SAMPLE PROBLEM 8.1. Solutions of Electrolytes and Nonelectrolytes SOLUTION STUDY CHECK
|
|
|
- Bernard Tucker
- 9 years ago
- Views:
Transcription
1 Solutions of Electrolytes and Nonelectrolytes SAMPLE PROBLEM 8.1 Indicate whether solutions of each of the following contain only ions, only molecules, or mostly molecules and a few ions: a. Na 2 SO 4, a strong electrolyte b. CH 3 OH, a nonelectrolyte a. A solution of Na 2 SO 4 contains only the ions Na + and SO 4 2. b. A nonelectrolyte such as CH 3 OH dissolves only as molecules. Boric acid, H 3 BO 3, is a weak electrolyte. Would you expect a boric acid solution to contain only ions, only molecules, or mostly molecules and a few ions?
2 SAMPLE PROBLEM 8.2 Electrolyte Concentration In body fluids, concentrations of electrolytes are often expressed as milliequivalents (meq) per liter. A typical concentration for Ca 2+ in the blood is 8.8 meq/l. a. How many moles of calcium ion are in 0.50 L of blood? b. If chloride ion is the only other ion present, what is its concentration in meq/l? a. Using the volume and the electrolyte concentration (in meq/l), we can find the number of equivalents in 0.50 L of blood: We can then convert equivalents to moles (for Ca 2+ there are 2 Eq per mole): b. If the concentration of Ca 2+ is 8.8 meq/l, then the concentration of Cl must be 8.8 meq/l to balance the charge. A Ringer s solution for intravenous fluid replacement contains 155 meq Cl per liter of solution. If a patient receives 1250 ml of Ringer s solution, how many moles of chloride were given?
3 Saturated Solutions SAMPLE PROBLEM 8.3 At 20 C, the solubility of KCl is 34 g/100 g of water. In the laboratory, a student mixes 75 g of KCl with 200. g of water at a temperature of 20 C. a. How much of the KCl can dissolve? b. Is the solution saturated or unsaturated? c. What is the mass of any solid KCl in the bottom of the container? a. KCl has a solubility of 34 g of KCl in 100 g of water. Using solubility as a conversion factor, the maximum amount of KCl that can dissolve in 200. g of water is calculated as follows: b. Because 75 g of KCl exceeds the amount that can dissolve in 200. g of water, the KCl solution is saturated. c. If we add 75 g of KCl to 200. g of water and only 68 g of KCl can dissolve, there is 7 g of solid (undissolved) KCl on the bottom of the container. At 50 C, the solubility of NaNO 3 is 110 g/100 g of water. How many grams of NaNO 3 are needed to make a saturated NaNO 3 solution with 50. g of water at 50 C?
4 Factors Affecting Solubility SAMPLE PROBLEM 8.4 Indicate whether the solubility of the solute will increase or decrease in each of the following situations: a. dissolving sugar using 80 C water instead of 25 C water b. effect on the dissolved O 2 in a lake as it warms a. An increase in the temperature increases the solubility of the sugar. b. An increase in the temperature decreases the solubility of O 2 gas. At 10 C, the solubility of KNO 3 is 30 g/100 g H 2 O. Would you expect the solubility of KNO 3 to be higher or lower at 40 C? Explain.
5 SAMPLE PROBLEM 8.5 Formation of an Insoluble Salt Solutions of BaCl 2 and K 2 SO 4 are mixed and a white solid forms. a. Write the net ionic equation. b. What is the white solid that forms? a. STEP 1 STEP 2 BaSO 4 (s) is insoluble. STEP 3 STEP 4 b. BaSO 4 is the white solid. Predict whether a solid might form in each of the following mixtures of solutions. If so, write the net ionic equation for the reaction. a. NH 4 Cl(aq) + Ca(NO 3 ) 2 (aq) b. Pb(NO 3 ) 2 (aq) + KCl(aq)
6 Calculating Mass Percent SAMPLE PROBLEM 8.6 What is the mass percent of a solution prepared by dissolving 30.0 g of NaOH in g of H 2 O? STEP 1 Given 30.0 g of NaOH and g of H 2 O Need mass percent (m/m) of NaOH STEP 2 Plan The mass percent is calculated by using the mass in grams of the solute and solution in the definition of mass percent. STEP 3 Equalities/Conversion Factors STEP 4 Set Up Problem The mass of the solute and the solution are obtained from the data:
7 Calculating Mass Percent (Continued) SAMPLE PROBLEM 8.6 What is the mass percent (m/m) of NaCl in a solution made by dissolving 2.0 g of NaCl in 56.0 g of H 2 O?
8 Calculating Percent Concentration SAMPLE PROBLEM 8.7 A student prepared a solution by dissolving 5.0 g of KI in enough water to give a final volume of 250 ml. What is the mass/volume percent (m/v) of the KI solution? STEP 1 Given 5.0 g of KI and 250 ml of solution Need mass/volume percent (m/v) of KI STEP 2 Plan The mass/volume percent is calculated by using the mass in grams of the solute and the volume in ml of the solution in the definition of mass/volume percent. STEP 3 Equalities/Conversion Factors Write the mass/volume percent expression. STEP 4 Set Up Problem Substitute solute and solution quantities into the mass/volume percent expression. What is the mass/volume percent (m/v) of Br 2 in a solution prepared by dissolving 12 g of bromine (Br 2 ) in enough carbon tetrachloride to make 250 ml of solution?
9 Using Mass/Volume Percent to Find Mass of Solute A topical antibiotic is 1.0% (m/v) Clindamycin. How many grams of Clindamycin are in 60. ml of the 1.0% (m /v) solution? STEP 1 Given 1.0% (m/v) Clindamycin Need grams of Clindamycin STEP 2 Plan STEP 3 Equalities/Conversion Factors The percent (m/v) indicates the grams of a solute in every 100 ml of a solution. The 1.0% (m/v) can be written as two conversion factors: SAMPLE PROBLEM 8.8 STEP 4 Set Up Problem The volume of the solution is converted to mass of solute using the conversion factor: Calculate the grams of KCl in 225 g of an 8.00% (m/m) KCl solution.
10 SAMPLE PROBLEM 8.9 Calculating Molarity What is the molarity (M) of 60.0 g of NaOH in L of solution? STEP 1 Given 60.0 g of NaOH in L of solution Need molarity (moles/l) STEP 2 Plan The calculation of molarity requires the moles of NaOH and the volume of the solution in liters. STEP 3 Equalities/Conversion Factors
11 Calculating Molarity (Continued) What is the molarity (M) of 60.0 g of NaOH in L of solution? STEP 4 Set Up Problem SAMPLE PROBLEM 8.9 The molarity is calculated by dividing the moles of NaOH by the volume in liters. What is the molarity of a solution that contains 75.0 g of KNO 3 dissolved in L of solution?
12 Using Molarity to Find Volume How many liters of a 2.00 M NaCl solution are needed to provide 67.3 g of NaCl? STEP 1 Given 67.3 g of NaCl from a 2.00 M NaCl solution SAMPLE PROBLEM 8.10 Need liters of NaCl solution STEP 2 Plan The volume of the NaCl solution is calculated using the moles of NaCl and molarity of the NaCl solution: STEP 3 Equalities/Conversion Factors The molarity of any solution can be written as two conversion factors:
13 Using Molarity to Find Volume (Continued) How many liters of a 2.00 M NaCl solution are needed to provide 67.3 g of NaCl? STEP 4 Set Up Problem SAMPLE PROBLEM 8.10 How many moles of HCl are present in 750 ml of a 6.0 M HCl solution?
14 Molarity of a Diluted Solution SAMPLE PROBLEM 8.11 What is the molarity of a solution prepared when 75.0 ml of a 4.00 M KCl solution is diluted to a volume of L? STEP 1 Give Data in a Table We make a table of the molar concentrations and volumes of the initial and diluted solutions. For the calculation, units must be the same. STEP 2 Plan The unknown molarity can be calculated by solving the dilution expression for M 2 : STEP 3 Set Up Problem The values from the table are placed into the dilution expression: You need to prepare 600. ml of 2.00 M NaOH solution from a 10.0 M NaOH solution. What volume of the 10.0 M NaOH solution do you use?
15 SAMPLE PROBLEM 8.12 Volume of a Solution in a Reaction Zinc reacts with HCl to produce ZnCl 2 and hydrogen gas H 2 : How many liters of a 1.50 M HCl solution completely react with 5.32 g of zinc? STEP 1 Given 5.32 g of Zn and a 1.50 M HCl solution Need liters of HCl solution STEP 2 Plan We start the problem with the grams of Zn given and use its molar mass to calculate moles. Then we can use the mole mole factor from the equation and the molarity of the HCl as conversion factors:
16 Volume of a Solution in a Reaction (Continued) Zinc reacts with HCl to produce ZnCl 2 and hydrogen gas H 2 : SAMPLE PROBLEM 8.12 How many liters of a 1.50 M HCl solution completely react with 5.32 g of zinc? STEP 3 Equalities/Conversion Factors
17 Volume of a Solution in a Reaction (Continued) Zinc reacts with HCl to produce ZnCl 2 and hydrogen gas H 2 : SAMPLE PROBLEM 8.12 How many liters of a 1.50 M HCl solution completely react with 5.32 g of zinc? STEP 4 Set Up Problem We can write the problem setup as seen in our plan: Using the reaction in Sample Problem 8.12, how many grams of zinc can react with 225 ml of M HCl solution?
18 Isotonic, Hypotonic, and Hypertonic Solutions SAMPLE PROBLEM 8.13 Describe each of the following solutions as isotonic, hypotonic, or hypertonic. Indicate whether a red blood cell placed in each solution will undergo hemolysis, crenation, or no change. a. a 5.0% (m/v) glucose solution b. a 0.2% (m/v) NaCl solution a. A 5.0% (m/v) glucose solution is isotonic. A red blood cell will not undergo any change. b. A 0.2% (m/v) NaCl solution is hypotonic. A red blood cell will undergo hemolysis. What is the effect of a 10% (m/v) glucose solution on a red blood cell?
Chemistry 51 Chapter 8 TYPES OF SOLUTIONS. A solution is a homogeneous mixture of two substances: a solute and a solvent.
TYPES OF SOLUTIONS A solution is a homogeneous mixture of two substances: a solute and a solvent. Solute: substance being dissolved; present in lesser amount. Solvent: substance doing the dissolving; present
REVIEW QUESTIONS Chapter 8
Chemistry 51 ANSWER KEY REVIEW QUESTIONS Chapter 8 1. Identify each of the diagrams below as strong electrolyte, weak electrolyte or non-electrolyte: (a) Non-electrolyte (no ions present) (b) Weak electrolyte
Answers and Solutions to Text Problems
9 Answers and Solutions to Text Problems 9.1 a. δ O δ + δ + H H In a water molecule, the oxygen has a partial negative charge and the hydrogens have partial positive charges. b. δ δ + O H δ + δ + δ H H
Chapter 14 Solutions
Chapter 14 Solutions 1 14.1 General properties of solutions solution a system in which one or more substances are homogeneously mixed or dissolved in another substance two components in a solution: solute
stoichiometry = the numerical relationships between chemical amounts in a reaction.
1 REACTIONS AND YIELD ANSWERS stoichiometry = the numerical relationships between chemical amounts in a reaction. 2C 8 H 18 (l) + 25O 2 16CO 2 (g) + 18H 2 O(g) From the equation, 16 moles of CO 2 (a greenhouse
Tutorial 4 SOLUTION STOICHIOMETRY. Solution stoichiometry calculations involve chemical reactions taking place in solution.
T-27 Tutorial 4 SOLUTION STOICHIOMETRY Solution stoichiometry calculations involve chemical reactions taking place in solution. Of the various methods of expressing solution concentration the most convenient
Solution a homogeneous mixture = A solvent + solute(s) Aqueous solution water is the solvent
Solution a homogeneous mixture = A solvent + solute(s) Aqueous solution water is the solvent Water a polar solvent: dissolves most ionic compounds as well as many molecular compounds Aqueous solution:
Chemistry B11 Chapter 6 Solutions and Colloids
Chemistry B11 Chapter 6 Solutions and Colloids Solutions: solutions have some properties: 1. The distribution of particles in a solution is uniform. Every part of the solution has exactly the same composition
1. Read P. 368-375, P. 382-387 & P. 429-436; P. 375 # 1-11 & P. 389 # 1,7,9,12,15; P. 436 #1, 7, 8, 11
SCH3U- R.H.KING ACADEMY SOLUTION & ACID/BASE WORKSHEET Name: The importance of water - MAKING CONNECTION READING 1. Read P. 368-375, P. 382-387 & P. 429-436; P. 375 # 1-11 & P. 389 # 1,7,9,12,15; P. 436
Aqueous Solutions. Water is the dissolving medium, or solvent. Some Properties of Water. A Solute. Types of Chemical Reactions.
Aqueous Solutions and Solution Stoichiometry Water is the dissolving medium, or solvent. Some Properties of Water Water is bent or V-shaped. The O-H bonds are covalent. Water is a polar molecule. Hydration
CHAPTER 13: SOLUTIONS
CHAPTER 13: SOLUTIONS Problems: 1-8, 11-15, 20-30, 37-88, 107-110, 131-132 13.2 SOLUTIONS: HOMOGENEOUS MIXTURES solution: homogeneous mixture of substances present as atoms, ions, and/or molecules solute:
Chemical Reactions in Water Ron Robertson
Chemical Reactions in Water Ron Robertson r2 f:\files\courses\1110-20\2010 possible slides for web\waterchemtrans.doc Properties of Compounds in Water Electrolytes and nonelectrolytes Water soluble compounds
1. When the following equation is balanced, the coefficient of Al is. Al (s) + H 2 O (l)? Al(OH) 3 (s) + H 2 (g)
1. When the following equation is balanced, the coefficient of Al is. Al (s) + H 2 O (l)? Al(OH) (s) + H 2 (g) A) 1 B) 2 C) 4 D) 5 E) Al (s) + H 2 O (l)? Al(OH) (s) + H 2 (g) Al (s) + H 2 O (l)? Al(OH)
Chemical Equations. Chemical Equations. Chemical reactions describe processes involving chemical change
Chemical Reactions Chemical Equations Chemical reactions describe processes involving chemical change The chemical change involves rearranging matter Converting one or more pure substances into new pure
Molarity of Ions in Solution
APPENDIX A Molarity of Ions in Solution ften it is necessary to calculate not only the concentration (in molarity) of a compound in aqueous solution but also the concentration of each ion in aqueous solution.
CHEM 110: CHAPTER 3: STOICHIOMETRY: CALCULATIONS WITH CHEMICAL FORMULAS AND EQUATIONS
1 CHEM 110: CHAPTER 3: STOICHIOMETRY: CALCULATIONS WITH CHEMICAL FORMULAS AND EQUATIONS The Chemical Equation A chemical equation concisely shows the initial (reactants) and final (products) results of
a. Cherry Garcia ice cream: heterogeneous mixture b. mayonnaise: colloid c, d, e. seltzer water, nail polish remover, and brass: solutions
Chapter 8 1 Chapter 8 Solutions Solutions to In-Chapter Problems 8.1 A heterogeneous miture does not have a uniform composition throughout a sample. A solution is a homogeneous miture that contains small
Chemistry Ch 15 (Solutions) Study Guide Introduction
Chemistry Ch 15 (Solutions) Study Guide Introduction Name: Note: a word marked (?) is a vocabulary word you should know the meaning of. A homogeneous (?) mixture, or, is a mixture in which the individual
Experiment 8 - Double Displacement Reactions
Experiment 8 - Double Displacement Reactions A double displacement reaction involves two ionic compounds that are dissolved in water. In a double displacement reaction, it appears as though the ions are
CHM1 Review for Exam 12
Topics Solutions 1. Arrhenius Acids and bases a. An acid increases the H + concentration in b. A base increases the OH - concentration in 2. Strong acids and bases completely dissociate 3. Weak acids and
Aqueous Ions and Reactions
Aqueous Ions and Reactions (ions, acids, and bases) Demo NaCl(aq) + AgNO 3 (aq) AgCl (s) Two clear and colorless solutions turn to a cloudy white when mixed Demo Special Light bulb in water can test for
Name: Class: Date: 2 4 (aq)
Name: Class: Date: Unit 4 Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1) The balanced molecular equation for complete neutralization of
Liquid phase. Balance equation Moles A Stoic. coefficient. Aqueous phase
STOICHIOMETRY Objective The purpose of this exercise is to give you some practice on some Stoichiometry calculations. Discussion The molecular mass of a compound is the sum of the atomic masses of all
Steps for balancing a chemical equation
The Chemical Equation: A Chemical Recipe Dr. Gergens - SD Mesa College A. Learn the meaning of these arrows. B. The chemical equation is the shorthand notation for a chemical reaction. A chemical equation
MOLARITY = (moles solute) / (vol.solution in liter units)
CHEM 101/105 Stoichiometry, as applied to Aqueous Solutions containing Ionic Solutes Lect-05 MOLES - a quantity of substance. Quantities of substances can be expressed as masses, as numbers, or as moles.
Stoichiometry. 1. The total number of moles represented by 20 grams of calcium carbonate is (1) 1; (2) 2; (3) 0.1; (4) 0.2.
Stoichiometry 1 The total number of moles represented by 20 grams of calcium carbonate is (1) 1; (2) 2; (3) 01; (4) 02 2 A 44 gram sample of a hydrate was heated until the water of hydration was driven
Appendix D. Reaction Stoichiometry D.1 INTRODUCTION
Appendix D Reaction Stoichiometry D.1 INTRODUCTION In Appendix A, the stoichiometry of elements and compounds was presented. There, the relationships among grams, moles and number of atoms and molecules
Ch 8.5 Solution Concentration Units % (m/m or w/w) = mass of solute x 100 total mass of solution mass of solution = mass solute + mass solvent
1 Ch 8.5 Solution Concentration Units % (m/m or w/w) = mass of solute x 100 total mass of solution mass of solution = mass solute + mass solvent % (v/v) = volume of solute x 100 volume of solution filled
Stoichiometry and Aqueous Reactions (Chapter 4)
Stoichiometry and Aqueous Reactions (Chapter 4) Chemical Equations 1. Balancing Chemical Equations (from Chapter 3) Adjust coefficients to get equal numbers of each kind of element on both sides of arrow.
W1 WORKSHOP ON STOICHIOMETRY
INTRODUCTION W1 WORKSHOP ON STOICHIOMETRY These notes and exercises are designed to introduce you to the basic concepts required to understand a chemical formula or equation. Relative atomic masses of
General Chemistry II Chapter 20
1 General Chemistry II Chapter 0 Ionic Equilibria: Principle There are many compounds that appear to be insoluble in aqueous solution (nonelectrolytes). That is, when we add a certain compound to water
Stoichiometry Review
Stoichiometry Review There are 20 problems in this review set. Answers, including problem set-up, can be found in the second half of this document. 1. N 2 (g) + 3H 2 (g) --------> 2NH 3 (g) a. nitrogen
Experiment 1 Chemical Reactions and Net Ionic Equations
Experiment 1 Chemical Reactions and Net Ionic Equations I. Objective: To predict the products of some displacement reactions and write net ionic equations. II. Chemical Principles: A. Reaction Types. Chemical
Element of same atomic number, but different atomic mass o Example: Hydrogen
Atomic mass: p + = protons; e - = electrons; n 0 = neutrons p + + n 0 = atomic mass o For carbon-12, 6p + + 6n 0 = atomic mass of 12.0 o For chlorine-35, 17p + + 18n 0 = atomic mass of 35.0 atomic mass
IB Chemistry 1 Mole. One atom of C-12 has a mass of 12 amu. One mole of C-12 has a mass of 12 g. Grams we can use more easily.
The Mole Atomic mass units and atoms are not convenient units to work with. The concept of the mole was invented. This was the number of atoms of carbon-12 that were needed to make 12 g of carbon. 1 mole
EXPERIMENT # 3 ELECTROLYTES AND NON-ELECTROLYTES
EXPERIMENT # 3 ELECTROLYTES AND NON-ELECTROLYTES Purpose: 1. To investigate the phenomenon of solution conductance. 2. To distinguish between compounds that form conducting solutions and compounds that
Chapter 8: Chemical Equations and Reactions
Chapter 8: Chemical Equations and Reactions I. Describing Chemical Reactions A. A chemical reaction is the process by which one or more substances are changed into one or more different substances. A chemical
2. DECOMPOSITION REACTION ( A couple have a heated argument and break up )
TYPES OF CHEMICAL REACTIONS Most reactions can be classified into one of five categories by examining the types of reactants and products involved in the reaction. Knowing the types of reactions can help
Calculation of Molar Masses. Molar Mass. Solutions. Solutions
Molar Mass Molar mass = Mass in grams of one mole of any element, numerically equal to its atomic weight Molar mass of molecules can be determined from the chemical formula and molar masses of elements
Chapter 5. Chemical Reactions and Equations. Introduction. Chapter 5 Topics. 5.1 What is a Chemical Reaction
Introduction Chapter 5 Chemical Reactions and Equations Chemical reactions occur all around us. How do we make sense of these changes? What patterns can we find? 1 2 Copyright The McGraw-Hill Companies,
Name period Unit 9: acid/base equilibrium
Name period Unit 9: acid/base equilibrium 1. What is the difference between the Arrhenius and the BronstedLowry definition of an acid? Arrhenious acids give H + in water BronstedLowry acids are proton
Summer 2003 CHEMISTRY 115 EXAM 3(A)
Summer 2003 CHEMISTRY 115 EXAM 3(A) 1. In which of the following solutions would you expect AgCl to have the lowest solubility? A. 0.02 M BaCl 2 B. pure water C. 0.02 M NaCl D. 0.02 M KCl 2. Calculate
Sample Problem (mole-mass)
Name: KEY Class: Sample Problem (mole-mass) Potassium chlorate is sometimes decomposed in the laboratory to generate oxygen. What mass of KClO 3 do you need to produce 0.50 moles of O 2? 2 KClO 3 (s) 2
PART I: MULTIPLE CHOICE (30 multiple choice questions. Each multiple choice question is worth 2 points)
CHEMISTRY 123-07 Midterm #1 Answer key October 14, 2010 Statistics: Average: 74 p (74%); Highest: 97 p (95%); Lowest: 33 p (33%) Number of students performing at or above average: 67 (57%) Number of students
Solutions. Chapter 13. Properties of Solutions. Lecture Presentation
Lecture Presentation Chapter 13 Properties of Yonsei University homogeneous mixtures of two or more pure substances: may be gases, liquids, or solids In a solution, the solute is dispersed uniformly throughout
4 theoretical problems 2 practical problems
1 st 4 theoretical problems 2 practical problems FIRST INTERNATIONAL CHEMISTRY OLYMPIAD PRAGUE 1968 CZECHOSLOVAKIA THEORETICAL PROBLEMS PROBLEM 1 A mixture of hydrogen and chlorine kept in a closed flask
Copyright 2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 All rights reserved.
Sample Exercise 17.1 Calculating the ph When a Common Ion is Involved What is the ph of a solution made by adding 0.30 mol of acetic acid and 0.30 mol of sodium acetate to enough water to make 1.0 L of
Solubility Product Constant
Solubility Product Constant Page 1 In general, when ionic compounds dissolve in water, they go into solution as ions. When the solution becomes saturated with ions, that is, unable to hold any more, the
Chapter 17. The best buffer choice for ph 7 is NaH 2 PO 4 /Na 2 HPO 4. 19)
Chapter 17 2) a) HCl and CH 3 COOH are both acids. A buffer must have an acid/base conjugate pair. b) NaH 2 PO 4 and Na 2 HPO 4 are an acid/base conjugate pair. They will make an excellent buffer. c) H
Moles. Moles. Moles. Moles. Balancing Eqns. Balancing. Balancing Eqns. Symbols Yields or Produces. Like a recipe:
Like a recipe: Balancing Eqns Reactants Products 2H 2 (g) + O 2 (g) 2H 2 O(l) coefficients subscripts Balancing Eqns Balancing Symbols (s) (l) (aq) (g) or Yields or Produces solid liquid (pure liquid)
Formulae, stoichiometry and the mole concept
3 Formulae, stoichiometry and the mole concept Content 3.1 Symbols, Formulae and Chemical equations 3.2 Concept of Relative Mass 3.3 Mole Concept and Stoichiometry Learning Outcomes Candidates should be
Chemistry: Chemical Equations
Chemistry: Chemical Equations Write a balanced chemical equation for each word equation. Include the phase of each substance in the equation. Classify the reaction as synthesis, decomposition, single replacement,
Concentration of a solution
Revision of calculations Stoichiometric calculations Osmotic pressure and osmolarity MUDr. Jan Pláteník, PhD Concentration of a solution mass concentration: grams of substance per litre of solution molar
Moles. Balanced chemical equations Molar ratios Mass Composition Empirical and Molecular Mass Predicting Quantities Equations
Moles Balanced chemical equations Molar ratios Mass Composition Empirical and Molecular Mass Predicting Quantities Equations Micro World atoms & molecules Macro World grams Atomic mass is the mass of an
Unit 10A Stoichiometry Notes
Unit 10A Stoichiometry Notes Stoichiometry is a big word for a process that chemist s use to calculate amounts in reactions. It makes use of the coefficient ratio set up by balanced reaction equations
Balancing Chemical Equations Worksheet
Balancing Chemical Equations Worksheet Student Instructions 1. Identify the reactants and products and write a word equation. 2. Write the correct chemical formula for each of the reactants and the products.
UNIT (4) CALCULATIONS AND CHEMICAL REACTIONS
UNIT (4) CALCULATIONS AND CHEMICAL REACTIONS 4.1 Formula Masses Recall that the decimal number written under the symbol of the element in the periodic table is the atomic mass of the element. 1 7 8 12
6) Which compound is manufactured in larger quantities in the U.S. than any other industrial chemical?
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Which statement concerning Arrhenius acid-base theory is not correct? A) Acid-base reactions must
SCH 4C1 Unit 2 Problem Set Questions taken from Frank Mustoe et all, "Chemistry 11", McGraw-Hill Ryerson, 2001
SCH 4C1 Unit 2 Problem Set Questions taken from Frank Mustoe et all, "Chemistry 11", McGraw-Hill Ryerson, 2001 1. A small pin contains 0.0178 mol of iron. How many atoms of iron are in the pin? 2. A sample
Answers and Solutions to Text Problems
Chapter 7 Answers and Solutions 7 Answers and Solutions to Text Problems 7.1 A mole is the amount of a substance that contains 6.02 x 10 23 items. For example, one mole of water contains 6.02 10 23 molecules
Redox and Electrochemistry
Name: Thursday, May 08, 2008 Redox and Electrochemistry 1. A diagram of a chemical cell and an equation are shown below. When the switch is closed, electrons will flow from 1. the Pb(s) to the Cu(s) 2+
Chemical Calculations
Moles and Molecules Moles and Chemical Reactions Moles, Chemical Reactions, and Molarity All done as UNIT CONVERSIONS!!! and practice, practice, practice CHM 1010 Sinex 1 Mass moles particles conversions
Solution concentration = how much solute dissolved in solvent
Solutions 1 Solutions Concentration Solution concentration = how much solute dissolved in solvent Coffee crystal = solute Water = solvent Liquid Coffee = solution so a solute is dissolved in solvent to
Chemistry 132 NT. Solubility Equilibria. The most difficult thing to understand is the income tax. Solubility and Complex-ion Equilibria
Chemistry 13 NT The most difficult thing to understand is the income tax. Albert Einstein 1 Chem 13 NT Solubility and Complex-ion Equilibria Module 1 Solubility Equilibria The Solubility Product Constant
Chemical Equations and Chemical Reactions. Chapter 8.1
Chemical Equations and Chemical Reactions Chapter 8.1 Objectives List observations that suggest that a chemical reaction has taken place List the requirements for a correctly written chemical equation.
Chapter 6. Solution, Acids and Bases
Chapter 6 Solution, Acids and Bases Mixtures Two or more substances Heterogeneous- different from place to place Types of heterogeneous mixtures Suspensions- Large particles that eventually settle out
Chapter 4 Chemical Reactions
Chapter 4 Chemical Reactions I) Ions in Aqueous Solution many reactions take place in water form ions in solution aq solution = solute + solvent solute: substance being dissolved and present in lesser
CHEMISTRY II FINAL EXAM REVIEW
Name Period CHEMISTRY II FINAL EXAM REVIEW Final Exam: approximately 75 multiple choice questions Ch 12: Stoichiometry Ch 5 & 6: Electron Configurations & Periodic Properties Ch 7 & 8: Bonding Ch 14: Gas
Calculations and Chemical Equations. Example: Hydrogen atomic weight = 1.008 amu Carbon atomic weight = 12.001 amu
Calculations and Chemical Equations Atomic mass: Mass of an atom of an element, expressed in atomic mass units Atomic mass unit (amu): 1.661 x 10-24 g Atomic weight: Average mass of all isotopes of a given
Chemistry 12 Worksheet 1-1 - Measuring Reaction Rates
Chemistry 12 Worksheet 1-1 - Measuring Reaction Rates 1. A chemist wishes to determine the rate of reaction of zinc with hydrochloric acid. The equation for the reaction is: Zn (s) + 2HCl (aq) oh 2(g)
Chapter 7: Chemical Reactions
Chapter 7 Page 1 Chapter 7: Chemical Reactions A chemical reaction: a process in which at least one new substance is formed as the result of a chemical change. A + B C + D Reactants Products Evidence that
Milliequivalents, Millimoles,, and Milliosmoles
Milliequivalents, Millimoles,, and Milliosmoles Electrolytes vs Nonelectrolytes Compounds in solution are often referred to as either electrolytes or nonelectrolytes - Electrolytes are compounds that in
Acid/Base Definition. Acid/Base Reactions. Major vs. Minor Species. Terms/Items you Need to Know. you need to memorize these!!
Acid/Base Reactions some covalent compounds have weakly bound H atoms and can lose them to water (acids) some compounds produce OH in water solutions when they dissolve (bases) acid/base reaction are very
CP Chemistry Review for Stoichiometry Test
CP Chemistry Review for Stoichiometry Test Stoichiometry Problems (one given reactant): 1. Make sure you have a balanced chemical equation 2. Convert to moles of the known substance. (Use the periodic
Chapter 13: Properties of Solutions
Chapter 13: Properties of Solutions Problems: 9-10, 13-17, 21-42, 44, 49-60, 71-72, 73 (a,c), 77-79, 84(a-c), 91 solution: homogeneous mixture of a solute dissolved in a solvent solute: solvent: component(s)
David A. Katz Department of Chemistry Pima Community College
Solutions David A. Katz Department of Chemistry Pima Community College A solution is a HOMOGENEOUS mixture of 2 or more substances in a single phase. One constituent t is usually regarded as the SOLVENT
Acids and Bases. Chapter 16
Acids and Bases Chapter 16 The Arrhenius Model An acid is any substance that produces hydrogen ions, H +, in an aqueous solution. Example: when hydrogen chloride gas is dissolved in water, the following
n molarity = M = N.B.: n = litres (solution)
1. CONCENTRATION UNITS A solution is a homogeneous mixture of two or more chemical substances. If we have a solution made from a solid and a liquid, we say that the solid is dissolved in the liquid and
EXPERIMENT 10 Chemistry 110. Solutions Part 2 ACIDS, BASES, AND ELECTROLYTES
EXPERIMENT 10 Chemistry 110 Solutions Part 2 ACIDS, BASES, AND ELECTROLYTES PURPOSE: The purpose of this experiment is to determine the properties of solutions of acids, bases and electrolytes. Students
NET IONIC EQUATIONS. A balanced chemical equation can describe all chemical reactions, an example of such an equation is:
NET IONIC EQUATIONS A balanced chemical equation can describe all chemical reactions, an example of such an equation is: NaCl + AgNO 3 AgCl + NaNO 3 In this case, the simple formulas of the various reactants
Instructions Answer all questions in the spaces provided. Do all rough work in this book. Cross through any work you do not want to be marked.
GCSE CHEMISTRY Higher Tier Chemistry 1H H Specimen 2018 Time allowed: 1 hour 45 minutes Materials For this paper you must have: a ruler a calculator the periodic table (enclosed). Instructions Answer all
4.1 Stoichiometry. 3 Basic Steps. 4. Stoichiometry. Stoichiometry. Butane Lighter 2C 4 H 10 + 13O 2 10H 2 O + 8CO 2
4. Stoichiometry 1. Stoichiometric Equations 2. Limiting Reagent Problems 3. Percent Yield 4. Limiting Reagent Problems 5. Concentrations of Solutes 6. Solution Stoichiometry 7. ph and Acid Base Titrations
Chemical Reactions 2 The Chemical Equation
Chemical Reactions 2 The Chemical Equation INFORMATION Chemical equations are symbolic devices used to represent actual chemical reactions. The left side of the equation, called the reactants, is separated
Chemistry B11 Chapter 4 Chemical reactions
Chemistry B11 Chapter 4 Chemical reactions Chemical reactions are classified into five groups: A + B AB Synthesis reactions (Combination) H + O H O AB A + B Decomposition reactions (Analysis) NaCl Na +Cl
Chem 1100 Chapter Three Study Guide Answers Outline I. Molar Mass and Moles A. Calculations of Molar Masses
Chem 1100 Chapter Three Study Guide Answers Outline I. Molar Mass and Moles A. Calculations of Molar Masses B. Calculations of moles C. Calculations of number of atoms from moles/molar masses 1. Avagadro
IB Chemistry. DP Chemistry Review
DP Chemistry Review Topic 1: Quantitative chemistry 1.1 The mole concept and Avogadro s constant Assessment statement Apply the mole concept to substances. Determine the number of particles and the amount
Chemical Quantities and Aqueous Reactions
4 Chemical Quantities and Aqueous Reactions I feel sorry for people who don t understand anything about chemistry. They are missing an important source of happiness. Linus Pauling (1901 1994) 4.1 Climate
Acid-Base Titrations. Setup for a Typical Titration. Titration 1
Titration 1 Acid-Base Titrations Molarities of acidic and basic solutions can be used to convert back and forth between moles of solutes and volumes of their solutions, but how are the molarities of these
Chemistry 151 Final Exam
Chemistry 151 Final Exam Name: SSN: Exam Rules & Guidelines Show your work. No credit will be given for an answer unless your work is shown. Indicate your answer with a box or a circle. All paperwork must
Chapter 13. Properties of Solutions
Sample Exercise 13.1 (p. 534) By the process illustrated below, water vapor reacts with excess solid sodium sulfate to form the hydrated form of the salt. The chemical reaction is Na 2 SO 4(s) + 10 H 2
Chapter 3. Chemical Reactions and Reaction Stoichiometry. Lecture Presentation. James F. Kirby Quinnipiac University Hamden, CT
Lecture Presentation Chapter 3 Chemical Reactions and Reaction James F. Kirby Quinnipiac University Hamden, CT The study of the mass relationships in chemistry Based on the Law of Conservation of Mass
Formulas, Equations and Moles
Chapter 3 Formulas, Equations and Moles Interpreting Chemical Equations You can interpret a balanced chemical equation in many ways. On a microscopic level, two molecules of H 2 react with one molecule
Chapter 8 - Chemical Equations and Reactions
Chapter 8 - Chemical Equations and Reactions 8-1 Describing Chemical Reactions I. Introduction A. Reactants 1. Original substances entering into a chemical rxn B. Products 1. The resulting substances from
I. ACID-BASE NEUTRALIZATION, TITRATION
LABORATORY 3 I. ACID-BASE NEUTRALIZATION, TITRATION Acid-base neutralization is a process in which acid reacts with base to produce water and salt. The driving force of this reaction is formation of a
Chapter 13 Properties of Solutions
Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chapter 13 Properties of are homogeneous mixtures of two or more pure substances. In a solution,
Chem101: General Chemistry Lecture 9 Acids and Bases
: General Chemistry Lecture 9 Acids and Bases I. Introduction A. In chemistry, and particularly biochemistry, water is the most common solvent 1. In studying acids and bases we are going to see that water
Chapter 3! Stoichiometry: Calculations with Chemical Formulas and Equations. Stoichiometry
Chapter 3! : Calculations with Chemical Formulas and Equations Anatomy of a Chemical Equation CH 4 (g) + 2O 2 (g) CO 2 (g) + 2 H 2 O (g) Anatomy of a Chemical Equation CH 4 (g) + 2 O 2 (g) CO 2 (g) + 2
Chapter 11 Properties of Solutions
Chapter 11 Properties of Solutions 11.1 Solution Composition A. Molarity moles solute 1. Molarity ( M ) = liters of solution B. Mass Percent mass of solute 1. Mass percent = 1 mass of solution C. Mole
CHEMICAL DETERMINATION OF EVERYDAY HOUSEHOLD CHEMICALS
CHEMICAL DETERMINATION OF EVERYDAY HOUSEHOLD CHEMICALS Purpose: It is important for chemists to be able to determine the composition of unknown chemicals. This can often be done by way of chemical tests.
