle is
CIRCUMFERENCE AND AREA OF A CIRCLE
CIRCUMFERENCE AND AREA OF A CIRCLE 1. AC and BD are two perpendicular diameters of a circle with centre O. If AC = 16 cm, calculate the area and perimeter of the shaded part. (Take = 3.14) 2. In the given
Name: Chapter 4 Guided Notes: Congruent Triangles. Chapter Start Date: Chapter End Date: Test Day/Date: Geometry Fall Semester
Name: Chapter 4 Guided Notes: Congruent Triangles Chapter Start Date: Chapter End Date: Test Day/Date: Geometry Fall Semester CH. 4 Guided Notes, page 2 4.1 Apply Triangle Sum Properties triangle polygon
Geometry Unit 5: Circles Part 1 Chords, Secants, and Tangents
Geometry Unit 5: Circles Part 1 Chords, Secants, and Tangents Name Chords and Circles: A chord is a segment that joins two points of the circle. A diameter is a chord that contains the center of the circle.
12. Parallels. Then there exists a line through P parallel to l.
12. Parallels Given one rail of a railroad track, is there always a second rail whose (perpendicular) distance from the first rail is exactly the width across the tires of a train, so that the two rails
Algebra Geometry Glossary. 90 angle
lgebra Geometry Glossary 1) acute angle an angle less than 90 acute angle 90 angle 2) acute triangle a triangle where all angles are less than 90 3) adjacent angles angles that share a common leg Example:
Three Lemmas in Geometry
Winter amp 2010 Three Lemmas in Geometry Yufei Zhao Three Lemmas in Geometry Yufei Zhao Massachusetts Institute of Technology [email protected] 1 iameter of incircle T Lemma 1. Let the incircle of triangle
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Tuesday, August 13, 2013 8:30 to 11:30 a.m., only.
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Tuesday, August 13, 2013 8:30 to 11:30 a.m., only Student Name: School Name: The possession or use of any communications
Exercise Set 3. Similar triangles. Parallel lines
Exercise Set 3. Similar triangles Parallel lines Note: The exercises marked with are more difficult and go beyond the course/examination requirements. (1) Let ABC be a triangle with AB = AC. Let D be an
Lesson 18: Looking More Carefully at Parallel Lines
Student Outcomes Students learn to construct a line parallel to a given line through a point not on that line using a rotation by 180. They learn how to prove the alternate interior angles theorem using
Area. Area Overview. Define: Area:
Define: Area: Area Overview Kite: Parallelogram: Rectangle: Rhombus: Square: Trapezoid: Postulates/Theorems: Every closed region has an area. If closed figures are congruent, then their areas are equal.
Lecture 24: Saccheri Quadrilaterals
Lecture 24: Saccheri Quadrilaterals 24.1 Saccheri Quadrilaterals Definition In a protractor geometry, we call a quadrilateral ABCD a Saccheri quadrilateral, denoted S ABCD, if A and D are right angles
/27 Intro to Geometry Review
/27 Intro to Geometry Review 1. An acute has a measure of. 2. A right has a measure of. 3. An obtuse has a measure of. 13. Two supplementary angles are in ratio 11:7. Find the measure of each. 14. In the
Duplicating Segments and Angles
CONDENSED LESSON 3.1 Duplicating Segments and ngles In this lesson, you Learn what it means to create a geometric construction Duplicate a segment by using a straightedge and a compass and by using patty
Geometry Unit 10 Notes Circles. Syllabus Objective: 10.1 - The student will differentiate among the terms relating to a circle.
Geometry Unit 0 Notes ircles Syllabus Objective: 0. - The student will differentiate among the terms relating to a circle. ircle the set of all points in a plane that are equidistant from a given point,
Chapter 5.1 and 5.2 Triangles
Chapter 5.1 and 5.2 Triangles Students will classify triangles. Students will define and use the Angle Sum Theorem. A triangle is formed when three non-collinear points are connected by segments. Each
56 questions (multiple choice, check all that apply, and fill in the blank) The exam is worth 224 points.
6.1.1 Review: Semester Review Study Sheet Geometry Core Sem 2 (S2495808) Semester Exam Preparation Look back at the unit quizzes and diagnostics. Use the unit quizzes and diagnostics to determine which
Collinearity and concurrence
Collinearity and concurrence Po-Shen Loh 23 June 2008 1 Warm-up 1. Let I be the incenter of ABC. Let A be the midpoint of the arc BC of the circumcircle of ABC which does not contain A. Prove that the
Unit 2 - Triangles. Equilateral Triangles
Equilateral Triangles Unit 2 - Triangles Equilateral Triangles Overview: Objective: In this activity participants discover properties of equilateral triangles using properties of symmetry. TExES Mathematics
Geometry Final Exam Review Worksheet
Geometry Final xam Review Worksheet (1) Find the area of an equilateral triangle if each side is 8. (2) Given the figure to the right, is tangent at, sides as marked, find the values of x, y, and z please.
