9/16 Optics 1 /11 GEOMETRIC OPTICS
|
|
|
- Clara O’Brien’
- 9 years ago
- Views:
Transcription
1 9/6 Optics / GEOMETRIC OPTICS PURPOSE: To review the basics of geometric optics and to observe the function of some simple and compound optical devices. APPARATUS: Optical bench, lenses, mirror, target & light source, meter stick INTRODUCTION: Optical instruments serve many functions. Microscopes can magnify an image to make extremely small objects visible. While telescopes can collect and concentrate light from very faint and distant objects. Lenses in photographic and video cameras form images for recording. Geometric optics ignores the true electromagnetic wave nature of light and assumes instead that light travels in a straight lines called a ray whose path through an optical instrument can be calculated with simple rules to predict the location of an image. In the next few pages we will review these rules. Object-Image Relations for Lenses -- In geometrical optics we can get a good intuitive feeling for the behavior of lenses using these basic concepts: () All rays incident on a converging lens parallel to its axis are refracted in such a way that they cross the axis at a common point called the focal point or focus of the lens. The distance from the lens center to the focus is called the focal length, f. Each lens has two focal points. (2) After refraction by the lens, rays coming from an object will either converge to form a real image (as in a camera) or diverge so that they appear to come from a "virtual" image (as in a magnifying glass). (3) If the distance from the object to the lens is called s and the distance from the lens to the image s' (where s' is positive for a real image and negative for a virtual image) then the "thin lens" equation holds: = + () f s s' The relationship between object, real image and focal length for a converging lens is illustrated in Fig. Two rays are drawn from the object to the lens. One ray is incident parallel to the axis and is refracted toward the focus, f. The other ray passes through the center of the lens, and will not be deviated because the surfaces of a "thin" lens are essentially parallel at the center. Using this you can construct any optical system. It may be seen from the figure that the ratio of the distance of the image from the axis to the distance from the object to the axis (called the lateral magnification, m) is equal to - (s'/s). The magnification is positive for an upright image and negative for an inverted image. The thin-lens equation can be used to show tha
2 9/6 Optics 2 / m = s = (s f) = h i (2) s f h o where h i /h o = (height of image)/(height of object). A special case of the thin lens equation occurs when the object distance, s, is very large (s >> s') compared to the image distance s'. Under these circumstances the (/s) term will be small enough to be neglected and the thin lens equation reduces to s + s s = f or s = f when (s s ) (3) Figure Object-Image Relationships for a Converging Lens (Images in the upper two figures are real images.)
3 9/6 Optics 3 / We will use this special case to estimate the focal length of the lenses used in the experiment. In the table on the next page, we summarize the sign convention for m and s'. Sign m, magnification s', image distance + upright image real image - upside down image virtual image Example : The converging lens and the simple magnifier Case a): s > f. Suppose f = (+) 20 centimeters for the converging lens of figure above. Then, if the object distance s = + 30 cm, the thin lens formula is /s + /s' = /f /(+30) + /s' = /(+20), /s' = /20 - /30 = /60 and s' = +60 cm, where the plus sign for s' means the image is real and on the other side of the lens from the object. The lateral magnification is m = (height of image/height of object) = (hi/ho). In this case it is equal to -(s'/s) = -60/30 = -2, indicating an enlarged image. The minus sign for m means that the image is inverted. For a real image it is possible to place a screen at the focal plane and directly measure the height of the image. Case b): s < f. Suppose the object distance s = +5 cm for the converging lens of f = 20 cm. Then the thin lens equation becomes /(+5) + /s' = /20 --> /s' = /20 - /5 = -/60 and s' = -60 cm. The - sign for s' means that the image is virtual (on the same side of the lens as the object, impossible to view or measure on a screen).the magnification is m = -s'/s = -(- 60)/(+20) = +3. The + sign for m here means that the image is upright. We see that converging lens can give both real and virtual images, depending on the location of the object relative to the focal point. Figure 2 Object-Image Relationship for a Diverging Lens Example 2: The diverging lens Suppose the focal length of a diverging lens is f = -20 cm. If the object is at s = +30, solving the lens equation gives s' = -2, the - sign again indicating a virtual image: /(+30) + /s' = /(-20) /s' = -/20 - /30 = -5/60 --> s' = -2. The magnification is m = -(s'/s) = +2/30 = +0.4, so the image is reduced and erect (see figure 2). A diverging lens by itself can produce only virtual images.
4 9/6 Optics 4 / Object-Image Relations for Mirrors -- Once you understand refractive optics, reflective optics are easy. In this case both object and image distances (s and s', respectively) are measured on the same side of the reflective surface. The math and equations are the same as with lenses except for sign conventions. Consider the concave mirror in Fig. 3. Note that the radius of curvature, R, is not the focal length. A point source of light placed at the center of R would have the light focused back on itself. Figure 3 Object-Image Relationship for a Concave Mirror
5 9/6 Optics 5 / Refracting telescopes Astronomical Telescope Objective Eyepiece Eye sees a large inverted image. f o f e Figure 5 Two converging lenses are placed at a separation fo + fe. f is the focal length of the lens which collects light from the distant object (objective lens) and produces a real, inverted image, which is the object for lens 2. The function of lens 2 (ocular or eyepiece) is to produce a magnified virtual image (still inverted) for convenient viewing. The eyepiece acts like a simple magnifying lens. The magnification is fobjective/feyepiece. A converging ("positive') objective lens (fo) and a diverging ("negative") (fe) ocular are used to make a short telescope (Figure 6, Terrestrial telescope) with an upright image. The lenses are spaced a distance approximately fo + fe apart (note that fe is negative since the lens is concave) and give an angular magnification of - (fo /fe). Terrestrial or Galilean Telescope Objective Eyepiece Upright Image Intermediate Image f o Figure 6 -f e These telescopes are compound instruments consisting of an objective which has the function of gathering light and producing a real image. The second lens produces a virtual image of its object (the image formed by the objective). The eyepiece can be
6 9/6 Optics 6 / either converging (s < f) or diverging (always produces a virtual image). PROCEDURE:. For lenses A, B, and C estimate their focal lengths, for example, by projecting an image of a distant object such as ceiling lights onto some screen (a paper, white surface, etc). Compare your estimates with specifications shown on the lens holders. 2. For lenses A, B and C study and measure the relation between the image and object distances. Use optical bench here. 3. Use lens B to determine the negative focal length of lens D. 4. Make the same determination as step 2 above, but use a converging mirror. The halfscreened aperture must be inserted between the lamp (object) and the mirror. The image is very small and distorts easily if your alignment is poor. 5. Construct an astronomical and a terrestrial(galilean) telescope. For the astronomical and Galilean telescopes, start with lens separation of (fo + fe) as in the diagrams, but remember that, in the Galilean telescope, the eyepiece is a diverging lens (this gives an erect image, in contrast to the astronomical telescope) and its f is negative. ("Right side up" or "upside down" is not meaningful for a star or galaxy.) For the astronomical telescope use lens C as the objective and lens A as the ocular. For the Galilean telescope use lens C as the objective and lens D as ocular. Adjust your telescope to focus on a distant eye chart or other object. Record the lens separation and give the ratio to the theoretical separation (fo + fe) for an object at infinity. How to Estimate Magnification: Measuring magnification is not easy, but here is a hint. Use binocular vision; that is, keep both eyes open when looking through your telescope. Your mind will overlap the images which you can mentally compare. The wall blocks or a piece of paper on the wall serve as nice targets.
7 9/6 Optics 7 / OPTICS Name: Partner: Sec. Part : Estimating focal length of lenses Lenses Estimate the focal length as suggested in the procedure, see p. 6. Object viewed: Approximate distance from lens Estimated focal lengths: A: B: C: Part 2: Measuring the focal length For each lens measure the image distance s for three different object distances and calculate the average focal length. Remember to record the image size as well. For the third measurement choose so that s = s'. Lens: A # s s' f ho hi m (=h i /h o ) m (= -s /s) 2 3 Lens: B # average f = ( s s' f h o ) hi m (=h i /h o ) m (= -s /s) 2 3 average f = ( )
8 9/6 Optics 8 / For lens C measure s for three different object distance s and calculate f. For the third measurement, exchange s and s you used for the second measurement. Warning: C has a long focal length, in some cases you will have to put the target on the table (off the optical bench) Lens: C # s s' f ho hi m(=h i /h o ) m (= -s /s) 2 3 average f = ( ) While everything is focused, predict what will happen if you cover half of lens C. Carry out the experiment and describe what happens to the image. In the third setup in lens C when s and s' were exchanged, what happened with the magnification? diverging lens Put the lens B ~50 cm from the target light source and move the screen until there is a sharp image. The screen is the position of the real image. Now, put lens D between the screen and lens B such that it is exactly 5 cm from the real image on the screen. The real image formed by B will now serve as the object for lens D. s becomes -5 cm for Eq. ; the minus means the object for D is on the same side as its image. To observe the new image formed by D move the screen back until you see a focused image. Measure the distance between lens D and the new image; this is s'. Calculate the focal length of lens D from Eq.. Eq. f = s + s'
9 9/6 Optics 9 / Focal Length of D: How was the size of the image changed by adding lens D? Converging Mirror Place the concave mirror facing the light such that it "looks through" the clear part of the half-screen aperture holder. Make the heights the same. Move the mirror to only a few centimeters away until a tiny image on the bar target is focused on the ruled bar. Try to record the image size which will be very small. # s s' f ho hi m 2 average f = ( ) What is R, the radius of curvature of the mirror? Astronomical Telescope Telescopes Do not lift the optical benches; the holders and lenses will fall to the floor. Move them around on the table top to look across the room. Objective lens C fobj = Ocular (eyepiece) lens A foc =
10 9/6 Optics 0 / Lens separation, SEP = (fobj + foc) Ratio: SEP/(fobj + foc) = Estimate the magnification by visual inspection: use binocular vision (both eyes open: one looks through the scope, the other at the target). FR = focal ratio; mexp = experimental magnification. mexp = h(image)/h(object) FR = - fobj/foc Ratio: mexp / FR Terrestrial (or Galilean) Telescope Do not lift the optical benches; the holders and lenses will fall to the floor. Objective lens C fobj = Ocular (eyepiece) lens D foc = Lens separation SEP = (fobj + foc) = Ratio: SEP/(fobj + foc) = Estimate the magnification by visual inspection: use binocular vision (both eyes open: one looks through the scope, the other at the target). mexp = h(image)/h(object) Focal Ratios (FR) = -fobj/foc = Ratio: mexp / FR What does the sign of the magnification indicate for these two telescopes? Why is it OK to use one for reading distant signs, while not the other?
Geometric Optics Converging Lenses and Mirrors Physics Lab IV
Objective Geometric Optics Converging Lenses and Mirrors Physics Lab IV In this set of lab exercises, the basic properties geometric optics concerning converging lenses and mirrors will be explored. The
EXPERIMENT 6 OPTICS: FOCAL LENGTH OF A LENS
EXPERIMENT 6 OPTICS: FOCAL LENGTH OF A LENS The following website should be accessed before coming to class. Text reference: pp189-196 Optics Bench a) For convenience of discussion we assume that the light
Convex Mirrors. Ray Diagram for Convex Mirror
Convex Mirrors Center of curvature and focal point both located behind mirror The image for a convex mirror is always virtual and upright compared to the object A convex mirror will reflect a set of parallel
2) A convex lens is known as a diverging lens and a concave lens is known as a converging lens. Answer: FALSE Diff: 1 Var: 1 Page Ref: Sec.
Physics for Scientists and Engineers, 4e (Giancoli) Chapter 33 Lenses and Optical Instruments 33.1 Conceptual Questions 1) State how to draw the three rays for finding the image position due to a thin
RAY OPTICS II 7.1 INTRODUCTION
7 RAY OPTICS II 7.1 INTRODUCTION This chapter presents a discussion of more complicated issues in ray optics that builds on and extends the ideas presented in the last chapter (which you must read first!)
waves rays Consider rays of light from an object being reflected by a plane mirror (the rays are diverging): mirror object
PHYS1000 Optics 1 Optics Light and its interaction with lenses and mirrors. We assume that we can ignore the wave properties of light. waves rays We represent the light as rays, and ignore diffraction.
Solution Derivations for Capa #14
Solution Derivations for Capa #4 ) An image of the moon is focused onto a screen using a converging lens of focal length (f = 34.8 cm). The diameter of the moon is 3.48 0 6 m, and its mean distance from
Lecture 17. Image formation Ray tracing Calculation. Lenses Convex Concave. Mirrors Convex Concave. Optical instruments
Lecture 17. Image formation Ray tracing Calculation Lenses Convex Concave Mirrors Convex Concave Optical instruments Image formation Laws of refraction and reflection can be used to explain how lenses
1 of 9 2/9/2010 3:38 PM
1 of 9 2/9/2010 3:38 PM Chapter 23 Homework Due: 8:00am on Monday, February 8, 2010 Note: To understand how points are awarded, read your instructor's Grading Policy. [Return to Standard Assignment View]
Experiment 3 Lenses and Images
Experiment 3 Lenses and Images Who shall teach thee, unless it be thine own eyes? Euripides (480?-406? BC) OBJECTIVES To examine the nature and location of images formed by es. THEORY Lenses are frequently
Chapter 17: Light and Image Formation
Chapter 17: Light and Image Formation 1. When light enters a medium with a higher index of refraction it is A. absorbed. B. bent away from the normal. C. bent towards from the normal. D. continues in the
Thin Lenses Drawing Ray Diagrams
Drawing Ray Diagrams Fig. 1a Fig. 1b In this activity we explore how light refracts as it passes through a thin lens. Eyeglasses have been in use since the 13 th century. In 1610 Galileo used two lenses
1. You stand two feet away from a plane mirror. How far is it from you to your image? a. 2.0 ft c. 4.0 ft b. 3.0 ft d. 5.0 ft
Lenses and Mirrors 1. You stand two feet away from a plane mirror. How far is it from you to your image? a. 2.0 ft c. 4.0 ft b. 3.0 ft d. 5.0 ft 2. Which of the following best describes the image from
Geometrical Optics - Grade 11
OpenStax-CNX module: m32832 1 Geometrical Optics - Grade 11 Rory Adams Free High School Science Texts Project Mark Horner Heather Williams This work is produced by OpenStax-CNX and licensed under the Creative
Lesson 29: Lenses. Double Concave. Double Convex. Planoconcave. Planoconvex. Convex meniscus. Concave meniscus
Lesson 29: Lenses Remembering the basics of mirrors puts you half ways towards fully understanding lenses as well. The same sort of rules apply, just with a few modifications. Keep in mind that for an
Rutgers Analytical Physics 750:228, Spring 2016 ( RUPHY228S16 )
1 of 13 2/17/2016 5:28 PM Signed in as Weida Wu, Instructor Help Sign Out Rutgers Analytical Physics 750:228, Spring 2016 ( RUPHY228S16 ) My Courses Course Settings University Physics with Modern Physics,
Lesson 26: Reflection & Mirror Diagrams
Lesson 26: Reflection & Mirror Diagrams The Law of Reflection There is nothing really mysterious about reflection, but some people try to make it more difficult than it really is. All EMR will reflect
C) D) As object AB is moved from its present position toward the left, the size of the image produced A) decreases B) increases C) remains the same
1. For a plane mirror, compared to the object distance, the image distance is always A) less B) greater C) the same 2. Which graph best represents the relationship between image distance (di) and object
LIGHT REFLECTION AND REFRACTION
QUESTION BANK IN SCIENCE CLASS-X (TERM-II) 10 LIGHT REFLECTION AND REFRACTION CONCEPTS To revise the laws of reflection at plane surface and the characteristics of image formed as well as the uses of reflection
Chapter 36 - Lenses. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University
Chapter 36 - Lenses A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University 2007 Objectives: After completing this module, you should be able to: Determine
Chapter 27 Optical Instruments. 27.1 The Human Eye and the Camera 27.2 Lenses in Combination and Corrective Optics 27.3 The Magnifying Glass
Chapter 27 Optical Instruments 27.1 The Human Eye and the Camera 27.2 Lenses in Combination and Corrective Optics 27.3 The Magnifying Glass Figure 27 1 Basic elements of the human eye! Light enters the
OPTICAL IMAGES DUE TO LENSES AND MIRRORS *
1 OPTICAL IMAGES DUE TO LENSES AND MIRRORS * Carl E. Mungan U.S. Naval Academy, Annapolis, MD ABSTRACT The properties of real and virtual images formed by lenses and mirrors are reviewed. Key ideas are
HOMEWORK 4 with Solutions
Winter 996 HOMEWORK 4 with Solutions. ind the image of the object for the single concave mirror system shown in ig. (see next pages for worksheets) by: (a) measuring the radius R and calculating the focal
7.2. Focusing devices: Unit 7.2. context. Lenses and curved mirrors. Lenses. The language of optics
context 7.2 Unit 7.2 ocusing devices: Lenses and curved mirrors Light rays often need to be controlled and ed to produce s in optical instruments such as microscopes, cameras and binoculars, and to change
Optics. Kepler's telescope and Galileo's telescope. f 1. f 2. LD Physics Leaflets P5.1.4.2. Geometrical optics Optical instruments
Optics Geometrical optics Optical instruments LD Physics Lealets P5.1.4.2 Kepler's telescope and Galileo's telescope Objects o the experiment g Veriying that the length o a telescope is given by the sum
Lecture Notes for Chapter 34: Images
Lecture Notes for hapter 4: Images Disclaimer: These notes are not meant to replace the textbook. Please report any inaccuracies to the professor.. Spherical Reflecting Surfaces Bad News: This subject
AP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light
AP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light Name: Period: Date: MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Reflection,
Size Of the Image Nature Of the Image At Infinity At the Focus Highly Diminished, Point Real and Inverted
CHAPTER-10 LIGHT REFLECTION AND REFRACTION Light rays; are; electromagnetic in nature, and do not need material medium for Propagation Speed of light in vacuum in 3*10 8 m/s When a light ray falls on a
Chapter 22: Mirrors and Lenses
Chapter 22: Mirrors and Lenses How do you see sunspots? When you look in a mirror, where is the face you see? What is a burning glass? Make sure you know how to:. Apply the properties of similar triangles;
Reflection and Refraction
Equipment Reflection and Refraction Acrylic block set, plane-concave-convex universal mirror, cork board, cork board stand, pins, flashlight, protractor, ruler, mirror worksheet, rectangular block worksheet,
Chapter 23. The Reflection of Light: Mirrors
Chapter 23 The Reflection of Light: Mirrors Wave Fronts and Rays Defining wave fronts and rays. Consider a sound wave since it is easier to visualize. Shown is a hemispherical view of a sound wave emitted
Magnification Devices
LOW VISION AIDS Optical Characteristics of the Low Vision Patient The definition of visual loss includes two components and limited resolving power or acuity, a blur that can't be eliminated with a simple
Procedure: Geometrical Optics. Theory Refer to your Lab Manual, pages 291 294. Equipment Needed
Theory Refer to your Lab Manual, pages 291 294. Geometrical Optics Equipment Needed Light Source Ray Table and Base Three-surface Mirror Convex Lens Ruler Optics Bench Cylindrical Lens Concave Lens Rhombus
Lenses and Telescopes
A. Using single lenses to form images Lenses and Telescopes The simplest variety of telescope uses a single lens. The image is formed at the focus of the telescope, which is simply the focal plane of the
1051-232 Imaging Systems Laboratory II. Laboratory 4: Basic Lens Design in OSLO April 2 & 4, 2002
05-232 Imaging Systems Laboratory II Laboratory 4: Basic Lens Design in OSLO April 2 & 4, 2002 Abstract: For designing the optics of an imaging system, one of the main types of tools used today is optical
Basic Optics System OS-8515C
40 50 30 60 20 70 10 80 0 90 80 10 20 70 T 30 60 40 50 50 40 60 30 C 70 20 80 10 90 90 0 80 10 70 20 60 50 40 30 Instruction Manual with Experiment Guide and Teachers Notes 012-09900B Basic Optics System
Light and its effects
Light and its effects Light and the speed of light Shadows Shadow films Pinhole camera (1) Pinhole camera (2) Reflection of light Image in a plane mirror An image in a plane mirror is: (i) the same size
WAVELENGTH OF LIGHT - DIFFRACTION GRATING
PURPOSE In this experiment we will use the diffraction grating and the spectrometer to measure wavelengths in the mercury spectrum. THEORY A diffraction grating is essentially a series of parallel equidistant
In this project, you will be observing at least three objects with a telescope or binoculars, and drawing what you see.
Telescopic Observations Materials: Paper, pencil, camera, Telescope or Binoculars In this project, you will be observing at least three objects with a telescope or binoculars, and drawing what you see.
Section 13.3 Telescopes and Microscopes
Glass correcting plate Secondary Finder scope ive Diagonal prism Equatorial drive Equatorial mount Section 13.3 Telescopes and Microscopes Tripod Not everything that we wish to see is visible to the naked
Science In Action 8 Unit C - Light and Optical Systems. 1.1 The Challenge of light
1.1 The Challenge of light 1. Pythagoras' thoughts about light were proven wrong because it was impossible to see A. the light beams B. dark objects C. in the dark D. shiny objects 2. Sir Isaac Newton
Physics 116. Nov 4, 2011. Session 22 Review: ray optics. R. J. Wilkes Email: [email protected]
Physics 116 Session 22 Review: ray optics Nov 4, 2011 R. J. Wilkes Email: [email protected] ! Exam 2 is Monday!! All multiple choice, similar to HW problems, same format as Exam 1!!! Announcements
LIGHT SECTION 6-REFRACTION-BENDING LIGHT From Hands on Science by Linda Poore, 2003.
LIGHT SECTION 6-REFRACTION-BENDING LIGHT From Hands on Science by Linda Poore, 2003. STANDARDS: Students know an object is seen when light traveling from an object enters our eye. Students will differentiate
How to make a Galileian Telescope
How to make a Galileian Telescope I. THE BASICS THE PRINCIPLES OF OPTICS A Galileian telescope uses just two lenses. The objective lens is convergent (plano-convex), the ocular lens is divergent (plano-concave).
Revision problem. Chapter 18 problem 37 page 612. Suppose you point a pinhole camera at a 15m tall tree that is 75m away.
Revision problem Chapter 18 problem 37 page 612 Suppose you point a pinhole camera at a 15m tall tree that is 75m away. 1 Optical Instruments Thin lens equation Refractive power Cameras The human eye Combining
Physics, Chapter 38: Mirrors and Lenses
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Robert Katz Publications Research Papers in Physics and Astronomy 1-1-1958 Physics, Chapter 38: Mirrors and Lenses Henry
Information. From the LowVision Specialists. Guidelines for the fitting of telescopic systems
Information From the LowVision Specialists Guidelines for the fitting of telescopic systems About a successful fitting Eye care professionals dispensing telescopic spectacles must ensure they have successfully
Making a reflector telescope
Making a reflector telescope telescope built by Sir Isaac Newton Replica of the first reflector Nowadays, professional astronomers use another type of telescope that is different to the first telescope
Physics 25 Exam 3 November 3, 2009
1. A long, straight wire carries a current I. If the magnetic field at a distance d from the wire has magnitude B, what would be the the magnitude of the magnetic field at a distance d/3 from the wire,
Name Class Date Laboratory Investigation 4B Chapter 4: Cell Structure
Name Class Date Laboratory Investigation 4B Chapter 4: Cell Structure The Microscope: A Tool of the Scientist You may refer to pages 66-67, 72-73 in your textbook for a general discussion of microscopes.
THE COMPOUND MICROSCOPE
THE COMPOUND MICROSCOPE In microbiology, the microscope plays an important role in allowing us to see tiny objects that are normally invisible to the naked eye. It is essential for students to learn how
Light Energy OBJECTIVES
11 Light Energy Can you read a book in the dark? If you try to do so, then you will realize, how much we are dependent on light. Light is very important part of our daily life. We require light for a number
First let us consider microscopes. Human eyes are sensitive to radiation having wavelengths between
Optical Differences Between Telescopes and Microscopes Robert R. Pavlis, Girard, Kansas USA icroscopes and telescopes are optical instruments that are designed to permit observation of objects and details
FirstView 3 Reflector Telescope Owner s Manual
FirstView 3 Reflector Telescope Owner s Manual 1. Horizontal Locking Auxiliary Screw 2. Main Mount 3. Pitching Auxiliary Knob 4. Pitching Shaft Screw 5. Rack and Pinion Focusing Knob 6. Thumb Nut for Finder
Light and Sound. Pupil Booklet
Duncanrig Secondary School East Kilbride S2 Physics Elective Light and Sound Name: Pupil Booklet Class: SCN 3-11a - By exploring the refraction of light when passed through different materials, lenses
PHYSICS PAPER 1 (THEORY)
PHYSICS PAPER 1 (THEORY) (Three hours) (Candidates are allowed additional 15 minutes for only reading the paper. They must NOT start writing during this time.) ---------------------------------------------------------------------------------------------------------------------
EXPERIMENT O-6. Michelson Interferometer. Abstract. References. Pre-Lab
EXPERIMENT O-6 Michelson Interferometer Abstract A Michelson interferometer, constructed by the student, is used to measure the wavelength of He-Ne laser light and the index of refraction of a flat transparent
Endoscope Optics. Chapter 8. 8.1 Introduction
Chapter 8 Endoscope Optics Endoscopes are used to observe otherwise inaccessible areas within the human body either noninvasively or minimally invasively. Endoscopes have unparalleled ability to visualize
Study Guide for Exam on Light
Name: Class: Date: Study Guide for Exam on Light Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which portion of the electromagnetic spectrum is used
19 - RAY OPTICS Page 1 ( Answers at the end of all questions )
19 - RAY OPTICS Page 1 1 ) A ish looking up through the water sees the outside world contained in a circular horizon. I the reractive index o water is 4 / 3 and the ish is 1 cm below the surace, the radius
Lens Equation Purpose
Lens Equation Purpose To verify the lens equation for both a converging lens and a diverging lens. To investigate optical systems. To find the focal lengths of a converging lens and a diverging lens. Background
Instruction Manual Genesis 200 EQ
Instruction Manual Genesis 200 EQ English version 8.2014 Rev A 1 The Zoomion Genesis 200 EQ Congratulations on the purchase of the new Zoomion Genesis 200 EQ. This advanced telescope will give you hours
Understanding astigmatism Spring 2003
MAS450/854 Understanding astigmatism Spring 2003 March 9th 2003 Introduction Spherical lens with no astigmatism Crossed cylindrical lenses with astigmatism Horizontal focus Vertical focus Plane of sharpest
Care and Use of the Compound Microscope
Revised Fall 2011 Care and Use of the Compound Microscope Objectives After completing this lab students should be able to 1. properly clean and carry a compound and dissecting microscope. 2. focus a specimen
- the. or may. scales on. Butterfly wing. magnified about 75 times.
Lecture Notes (Applications of Diffraction) Intro: - the iridescent colors seen in many beetles is due to diffraction of light rays hitting the small groovess of its exoskeleton - these ridges are only
Chapter 6 Telescopes: Portals of Discovery. How does your eye form an image? Refraction. Example: Refraction at Sunset.
Chapter 6 Telescopes: Portals of Discovery 6.1 Eyes and Cameras: Everyday Light Sensors Our goals for learning:! How does your eye form an image?! How do we record images? How does your eye form an image?
Light Telescopes. Grade Level: 5. 2-3 class periods (more if in-depth research occurs)
Light Telescopes Grade Level: 5 Time Required: Suggested TEKS: Science - 5.4 Suggested SCANS Information. Acquires and evaluates information. National Science and Math Standards Science as Inquiry, Earth
UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics
UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics Physics 111.6 MIDTERM TEST #4 March 15, 2007 Time: 90 minutes NAME: (Last) Please Print (Given) STUDENT NO.: LECTURE SECTION (please
7 Light and Geometric Optics
7 Light and Geometric Optics By the end of this chapter, you should be able to do the following: Use ray diagrams to analyse situations in which light reflects from plane and curved mirrors state the law
Chapter 1 Parts C. Robert Bagnell, Jr., Ph.D., 2012
Chapter 1 Parts C. Robert Bagnell, Jr., Ph.D., 2012 Figure 1.1 illustrates the parts of an upright compound microscope and indicates the terminology that I use in these notes. Figure 1.1. Parts of a Compound
Lesson. Objectives. Compare how plane, convex, and concave. State the law of reflection.
KH_BD1_SEG5_U4C12L3_407-415.indd 407 Essential Question How Do Lenses and Mirrors Affect Light? What reflective surfaces do you see in your classroom? What are the different properties of these surfaces
PHYS 39a Lab 3: Microscope Optics
PHYS 39a Lab 3: Microscope Optics Trevor Kafka December 15, 2014 Abstract In this lab task, we sought to use critical illumination and Köhler illumination techniques to view the image of a 1000 lines-per-inch
The light. Light (normally spreads out straight... ... and into all directions. Refraction of light
The light Light (normally spreads out straight...... and into all directions. Refraction of light But when a light ray passes from air into glas or water (or another transparent medium), it gets refracted
4. CAMERA ADJUSTMENTS
4. CAMERA ADJUSTMENTS Only by the possibility of displacing lens and rear standard all advantages of a view camera are fully utilized. These displacements serve for control of perspective, positioning
Handy Pinhole Camera (Latin Camera Obscura) to observe the transit of Venus, eclipses and other phenomena occurring on the Sun
Lech Mankiewicz Centre for Theoretical Physics, Polish Academy of Sciences, Warsaw, Global Intelligent Robotic Telescopes Network GLORIA http://www.gloria-project.eu/ Paweł Rudawy Astronomical Institute,
Practice final for Basic Physics spring 2005 answers on the last page Name: Date:
Practice final for Basic Physics spring 2005 answers on the last page Name: Date: 1. A 12 ohm resistor and a 24 ohm resistor are connected in series in a circuit with a 6.0 volt battery. Assuming negligible
Interference. Physics 102 Workshop #3. General Instructions
Interference Physics 102 Workshop #3 Name: Lab Partner(s): Instructor: Time of Workshop: General Instructions Workshop exercises are to be carried out in groups of three. One report per group is due by
Vision Correction in Camera Viewfinders
Vision Correction in Camera Viewfinders Douglas A. Kerr Issue 2 March 23, 2015 ABSTRACT AND INTRODUCTION Many camera viewfinders are equipped with a lever or knob that controls adjustable vision correction,
Optics and Geometry. with Applications to Photography Tom Davis [email protected] http://www.geometer.org/mathcircles November 15, 2004
Optics and Geometry with Applications to Photography Tom Davis [email protected] http://www.geometer.org/mathcircles November 15, 2004 1 Useful approximations This paper can be classified as applied
Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect
Objectives: PS-7.1 Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect Illustrate ways that the energy of waves is transferred by interaction with
Buying Your First Telescope By Mike Usher
Buying Your First Telescope By Mike Usher The first thing to understand is that a telescope is a high quality optical device and high quality optical devices are not inexpensive. Second mortgages are not
ATOMIC SPECTRA. Apparatus: Optical spectrometer, spectral tubes, power supply, incandescent lamp, bottles of dyed water, elevating jack or block.
1 ATOMIC SPECTRA Objective: To measure the wavelengths of visible light emitted by atomic hydrogen and verify the measured wavelengths against those predicted by quantum theory. To identify an unknown
Equations, Lenses and Fractions
46 Equations, Lenses and Fractions The study of lenses offers a good real world example of a relation with fractions we just can t avoid! Different uses of a simple lens that you may be familiar with are
Calculating Astronomical Unit from Venus Transit
Calculating Astronomical Unit from Venus Transit A) Background 1) Parallaxes of the Sun (the horizontal parallaxes) By definition the parallaxes of the Sun is the angle β shown below: By trigonometry,
b. In Laser View - click on wave. Pose an explanation that explains why the light bends when it enters the water.
Sierzega/Ferri: Optics 5 Observation Experiments: Light Bending Go to: http://phet.colorado.edu/en/simulation /bending-light You have a laser beam (press the button to turn it on!) that is shining from
FREE FALL. Introduction. Reference Young and Freedman, University Physics, 12 th Edition: Chapter 2, section 2.5
Physics 161 FREE FALL Introduction This experiment is designed to study the motion of an object that is accelerated by the force of gravity. It also serves as an introduction to the data analysis capabilities
Laws; of Refraction. bends away from the normal. more dense medium bends towards the normal. to another does not bend. It is not
Science 8 Laws; of Refraction 1. tight that moyes at an angle from a less dense medium to a more dense medium bends towards the normal. (The second medium slows the light down) Note: The angle of refraction,
STAAR Science Tutorial 30 TEK 8.8C: Electromagnetic Waves
Name: Teacher: Pd. Date: STAAR Science Tutorial 30 TEK 8.8C: Electromagnetic Waves TEK 8.8C: Explore how different wavelengths of the electromagnetic spectrum such as light and radio waves are used to
EXPERIMENT #1: MICROSCOPY
EXPERIMENT #1: MICROSCOPY Brightfield Compound Light Microscope The light microscope is an important tool in the study of microorganisms. The compound light microscope uses visible light to directly illuminate
MICROSCOPY. To demonstrate skill in the proper utilization of a light microscope.
MICROSCOPY I. OBJECTIVES To demonstrate skill in the proper utilization of a light microscope. To demonstrate skill in the use of ocular and stage micrometers for measurements of cell size. To recognize
Physics 41, Winter 1998 Lab 1 - The Current Balance. Theory
Physics 41, Winter 1998 Lab 1 - The Current Balance Theory Consider a point at a perpendicular distance d from a long straight wire carrying a current I as shown in figure 1. If the wire is very long compared
PlaneWave CDK Telescope Instructions CDK12.5, 17, 20 and 24
PlaneWave CDK Telescope Instructions CDK12.5, 17, 20 and 24 V112712 1 Collimation and Secondary Spacing Procedure The CDK optical design has four optical elements shown in Figure 1. The primary mirror
Physics 202 Problems - Week 8 Worked Problems Chapter 25: 7, 23, 36, 62, 72
Physics 202 Problems - Week 8 Worked Problems Chapter 25: 7, 23, 36, 62, 72 Problem 25.7) A light beam traveling in the negative z direction has a magnetic field B = (2.32 10 9 T )ˆx + ( 4.02 10 9 T )ŷ
3D Printing LESSON PLAN PHYSICS 8,11: OPTICS
INVESTIGATE RATIONALE Optics is commonly taught through the use of commercial optics kits that usually include a basic set of 2-4 geometric lenses (such as double convex or double concave). These lenses
PH3FP. (JUn13PH3Fp01) General Certificate of Secondary Education Foundation Tier June 2013. Unit Physics P3 TOTAL. Time allowed 1 hour
Centre Number Surname Candidate Number For Examiner s Use Other Names Candidate Signature Examiner s Initials Physics Unit Physics P3 Thursday 23 May 2013 For this paper you must have: a ruler a calculator
Chapter 4. Microscopy, Staining, and Classification. Lecture prepared by Mindy Miller-Kittrell North Carolina State University
Chapter 4 Microscopy, Staining, and Classification 2012 Pearson Education Inc. Lecture prepared by Mindy Miller-Kittrell North Carolina State University Microscopy and Staining 2012 Pearson Education Inc.
How To Understand General Relativity
Chapter S3 Spacetime and Gravity What are the major ideas of special relativity? Spacetime Special relativity showed that space and time are not absolute Instead they are inextricably linked in a four-dimensional
Protocol for Microscope Calibration
Protocol for Microscope Calibration A properly calibrated system is essential for successful and efficient software use. The following are step by step instructions on how to calibrate the hardware using
Third Grade Light and Optics Assessment
Third Grade Light and Optics Assessment 1a. Light travels at an amazingly high speed. How fast does it travel? a. 186,000 miles per second b. 186,000 miles per hour 1b. Light travels at an amazingly high
