Experiments with the DG8SAQ VNWA

Size: px
Start display at page:

Download "Experiments with the DG8SAQ VNWA"

Transcription

1 DG8SAQ VNWA Tutorial Experiments with the DG8SAQ VNWA and the SDR-Kits Test Board Tom BAIER DG8SAQ This is an excerpt from my Ham Radio 2013 presentation which has been slightly extended (slides 6, 20 and 21 added). 1

2 Test Board for HF Experiments Calibration Standards: Open = n.c. Short: Load =47Ω: Thru: 2

3 Measuring Load -Resistor without SOL- Calibration? Works, because VNWA TX and RX port impedances are exactly 50 Ω. Z x = 47 Ω yield 3,4 db insertion loss. only Thru calibration required! 3

4 Measuring Load -Resistor in Transmission (=S 21 -Measurement) Only Thru calibration required Measurement: Resistor between TX and RX 4

5 Measuring Load -Resistor Result = 46,6 Ω inductive part Analysis with Custom Trace n ta missio on dat nvert transm a to re eflectio Con data 5

6 S Reflection Data vs. Transmission Data 11 normalized impedance:! Z x z 50 S s 2( t S ) z S z 1 21 S t2( s S ) z 2 These conversions can be performed with VNWA Custom traces. 6

7 Simple Calibration Standard Model: Only measured Load-Resistance 7

8 SOL-Calibration SOL Calibration for S11-Measurement Measurement TX Short Open p Load 8

9 Reflexion Measurement (S 11 ) of a 1 nf Capacitor S 11 C capacitive ESR = loss Resonance due to component wires Capacitor reflects almost total power, S 11 0 db 9

10 Modelling of Measurement Result in VNWA using Custom-Trace Impedance to Reflecion coefficient i 0,984 nf 9,3 nh 0,22 Ω einfaches Modell 10

11 The Model is quite accurate! ktive! Induk 11

12 Two Port Measurement of a 12 khz Band Pass Filter S-Parameters applicable to low frequencies as well. The VNWA too! 12

13 Special VNWA Settings for low Frequencies Lowest sample rate 300 Hz Nyquist limit 150 Hz Measurements down to 150 Hz possible IF must be within Codec frequency range (20 Hz 16kHz) 13

14 SOLT-Calibration SOLT Calibration for 2 2-Port Port Measurements TX TX Short Open Load RX Thru 14

15 Beware: Steep Skirt Filters require Time to settle to changing Stimulus! 5 s sweep time 0,3 s sweep time 15

16 Two Port Measurement of a 12 khz Band Pass Filter We need to measure all four S-parameters (S 11, S 21, S 12, S 22 ) 16

17 Two Port Measurement of a 12 khz Band Pass Filter: Forward Measurement TX 1 2 RX S11, S21 measured 17

18 Two Port Measurement of a 12 khz Band Pass Filter: Reverse Measurement TX 2 1 S 12, S 22 measured RX 18

19 What are measured 2-Port S-Parameters good for? Optimum Match? 19

20 VNWA Matching Tool (1) Allows to recalculate 2-port S-parameters to source and load impedances different from 50 Ohms! 20

21 VNWA Matching Tool (2) Complex conjugate of source impedance = filter input impedance Complex conjugate of load impedance = filter output impedance 21

22 Matching Analysis with VNWA Matching Tool Optimum: Z in = Z out = 610 Ω 22

23 Forced Impedance Match using Resistors 50 Ω Ω = 610 Ω 23

24 Match works except for increased Loss Simulated with Matching Tool 21.8 db Measured with resistive match 24

25 Effect of two 560 Ω Resistors in Signal Path: VNWA Complex Calculator 21,7 db additional attenuation 25

26 This can also be properly simulated! Simulation Tool QUCS t/ Universal circuit simulator Free No restrictions Easy to use Grafics and data export needs brush up 26

27 Measured S-Parameters in QUCS measured S-parameters from s2p-file 27

28 Matching Simulation in QUCS Standard diagramm output a bit strange Export simulation result to VNWA 28

29 Comparison QUCS-Simulation vs. Measurement simulated measuerd with with QUCS VNWA PERFECT! 29

30 Free Filter Design Software (1): Elsie for LC-Filters LC-Filter Designer and Analyzer Student version restricted to 7 dipols Numerical simulation results export easily to s2p-file! 30

31 Free Filter Design Software (2): Dishal for Crystal Filters horst-dj6ev Crystal filter designer and analyzer Simulates without crystal losses S 21 -simulation results can be exported 31

32 Free Filter Design Software (3): AADE Filter Design - for all filters Univeral filter designer and analyzer Free, but with nag screen Easy to use Numerical simulation results cannot be exported 32

33 Design 3 Pole Butterworth π-band Pass for 5 MHz with 3 MHz Bandwidth at 50 Ω Filter Design with Elsie 33

34 Elsie Simulation Result 34

35 Modify Components to standard Values and finite Q simulation with finite Q 35

36 and export Simulation into s2p-file for Comparison with Measurement. Export 36

37 Filter Hardware 37

38 Comparison Measurement vs. Elsie Simulation S 21, S 11 measured - Plot1, Plot2 Elsie simulation e of uctor lel nance sindu paral reson serie 38

39 Measuring / Selecting Crystals: VNWA Crystal Analyzer eg e.g. transmission (S21-measurement) Thru standard d 39

40 The VNWA Crystal Analyzer Tool: Find 3 similar Crystals 40

41 With these we want to build a Crystal Filter Enter Crystal Parameters into AADE Daten vom VNWA Crystal Analyz er übertra agen 41

42 AADE Minimum Loss (Cohn) Design 186 Ω 66 pf 66 pf 66 pf 66 pf 186 Ω 42

43 Simulation in QUCS at 50 Ω using standard Component Values Crystals simulated with s1p-file obtained by VNWA measurement! 43

44 Crystal Filter Hardware 44

45 Crystal Filter: Measurement vs. Simulation at 50 Ω S 21, S 11 measurement - Plot1, Plot2 QUCS simulation 45

46 Crystal Filter: Measurement vs. Simulation at 186 Ω S 21, S 11 measurement - Plot1, Plot2 QUCS simulation 46

47 Now, we are able to Measure components Design filters Simulate filters Measure filters Try it for yourself! 47

Impedance Matching of Filters with the MSA Sam Wetterlin 2/11/11

Impedance Matching of Filters with the MSA Sam Wetterlin 2/11/11 Impedance Matching of Filters with the MSA Sam Wetterlin 2/11/11 Introduction The purpose of this document is to illustrate the process for impedance matching of filters using the MSA software. For example,

More information

RFID Receiver Antenna Project for 13.56 Mhz Band

RFID Receiver Antenna Project for 13.56 Mhz Band RFID Receiver Antenna Project for 13.56 Mhz Band Fatih Eken TE 401 Microwave Course Term Project, Fall 2004 Supervised by Asst. Prof. İbrahim Tekin Telecommunication Program in Faculty of Engineering and

More information

MEASUREMENT UNCERTAINTY IN VECTOR NETWORK ANALYZER

MEASUREMENT UNCERTAINTY IN VECTOR NETWORK ANALYZER MEASUREMENT UNCERTAINTY IN VECTOR NETWORK ANALYZER W. Li, J. Vandewege Department of Information Technology (INTEC) University of Gent, St.Pietersnieuwstaat 41, B-9000, Gent, Belgium Abstract: Precision

More information

Impedance Matching and Matching Networks. Valentin Todorow, December, 2009

Impedance Matching and Matching Networks. Valentin Todorow, December, 2009 Impedance Matching and Matching Networks Valentin Todorow, December, 2009 RF for Plasma Processing - Definition of RF What is RF? The IEEE Standard Dictionary of Electrical and Electronics Terms defines

More information

Cumbria Designs T-1. SSB/CW Filter kit (4.9152MHz) User Manual

Cumbria Designs T-1. SSB/CW Filter kit (4.9152MHz) User Manual Cumbria Designs T-1 SSB/CW Filter kit (4.9152MHz) User Manual CONTENTS 1 INTRODUCTION 2 2 CIRCUIT DESCRIPTION 2 3 ASSEMBLY 2 4 TESTING 4 The Steading Stainton PENRITH Cumbria CA11 0ES UK 1 Introduction

More information

2. The Vector Network Analyzer

2. The Vector Network Analyzer ECE 584 Laboratory Experiments 2. The Vector Network Analyzer Introduction: In this experiment we will learn to use a Vector Network Analyzer to measure the magnitude and phase of reflection and transmission

More information

S-PARAMETER MEASUREMENTS OF MEMS SWITCHES

S-PARAMETER MEASUREMENTS OF MEMS SWITCHES Radant MEMS employs adaptations of the JMicroTechnology test fixture depicted in Figure 1 to measure MEMS switch s-parameters. RF probeable JMicroTechnology microstrip-to-coplanar waveguide adapter substrates

More information

SIMULATIONS OF PARALLEL RESONANT CIRCUIT POWER ELECTRONICS COLORADO STATE UNIVERSITY

SIMULATIONS OF PARALLEL RESONANT CIRCUIT POWER ELECTRONICS COLORADO STATE UNIVERSITY SIMULATIONS OF PARALLEL RESONANT CIRCUIT POWER ELECTRONICS COLORADO STATE UNIVERSITY Page 1 of 25 PURPOSE: The purpose of this lab is to simulate the LCC circuit using MATLAB and ORCAD Capture CIS to better

More information

PIEZO FILTERS INTRODUCTION

PIEZO FILTERS INTRODUCTION For more than two decades, ceramic filter technology has been instrumental in the proliferation of solid state electronics. A view of the future reveals that even greater expectations will be placed on

More information

Nano Stepping Notch Filter Jim Hagerman 02 01 12

Nano Stepping Notch Filter Jim Hagerman 02 01 12 Nano Stepping Notch Filter Jim Hagerman 02 01 12 INTRODUCTION I worked out equations for the von Newman style high power notch filter. This design is tunable over a fairly wide range, but less than an

More information

Understanding Power Impedance Supply for Optimum Decoupling

Understanding Power Impedance Supply for Optimum Decoupling Introduction Noise in power supplies is not only caused by the power supply itself, but also the load s interaction with the power supply (i.e. dynamic loads, switching, etc.). To lower load induced noise,

More information

Capacitor Self-Resonance

Capacitor Self-Resonance Capacitor Self-Resonance By: Dr. Mike Blewett University of Surrey United Kingdom Objective This Experiment will demonstrate some of the limitations of capacitors when used in Radio Frequency circuits.

More information

MEASUREMENT SET-UP FOR TRAPS

MEASUREMENT SET-UP FOR TRAPS Completed on 26th of June, 2012 MEASUREMENT SET-UP FOR TRAPS AUTHOR: IW2FND Attolini Lucio Via XXV Aprile, 52/B 26037 San Giovanni in Croce (CR) - Italy iw2fnd@gmail.com Trappole_01_EN 1 1 DESCRIPTION...3

More information

Measurement of Inductor Q with the MSA Sam Wetterlin 3/31/11. Equation 1 Determining Resonant Q from Inductor Q and Capacitor Q

Measurement of Inductor Q with the MSA Sam Wetterlin 3/31/11. Equation 1 Determining Resonant Q from Inductor Q and Capacitor Q Measurement of Inductor with the MSA Sam Wetterlin 3/31/11 The of an inductor, which is its reactance divided by its internal series resistance, is used as an indication of how well it will perform at

More information

AN-837 APPLICATION NOTE

AN-837 APPLICATION NOTE APPLICATION NOTE One Technology Way P.O. Box 916 Norwood, MA 262-916, U.S.A. Tel: 781.329.47 Fax: 781.461.3113 www.analog.com DDS-Based Clock Jitter Performance vs. DAC Reconstruction Filter Performance

More information

Understanding SWR by Example

Understanding SWR by Example Understanding SWR by Example Take the mystery and mystique out of standing wave ratio. Darrin Walraven, K5DVW It sometimes seems that one of the most mysterious creatures in the world of Amateur Radio

More information

Laboratory #5: RF Filter Design

Laboratory #5: RF Filter Design EEE 194 RF Laboratory Exercise 5 1 Laboratory #5: RF Filter Design I. OBJECTIVES A. Design a third order low-pass Chebyshev filter with a cutoff frequency of 330 MHz and 3 db ripple with equal terminations

More information

Inductors in AC Circuits

Inductors in AC Circuits Inductors in AC Circuits Name Section Resistors, inductors, and capacitors all have the effect of modifying the size of the current in an AC circuit and the time at which the current reaches its maximum

More information

Measuring Impedance and Frequency Response of Guitar Pickups

Measuring Impedance and Frequency Response of Guitar Pickups Measuring Impedance and Frequency Response of Guitar Pickups Peter D. Hiscocks Syscomp Electronic Design Limited phiscock@ee.ryerson.ca www.syscompdesign.com April 30, 2011 Introduction The CircuitGear

More information

A Low Budget Vector Network Analyzer for AF to UHF

A Low Budget Vector Network Analyzer for AF to UHF A Low Budget Vector Network Analyzer for AF to UHF The author s PC turned his simple gadget into a sophisticated piece of test equipment. Professor Dr Thomas C. Baier, DG8SAQ Introduction After years of

More information

LS RS. Figure 1: Assumed inductor model

LS RS. Figure 1: Assumed inductor model Characterizing Inductors at HF and VHF Inductors are a key component in RF circuits. Their performance makes a great difference in the operation of amplifiers, oscillators, and other circuit blocks --

More information

R3765/67 CG Network Analyzer

R3765/67 CG Network Analyzer R3765/67 CG Network Analyzer RSE 05.03.02 1 R376XG Series Overview R3765 300kHz ~ 3.8 GHz R3767 300kHz ~ 8 GHz AG BG Basic model Built-in Bridge A/R & B/R Transmission Reflection CG Built-in S-parameter

More information

RLC Series Resonance

RLC Series Resonance RLC Series Resonance 11EM Object: The purpose of this laboratory activity is to study resonance in a resistor-inductor-capacitor (RLC) circuit by examining the current through the circuit as a function

More information

Digital Systems Ribbon Cables I CMPE 650. Ribbon Cables A ribbon cable is any cable having multiple conductors bound together in a flat, wide strip.

Digital Systems Ribbon Cables I CMPE 650. Ribbon Cables A ribbon cable is any cable having multiple conductors bound together in a flat, wide strip. Ribbon Cables A ribbon cable is any cable having multiple conductors bound together in a flat, wide strip. Each dielectric configuration has different high-frequency characteristics. All configurations

More information

Application Note SAW-Components

Application Note SAW-Components Application Note SAW-Components Principles of SAWR-stabilized oscillators and transmitters. App: Note #1 This application note describes the physical principle of SAW-stabilized oscillator. Oscillator

More information

Since any real component also has loss due to the resistive component, the average power dissipated is 2 2R

Since any real component also has loss due to the resistive component, the average power dissipated is 2 2R Quality factor, Q Reactive components such as capacitors and inductors are often described with a figure of merit called Q. While it can be defined in many ways, it s most fundamental description is: Q

More information

Yaesu FT-847 70 MHz PA output and filter simulations Marc Vlemmings, PA1O - Eindhoven, The Netherlands

Yaesu FT-847 70 MHz PA output and filter simulations Marc Vlemmings, PA1O - Eindhoven, The Netherlands Yaesu FT-847 70 MHz PA output and filter simulations Marc Vlemmings, PA1O - Eindhoven, The Netherlands The efficiency of the HF transmitter chain which is also used for 50 MHz and 70 MHz decreases with

More information

A Small, Simple, USB-Powered Vector Network Analyzer Covering 1 khz to 1.3 GHz

A Small, Simple, USB-Powered Vector Network Analyzer Covering 1 khz to 1.3 GHz Prof. Dr. Thomas C. Baier, DG8SAQ University of Applied Sciences, Prittwitzstrasse 10, 89075 Ulm, Germany; baier@hs-ulm.de A Small, Simple, USB-Powered Vector Network Analyzer Covering 1 khz to 1.3 GHz

More information

A Low Frequency Adapter for your Vector Network Analyzer (VNA)

A Low Frequency Adapter for your Vector Network Analyzer (VNA) Jacques Audet, VE2AZX 7525 Madrid St, Brossard, QC, Canada J4Y G3: jacaudet@videotron.ca A Low Frequency Adapter for your Vector Network Analyzer (VNA) This compact and versatile unit extends low frequency

More information

Local Oscillator for FM broadcast band 88-108 MHz

Local Oscillator for FM broadcast band 88-108 MHz Local Oscillator for FM broadcast band 88-108 MHz Wang Luhao Yan Shubo Supervisor: Göran Jönsson Department of Electrical and Information Technology Lund University 2012.05.15 Abstract In this project

More information

ATE-A1 Testing Without Relays - Using Inductors to Compensate for Parasitic Capacitance

ATE-A1 Testing Without Relays - Using Inductors to Compensate for Parasitic Capacitance Introduction (Why Get Rid of Relays?) Due to their size, cost and relatively slow (millisecond) operating speeds, minimizing the number of mechanical relays is a significant goal of any ATE design. This

More information

AC 2009-1048: FREQUENCY RESPONSE OF RF TRANSCEIVER FILTERS USING LOW-COST VECTOR NETWORK ANALYZER

AC 2009-1048: FREQUENCY RESPONSE OF RF TRANSCEIVER FILTERS USING LOW-COST VECTOR NETWORK ANALYZER AC 2009-1048: FREQUENCY RESPONSE OF RF TRANSCEIVER FILTERS USING LOW-COST VECTOR NETWORK ANALYZER James Everly, University of Cincinnati James Everly, University of Cincinnati James O. Everly is an Associate

More information

ELC 4383 RF/Microwave Circuits I Laboratory 3: Optimization Using Advanced Design System Software

ELC 4383 RF/Microwave Circuits I Laboratory 3: Optimization Using Advanced Design System Software 1 EL 4383 RF/Microwave ircuits I Laboratory 3: Optimization Using Advanced Design System Software Note: This lab procedure has been adapted from a procedure written by Dr. Tom Weller at the University

More information

Engineering Sciences 151. Electromagnetic Communication Laboratory Assignment 3 Fall Term 1998-99

Engineering Sciences 151. Electromagnetic Communication Laboratory Assignment 3 Fall Term 1998-99 Engineering Sciences 151 Electromagnetic Communication Laboratory Assignment 3 Fall Term 1998-99 WAVE PROPAGATION II: HIGH FREQUENCY SLOTTED LINE AND REFLECTOMETER MEASUREMENTS OBJECTIVES: To build greater

More information

Designing Stable Compensation Networks for Single Phase Voltage Mode Buck Regulators

Designing Stable Compensation Networks for Single Phase Voltage Mode Buck Regulators Designing Stable Compensation Networks for Single Phase Voltage Mode Buck Regulators Technical Brief December 3 TB47. Author: Doug Mattingly Assumptions This Technical Brief makes the following assumptions:.

More information

The Critical Length of a Transmission Line

The Critical Length of a Transmission Line Page 1 of 9 The Critical Length of a Transmission Line Dr. Eric Bogatin President, Bogatin Enterprises Oct 1, 2004 Abstract A transmission line is always a transmission line. However, if it is physically

More information

APN1001: Circuit Models for Plastic Packaged Microwave Diodes

APN1001: Circuit Models for Plastic Packaged Microwave Diodes APPLICATION NOTE APN11: Circuit Models for Plastic Packaged Microwave Diodes Abstract This paper reports on the measurement and establishment of circuit models for SOT-23 and SOD-323 packaged diodes. Results

More information

Agilent Advanced impedance measurement capability of the RF I-V method compared to the network analysis method. Application Note 1369-2

Agilent Advanced impedance measurement capability of the RF I-V method compared to the network analysis method. Application Note 1369-2 Agilent Advanced impedance measurement capability of the RF I-V method compared to the network analysis method Application Note 1369-2 1. Introduction Explosive demand for the electronic devices used in

More information

RF Network Analyzer Basics

RF Network Analyzer Basics RF Network Analyzer Basics A tutorial, information and overview about the basics of the RF Network Analyzer. What is a Network Analyzer and how to use them, to include the Scalar Network Analyzer (SNA),

More information

Application Report SLOA024B

Application Report SLOA024B Application Report July 999 Revised September 2002 Mixed Signal Products SLOA024B IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,

More information

ADS Tutorial Stability and Gain Circles ECE145A/218A

ADS Tutorial Stability and Gain Circles ECE145A/218A ADS Tutorial Stability and Gain Circles ECE145A/218A The examples in this tutorial can be downloaded from xanadu.ece.ucsb.edu/~long/ece145a as the file: stab_gain.zap The first step in designing the amplifier

More information

Using ADS to simulate Noise Figure

Using ADS to simulate Noise Figure Using ADS to simulate Noise Figure ADS can be used to design low noise amplifiers much in the same way you have already used it for MAG or MSG designs. Noise circles and available gain circles are the

More information

AVR2004: LC-Balun for AT86RF230. Application Note. Features. 1 Introduction

AVR2004: LC-Balun for AT86RF230. Application Note. Features. 1 Introduction AVR2004: LC-Balun for AT86RF230 Features Balun for AT86RF230 with lumped elements Simulation results S-Parameter file 1 Introduction In some cases the used balun on the ATAVR RZ502 Radio Boards must be

More information

S-Band Low Noise Amplifier Using the ATF-10136. Application Note G004

S-Band Low Noise Amplifier Using the ATF-10136. Application Note G004 S-Band Low Noise Amplifier Using the ATF-10136 Application Note G004 Introduction This application note documents the results of using the ATF-10136 in low noise amplifier applications at S band. The ATF-10136

More information

Crosstalk effects of shielded twisted pairs

Crosstalk effects of shielded twisted pairs This article deals with the modeling and simulation of shielded twisted pairs with CST CABLE STUDIO. The quality of braided shields is investigated with respect to perfect solid shields. Crosstalk effects

More information

Output Ripple and Noise Measurement Methods for Ericsson Power Modules

Output Ripple and Noise Measurement Methods for Ericsson Power Modules Output Ripple and Noise Measurement Methods for Ericsson Power Modules Design Note 022 Ericsson Power Modules Ripple and Noise Abstract There is no industry-wide standard for measuring output ripple and

More information

How To Use A Sound Card With A Subsonic Sound Card

How To Use A Sound Card With A Subsonic Sound Card !"## $#!%!"# &"#' ( "#' )*! #+ #,# "##!$ -+./0 1" 1! 2"# # -&1!"#" (2345-&1 #$6.7 -&89$## ' 6! #* #!"#" +" 1##6$ "#+# #-& :1# # $ #$#;1)+#1#+

More information

Category 8 Cable Transmission Measurements Comparative Study between 4-port single wire measurements and 2-port balun measurements

Category 8 Cable Transmission Measurements Comparative Study between 4-port single wire measurements and 2-port balun measurements Category 8 Cable Transmission Measurements Comparative Study between 4-port single wire measurements and 2-port balun measurements Stefan Estevanovich Rafael Herrera, Nadim Kafati Hitachi Cable USA NDC

More information

Input and Output Capacitor Selection

Input and Output Capacitor Selection Application Report SLTA055 FEBRUARY 2006 Input and Output Capacitor Selection Jason Arrigo... PMP Plug-In Power ABSTRACT When designing with switching regulators, application requirements determine how

More information

Spectrum Analyzers And Network Analyzers. The Whats, Whys and Hows...

Spectrum Analyzers And Network Analyzers. The Whats, Whys and Hows... Spectrum Analyzers And Network Analyzers The Whats, Whys and Hows... Bertrand Zauhar, VE2ZAZ ve2zaz@amsat.org June 2010 Today's Program Definitions of Spectrum and Network Analyzers, Differences between

More information

11: AUDIO AMPLIFIER I. INTRODUCTION

11: AUDIO AMPLIFIER I. INTRODUCTION 11: AUDIO AMPLIFIER I. INTRODUCTION The properties of an amplifying circuit using an op-amp depend primarily on the characteristics of the feedback network rather than on those of the op-amp itself. A

More information

Experiment #11: LRC Circuit (Power Amplifier, Voltage Sensor)

Experiment #11: LRC Circuit (Power Amplifier, Voltage Sensor) Experiment #11: LRC Circuit (Power Amplifier, Voltage Sensor) Concept: circuits Time: 30 m SW Interface: 750 Windows file: RLC.SWS EQUIPMENT NEEDED Science Workshop Interface Power Amplifier (2) Voltage

More information

Comparison of Vector Network Analyzer and TDA Systems IConnect Generated S-Parameters

Comparison of Vector Network Analyzer and TDA Systems IConnect Generated S-Parameters Comparison of Vector Network Analyzer and TDA Systems IConnect Generated S-Parameters Purpose: This technical note presents single-ended insertion loss ( SE IL) and return loss ( SE RL) data generated

More information

Frequency Response of Filters

Frequency Response of Filters School of Engineering Department of Electrical and Computer Engineering 332:224 Principles of Electrical Engineering II Laboratory Experiment 2 Frequency Response of Filters 1 Introduction Objectives To

More information

Transformer circuit calculations

Transformer circuit calculations Transformer circuit calculations This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

More information

Analog Filters. A common instrumentation filter application is the attenuation of high frequencies to avoid frequency aliasing in the sampled data.

Analog Filters. A common instrumentation filter application is the attenuation of high frequencies to avoid frequency aliasing in the sampled data. Analog Filters Filters can be used to attenuate unwanted signals such as interference or noise or to isolate desired signals from unwanted. They use the frequency response of a measuring system to alter

More information

EMC Basics. Speaker : Alain Lafuente. Alain.lafuente@we-online.com

EMC Basics. Speaker : Alain Lafuente. Alain.lafuente@we-online.com EMC Basics Speaker : lain Lafuente lain.lafuente@we-online.com WHT IS EMC? 2 CE Marking With the formation of the single European market, standardization was required to remove technical barriers to trade.

More information

DDX 7000 & 8003. Digital Partial Discharge Detectors FEATURES APPLICATIONS

DDX 7000 & 8003. Digital Partial Discharge Detectors FEATURES APPLICATIONS DDX 7000 & 8003 Digital Partial Discharge Detectors The HAEFELY HIPOTRONICS DDX Digital Partial Discharge Detector offers the high accuracy and flexibility of digital technology, plus the real-time display

More information

UNDERSTANDING AND CONTROLLING COMMON-MODE EMISSIONS IN HIGH-POWER ELECTRONICS

UNDERSTANDING AND CONTROLLING COMMON-MODE EMISSIONS IN HIGH-POWER ELECTRONICS Page 1 UNDERSTANDING AND CONTROLLING COMMON-MODE EMISSIONS IN HIGH-POWER ELECTRONICS By Henry Ott Consultants Livingston, NJ 07039 (973) 992-1793 www.hottconsultants.com hott@ieee.org Page 2 THE BASIC

More information

Objective. To design and simulate a cascode amplifier circuit using bipolar transistors.

Objective. To design and simulate a cascode amplifier circuit using bipolar transistors. ascode Amplifier Design. Objective. o design and simulate a cascode amplifier circuit using bipolar transistors. Assignment description he cascode amplifier utilises the advantage of the common-emitter

More information

Application Note. Line Card Redundancy Design With the XRT83SL38 T1/E1 SH/LH LIU ICs

Application Note. Line Card Redundancy Design With the XRT83SL38 T1/E1 SH/LH LIU ICs Application Note Design With the XRT83SL38 T1/E1 SH/LH LIU ICs Revision 1.3 1 REDUNDANCY APPLICATIONS INTRODUCTION Telecommunication system design requires signal integrity and reliability. When a T1/E1

More information

FILTERS - IN RADIO COMMUNICATIONS

FILTERS - IN RADIO COMMUNICATIONS Reading 32 Ron Bertrand VK2DQ http://www.radioelectronicschool.com FILTERS - IN RADIO COMMUNICATIONS RADIO SIGNALS In radio communications we talk a lot about radio signals. A radio signal is a very broad

More information

Using Sim Smith to Improve Antenna Matching

Using Sim Smith to Improve Antenna Matching Using Sim Smith to Improve Antenna Matching Jim Brown K9YC k9yc@arrl.net http://audiosystemsgroup.com/publish.htm The Objectives Eliminate antenna tuners Improve match to our rigs Minimize losses Improve

More information

Keywords: input noise, output noise, step down converters, buck converters, MAX1653EVKit

Keywords: input noise, output noise, step down converters, buck converters, MAX1653EVKit Maxim > Design Support > Technical Documents > Tutorials > Power-Supply Circuits > APP 986 Keywords: input noise, output noise, step down converters, buck converters, MAX1653EVKit TUTORIAL 986 Input and

More information

BIASING OF CONSTANT CURRENT MMIC AMPLIFIERS (e.g., ERA SERIES) (AN-60-010)

BIASING OF CONSTANT CURRENT MMIC AMPLIFIERS (e.g., ERA SERIES) (AN-60-010) BIASING OF CONSTANT CURRENT MMIC AMPLIFIERS (e.g., ERA SERIES) (AN-60-010) Introduction The Mini-Circuits family of microwave monolithic integrated circuit (MMIC) Darlington amplifiers offers the RF designer

More information

Reading: HH Sections 4.11 4.13, 4.19 4.20 (pgs. 189-212, 222 224)

Reading: HH Sections 4.11 4.13, 4.19 4.20 (pgs. 189-212, 222 224) 6 OP AMPS II 6 Op Amps II In the previous lab, you explored several applications of op amps. In this exercise, you will look at some of their limitations. You will also examine the op amp integrator and

More information

The N2PK Vector Network Analyzer (N2PK VNA) Original by Paul Kiciak, N2PK, 2007 * (*Pages edited or added by VE7WRS, 2009)

The N2PK Vector Network Analyzer (N2PK VNA) Original by Paul Kiciak, N2PK, 2007 * (*Pages edited or added by VE7WRS, 2009) The N2PK Vector Network Analyzer (N2PK VNA) Original by Paul Kiciak, N2PK, 2007 * (*Pages edited or added by VE7WRS, 2009) What Does Vector Mean?! Vector: magnitude & direction (angle) 01/22/07 N2PK *

More information

Cable Analysis and Fault Detection using the Bode 100

Cable Analysis and Fault Detection using the Bode 100 Cable Analysis and Fault Detection using the Bode 100 By Stephan Synkule 2014 by OMICRON Lab V1.3 Visit www.omicron-lab.com for more information. Contact support@omicron-lab.com for technical support.

More information

RF measurements, tools and equipment E. B. Boskamp, A. Nabetani, J. Tropp (eddy.boskamp@med.ge.com)

RF measurements, tools and equipment E. B. Boskamp, A. Nabetani, J. Tropp (eddy.boskamp@med.ge.com) RF measurements, tools and equipment E. B. Boskamp, A. Nabetani, J. Tropp (eddy.boskamp@med.ge.com) INTRODUCTION I am often asked by researchers what kind of equipment is needed to set up an RF lab. The

More information

LR Phono Preamps. Pete Millett ETF.13. pmillett@hotmail.com

LR Phono Preamps. Pete Millett ETF.13. pmillett@hotmail.com LR Phono Preamps Pete Millett ETF.13 pmillett@hotmail.com Agenda A bit about me Part 1: What is, and why use, RIAA? Grooves on records The RIAA standard Implementations of RIAA EQ networks and preamps

More information

Modification Details.

Modification Details. Front end receiver modification for DRM: AKD Target Communications receiver. Model HF3. Summary. The receiver was modified and capable of receiving DRM, but performance was limited by the phase noise from

More information

Chebyshev Filter at 197.12 MHz Frequency for Radar System

Chebyshev Filter at 197.12 MHz Frequency for Radar System IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 78-1676 Volume 5, Issue 1 (Mar. - Apr. 013), PP 8-33 Chebyshev Filter at 197.1 MHz Frequency for Radar System Denny Permana 1,

More information

Minimizing crosstalk in a high-speed cable-connector assembly.

Minimizing crosstalk in a high-speed cable-connector assembly. Minimizing crosstalk in a high-speed cable-connector assembly. Evans, B.J. Calvo Giraldo, E. Motos Lopez, T. CERN, 1211 Geneva 23, Switzerland John.Evans@cern.ch Eva.Calvo.Giraldo@cern.ch Tomas.Motos-Lopez@cern.ch

More information

Title: Low EMI Spread Spectrum Clock Oscillators

Title: Low EMI Spread Spectrum Clock Oscillators Title: Low EMI oscillators Date: March 3, 24 TN No.: TN-2 Page 1 of 1 Background Title: Low EMI Spread Spectrum Clock Oscillators Traditional ways of dealing with EMI (Electronic Magnetic Interference)

More information

Changes PN532_Breakout board

Changes PN532_Breakout board Changes PN532_Breakout board Document: Changes PN532_Breakout board Department / Faculty : TechnoCentrum - Radboud University Nijmegen Contact: René Habraken Date: 17 May 2011 Doc. Version: 1.0 Contents

More information

Two year Claritycap research programme finally answers an audio capacitors influence on sound quality.

Two year Claritycap research programme finally answers an audio capacitors influence on sound quality. Two year Claritycap research programme finally answers an audio capacitors influence on sound quality. ClarityCap have been supplying high-quality audio capacitors to some of the world s top HiFi and loudspeaker

More information

Understanding Power Factor and How it Affects Your Electric Bill. Presented by Scott Peele PE

Understanding Power Factor and How it Affects Your Electric Bill. Presented by Scott Peele PE Understanding Power Factor and How it Affects Your Electric Bill Presented by Scott Peele PE Understanding Power Factor Definitions kva, kvar, kw, Apparent Power vs. True Power Calculations Measurements

More information

DRIVING LOOOONG CABLES

DRIVING LOOOONG CABLES DRIVING LOOOONG CABLES INTRODUCTION Microphone or line level cables may appear to be foolproof compared to loudspeaker cables. However, they are not. In particular you can easily encounter high frequency

More information

Tutorial www.loudsoft.com

Tutorial www.loudsoft.com Tutorial www.loudsoft.com In this tutorial we show several examples of simple and advanced X-over designs, using FINE X- over. In the first example we create the x-over for two drivers we have previously

More information

Power supply output voltages are dropping with each

Power supply output voltages are dropping with each DESIGNER S SERIES Second-Stage LC Filter Design First Inductor by Dr. Ray Ridley First Capacitor Power supply output voltages are dropping with each new generation of Integrated Circuits (ICs). Anticipated

More information

Measuring RF Parameters of Networks Bill Leonard NØCU

Measuring RF Parameters of Networks Bill Leonard NØCU Measuring RF Parameters of Networks Bill Leonard NØCU NAØTC - 285 TechConnect Radio Club http://www.naøtc.org/ What is a Network? A Network is a group of electrical components connected is a specific way

More information

IF Transformer. V2 is 2Vp-p sinusoidal

IF Transformer. V2 is 2Vp-p sinusoidal V2 is 2Vp-p sinusoidal Purpose and Function These transformers are specially designed tuned circuit in RFI-tight groundable metal packages for narrow bandwith IF application. 1 Theory and Design C30 and

More information

Laboratory 4: Feedback and Compensation

Laboratory 4: Feedback and Compensation Laboratory 4: Feedback and Compensation To be performed during Week 9 (Oct. 20-24) and Week 10 (Oct. 27-31) Due Week 11 (Nov. 3-7) 1 Pre-Lab This Pre-Lab should be completed before attending your regular

More information

DDX 7000 & 8003. Digital Partial Discharge Detectors FEATURES APPLICATIONS

DDX 7000 & 8003. Digital Partial Discharge Detectors FEATURES APPLICATIONS DDX 7000 & 8003 Digital Partial Discharge Detectors The HAEFELY HIPOTRONICS DDX Digital Partial Discharge Detector offers the high accuracy and flexibility of digital technology, plus the real-time display

More information

A CW QRP Transceiver for 20 m band. How it works I'll describe individually the three boards and the relative tuning devices.

A CW QRP Transceiver for 20 m band. How it works I'll describe individually the three boards and the relative tuning devices. A CW QRP Transceiver for 20 m band The little QRP presented in this article may be built in a gradual manner, in fact it is divided in two main modules (plus VFO), you may also complete only a single part

More information

TESTS OF 1 MHZ SIGNAL SOURCE FOR SPECTRUM ANALYZER CALIBRATION 7/8/08 Sam Wetterlin

TESTS OF 1 MHZ SIGNAL SOURCE FOR SPECTRUM ANALYZER CALIBRATION 7/8/08 Sam Wetterlin TESTS OF 1 MHZ SIGNAL SOURCE FOR SPECTRUM ANALYZER CALIBRATION 7/8/08 Sam Wetterlin (Updated 7/19/08 to delete sine wave output) I constructed the 1 MHz square wave generator shown in the Appendix. This

More information

Basic Wire Antennas. Part II: Loops and Verticals

Basic Wire Antennas. Part II: Loops and Verticals Basic Wire Antennas Part II: Loops and Verticals A loop antenna is composed of a single loop of wire, greater than a half wavelength long. The loop does not have to be any particular shape. RF power can

More information

Utilizing Time Domain (TDR) Test Methods For Maximizing Microwave Board Performance

Utilizing Time Domain (TDR) Test Methods For Maximizing Microwave Board Performance The Performance Leader in Microwave Connectors Utilizing Time Domain (TDR) Test Methods For Maximizing Microwave Board Performance.050 *.040 c S11 Re REF 0.0 Units 10.0 m units/.030.020.010 1.0 -.010 -.020

More information

Four quadrant diode front end module for the Virgo Linear Alignment 3/ 30 mw, plus configuration

Four quadrant diode front end module for the Virgo Linear Alignment 3/ 30 mw, plus configuration NI K HEF NATIONAL INSTITUTE FOR NUCLEAR AND HIGH ENERGY PHYSICS Four quadrant diode front end module for the Virgo Linear Alignment 3/ 30 mw, plus configuration Find the most recent files and related files

More information

AVX EMI SOLUTIONS Ron Demcko, Fellow of AVX Corporation Chris Mello, Principal Engineer, AVX Corporation Brian Ward, Business Manager, AVX Corporation

AVX EMI SOLUTIONS Ron Demcko, Fellow of AVX Corporation Chris Mello, Principal Engineer, AVX Corporation Brian Ward, Business Manager, AVX Corporation AVX EMI SOLUTIONS Ron Demcko, Fellow of AVX Corporation Chris Mello, Principal Engineer, AVX Corporation Brian Ward, Business Manager, AVX Corporation Abstract EMC compatibility is becoming a key design

More information

Agilent Ultra-Low Impedance Measurements Using 2-Port Measurements. Application Note

Agilent Ultra-Low Impedance Measurements Using 2-Port Measurements. Application Note Agilent Ultra-Low Impedance Measurements Using 2-Port Measurements Application Note Table of Contents Ultra-Low Impedance Measurements Using a Vector Network Analyzer... 3 Limitations of 1-Port VNA Impedance

More information

Germanium Diode AM Radio

Germanium Diode AM Radio Germanium Diode AM Radio LAB 3 3.1 Introduction In this laboratory exercise you will build a germanium diode based AM (Medium Wave) radio. Earliest radios used simple diode detector circuits. The diodes

More information

Miniature Surface-Mount DAA for Audio or Data Transfer XE0402LCC BLOCK DIAGRAM

Miniature Surface-Mount DAA for Audio or Data Transfer XE0402LCC BLOCK DIAGRAM XE0402LCC January 2007 Miniature Surface-Mount DAA for Audio or Data Transfer Description The XE0402LCC supplies a complete telephone line interface or DAA (Data Access Arrangement) in a miniature, surface-mount

More information

30. Bode Plots. Introduction

30. Bode Plots. Introduction 0. Bode Plots Introduction Each of the circuits in this problem set is represented by a magnitude Bode plot. The network function provides a connection between the Bode plot and the circuit. To solve these

More information

S-parameter Simulation and Optimization

S-parameter Simulation and Optimization S-parameter Simulation and Optimization Slide 5-1 S-parameters are Ratios Usually given in db as 20 log of the voltage ratios of the waves at the ports: incident, reflected, or transmitted. S-parameter

More information

DEPARTMENT OF DEFENSE TEST METHOD STANDARD METHOD OF INSERTION LOSS MEASUREMENT

DEPARTMENT OF DEFENSE TEST METHOD STANDARD METHOD OF INSERTION LOSS MEASUREMENT INCH-POUND MIL-STD-220C 14 May 2009 SUPERSEDING MIL-STD-220B 24 January 2000 DEPARTMENT OF DEFENSE TEST METHOD STANDARD METHOD OF INSERTION LOSS MEASUREMENT AMSC N/A FSC EMCS FOREWORD 1. This standard

More information

High Precision TCXO / VCTCXO Oscillators

High Precision TCXO / VCTCXO Oscillators Available at Digi-Key** www.digikey.com High Precision TCXO / VCTCXO Oscillators 2111 Comprehensive Drive Phone: 60-81- 722 Fax: 60-81- 00 US Headquarters: 60-81-722 European Headquarters: +-61-72221 Description:

More information

Experiment 7: Familiarization with the Network Analyzer

Experiment 7: Familiarization with the Network Analyzer Experiment 7: Familiarization with the Network Analyzer Measurements to characterize networks at high frequencies (RF and microwave frequencies) are usually done in terms of scattering parameters (S parameters).

More information

Sophomore Physics Laboratory (PH005/105)

Sophomore Physics Laboratory (PH005/105) CALIFORNIA INSTITUTE OF TECHNOLOGY PHYSICS MATHEMATICS AND ASTRONOMY DIVISION Sophomore Physics Laboratory (PH5/15) Analog Electronics Active Filters Copyright c Virgínio de Oliveira Sannibale, 23 (Revision

More information

2 Port Parameters I 1. ECE145A/218A Notes Set #4 1. Two-ways of describing device: A. Equivalent - Circuit-Model

2 Port Parameters I 1. ECE145A/218A Notes Set #4 1. Two-ways of describing device: A. Equivalent - Circuit-Model ECE45A/8A Notes et #4 Port Parameters Two-ways of describing device: A. Equivalent - Circuit-Model Physically based Includes bias dependence Includes frequency dependence Includes size dependence - scalability

More information