# DRIVING LOOOONG CABLES

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 DRIVING LOOOONG CABLES INTRODUCTION Microphone or line level cables may appear to be foolproof compared to loudspeaker cables. However, they are not. In particular you can easily encounter high frequency losses or worse. The following shows you how to analyze what happens with longer length cables. As with all good engineering, these calculations are based on maximum or worst case conditions. Some of the numbers have been rounded off for the sake of clarity. In addition, there is no scientific notation: numbers are "spelled out" with all those zeros. Although cable lengths are in feet, metric lengths can be easily substituted. A hidden point in this article is that creating or getting the most out of audio systems requires doing some math and there is no substitute for this. In case you are a bit "math challenged", examples using real numbers are shown in each case to help you use the formulas. You can substitute your own values to figure out your own particular situation. Also note how two of the most common electrical formulas show up: Ohms Law and the Reactance formula. NOTE: dbu figures are referenced to 0 dbu = 0.775V LOW LEVEL SIGNALS For low level signals there are 3 things to consider when driving long cables. 1. The length of the cable 2. The cable capacitance between the conductors 3. The output impedance of the device driving the cable The output impedance and the cable capacitance simply form a low pass filter. You can calculate the high frequency cutoff (-3 db point) of the cable by using the standard formula for capacitive reactance (Pi is that circle number: etc.): -3 db Frequency = 1 / (Capacitance x Output Impedance x 2 x Pi) Or in this case: -3 db Frequency = 1 / (cable length x capacitance per unit length x output Z x 2 x Pi) For example, suppose you have a 100 Ohm microphone on a 500 foot cable:

2 -3 db Frequency = 1 / (500 ft x 32 pf per foot x 100 Ohms x 2 x 3.14) -3 db Frequency = 1 / (500 x x 100 x 2 x 3.14) = 100 khz This may appear to be far more than adequate. However, the low level, high frequency cut-off (or more precisely, the small signal bandwidth) of all cables in a system should be at least 200 khz. Briefly, the reason for this is that each piece or equipment in an audio system, including each interconnect cable, has an upper frequency limit. As such, regard each piece as a low pass filter. When you connect this equipment together, you are connecting a chain of low pass filters in series. This results in a single, multi-pole, low pass filter with a high frequency cut-off that is lower than any of the individual pieces of equipment and cables. By using cable with a small signal bandwidth of 200 khz, it will not contribute significantly to this low pass filtering, thus ensuring it will have little or no effect on the electronic performance of the system. If you examine the formula, you will see that the output impedance of device driving the cable can have a profound effect. Suppose the driving device were a distribution amplifier with two 300 Ohm build-out resistors (not untypical for such devices). Its output impedance would be 600 Ohms. In the above example, the cable cut-off would be only 17 khz! HIGH LEVEL SIGNALS For line level signals that are much higher voltage, other factors must be taken into account and these things make matters much worse than for low level signals. Because of the higher voltage levels, you need appreciable current to "charge" the cable capacitance. You must take into account the current to do this and, as one is "charging" a capacitor, the time needed to do this. The time is directly related to the highest frequency you want the system to be capable of handling. The results will surprise you. Unfortunately, there are no shortcuts or rules of thumb to figuring this out. You need to do the math. Here is how the math works. First: Calculate the slew rate of the signal (how fast the voltage has to change). This is related to the highest frequency you want the cable to pass. Assume this is 30 khz at full output (a good number to use for a system calculation) and that you have a typical line level device with a +24 dbu or 12.3 volts RMS maximum output. Calculate the peak voltage of the device: Peak = Square root of 2 x RMS Peak = 1.41 x RMS For the example device: Peak = 1.41 x 12.3 = 17.4 volts Calculate its Slew Rate with this formula:

4 voltage: Peak Current = 17.4V / 10,000 Ohms = 1.7 or about 2 milliamps. Thus the current available for the cable is: maximum device current - load current: 29-2 = 27 milliamps. So we can calculate further that the device has 27/31 = 87% of the current needed to charge the cable capacitance. So simply calculate 87% of 300 feet: 0.87 x 300 = 260 feet. This is the longest cable you can use with this device for these conditions to avoid slew rate limiting in the driving device. Take this a step further, suppose your load is four 10k Ohm amplifiers = 2,500 Ohms load. Now your device must deliver more current. Calculate what you need to drive this load using Ohms Law again: Peak Current = 17.4 V / 2500 Ohms =.007 amps or 7 milliamps Subtract that from the total current available from the device to find what you have left for the cable: 29-7 = 22 milliamps. 31 milliamps is needed to charge the capacitance in 300 feet of cable and there is only 22 milliamps available from the driving device. 22 / 31 = 71% and 71% of 300 = 0.71 x 300 = 213 feet. Thus, 213 feet is the maximum cable length you can use under these conditions to avoid slew rate limiting in the driving device. NOTE: This is a maximum calculation meaning you are calculating that the device is being pushed to its limit. If you want to allow for a safety margin for this limit you would have to reduce the maximum cable length calculated. In this last calculation if you built in a 20% safety margin, the maximum allowable length is reduced to about 170 feet (80% of 213 feet). That is just over half of the 300 feet of cable you started with. Foolproof? Plug-and-play? Definitely not. ANOTHER CALCULATION Suppose you have a device and want to know the longest length of a certain cable that you can drive with it. These two formulas give you the answer:

5 Maximum Cable Capacitance = Peak Device Current / Slew Rate Length = Maximum Cable Capacitance / Cable Capacitance per unit length The answer will be the length in whatever the unit length is in (meters or feet) Example (using our same +24 dbu device with the 10 k load and same cable type): Maximum Cable Capacitance = / 3,278,160 = Length = (= 8236 pf) / (= 32 pf) = 257 feet This is about what was calculated above for 27 milliamps: 260 feet - the slight difference is because some numbers were rounded. "TERMINATING" LONG CABLE RUNS There is still a common practice of putting 600 Ohm or similar terminating resistors at the end of long lines. You can now see a very good reason for NOT putting them there. Once you get over even a few feet of cable your driving device will slew limit well below its maximum output because it is using all its rated current to drive the terminating resistor. Furthermore, it is incorrectly assumed that such a termination lowers the impedance across the line. Actually, the output impedance of the driving device will control the "line impedance". If you have a device with a 50 Ohm output impedance then you have 50 Ohms across the line. If you put a 600 Ohm resistor at the other end the impedance across the line would change to 47 Ohms - not an appreciable difference. Therefore its effects on the line are insignificant. However, it IS very significant in terms of causing the driving device to deliver large amounts of current into a resistor. This will cause the driving device's output to heat up, reach maximum distortion, and generally work very hard to drive the terminating resistor while doing absolutely no useful audio work. Lastly, audio cables are not "transmission lines". Transmission line theory applies only to situations the length of the cable approaches at least 1/4 the wavelength of the highest frequency. For 20 khz of electrical signal that equals about 2.3 miles (3.7 km). How far did you say your FOH is from your amplifiers on stage? SOLUTIONS FOR INCREASING CABLE LENGTH Here are several solutions for increasing the cable length. All of these solutions involve terms used in the calculations. Putting this another way: you must change the value of some term used in the calculations to use a longer cable. Of course you must recalculate the effect of each solution. 1. Use lower capacitance cable. 2. Use a driving device with a higher output capability (voltage and/or current). 3. Use a driving device with a lower output impedance (if its 50 Ohms that's the best you

6 can do). 4. Reduce the load you are driving by dividing it up between outputs of a distribution amplifier. 5. Reduce the signal level over the cable run and put gain back in at the receiving end. SUMMARY Do not take long cables for granted. You may not be getting all the high frequency signal through them you think you are. Also, your driving device may be running into trouble due to exceeding its current capabilities trying to drive the cable at high frequencies. It can reach its slew rate limit resulting in noticeable distortion. Compiled and edited by Chuck McGregor Community Professional Loudspeakers Sep 99

### The Effects Of Cable On Signal Quality

The Effects Of Cable On Signal Quality By Jim Brown Audio Systems Group, Inc. jim@audiosystemgroup.com System designs often require output amplifier stages of microphones and line-level devices to drive

### A PRACTICAL GUIDE TO db CALCULATIONS

A PRACTICAL GUIDE TO db CALCULATIONS This is a practical guide to doing db (decibel) calculations, covering most common audio situations. You see db numbers all the time in audio. You may understand that

### LOW COST MOTOR PROTECTION FILTERS FOR PWM DRIVE APPLICATIONS STOPS MOTOR DAMAGE

LOW COST MOTOR PROTECTION FILTERS FOR PWM DRIVE APPLICATIONS STOPS MOTOR DAMAGE Karl M. Hink, Executive Vice President Originally presented at the Power Quality 99 Conference ABSTRACT Motor protection

### Math for the General Class Ham Radio Operator. A prerequisite math refresher for the math phobic ham

Math for the General Class Ham Radio Operator A prerequisite math refresher for the math phobic ham What We Will Cover Write these down! Ohm s Law Power Circle What We Will Cover Write these down! What

### S-Parameters and Related Quantities Sam Wetterlin 10/20/09

S-Parameters and Related Quantities Sam Wetterlin 10/20/09 Basic Concept of S-Parameters S-Parameters are a type of network parameter, based on the concept of scattering. The more familiar network parameters

### Reading: HH Sections 4.11 4.13, 4.19 4.20 (pgs. 189-212, 222 224)

6 OP AMPS II 6 Op Amps II In the previous lab, you explored several applications of op amps. In this exercise, you will look at some of their limitations. You will also examine the op amp integrator and

### The W5JCK Guide to the Mathematic Equations Required for the Amateur Extra Class Exam

The W5JCK Guide to the Mathematic Equations Required for the Amateur Extra Class Exam This document contains every question from the Extra Class (Element 4) Question Pool* that requires one or more mathematical

### The Critical Length of a Transmission Line

Page 1 of 9 The Critical Length of a Transmission Line Dr. Eric Bogatin President, Bogatin Enterprises Oct 1, 2004 Abstract A transmission line is always a transmission line. However, if it is physically

### Basic Electrical Technology Dr. L. Umanand Department of Electrical Engineering Indian Institute of Science, Bangalore. Lecture - 33 3 phase System 4

Basic Electrical Technology Dr. L. Umanand Department of Electrical Engineering Indian Institute of Science, Bangalore Lecture - 33 3 phase System 4 Hello everybody. So, in the last class we have been

### Understanding SWR by Example

Understanding SWR by Example Take the mystery and mystique out of standing wave ratio. Darrin Walraven, K5DVW It sometimes seems that one of the most mysterious creatures in the world of Amateur Radio

### Measuring Impedance and Frequency Response of Guitar Pickups

Measuring Impedance and Frequency Response of Guitar Pickups Peter D. Hiscocks Syscomp Electronic Design Limited phiscock@ee.ryerson.ca www.syscompdesign.com April 30, 2011 Introduction The CircuitGear

### MEASUREMENT SET-UP FOR TRAPS

Completed on 26th of June, 2012 MEASUREMENT SET-UP FOR TRAPS AUTHOR: IW2FND Attolini Lucio Via XXV Aprile, 52/B 26037 San Giovanni in Croce (CR) - Italy iw2fnd@gmail.com Trappole_01_EN 1 1 DESCRIPTION...3

### Apprentice Telecommunications Technician Test (CTT) Study Guide

Apprentice Telecommunications Technician Test (CTT) Study Guide 1 05/2014 Study Guide for Pacific Gas & Electric Company Apprentice Telecommunications Technician Qualifying Test (CTT) About the Test The

### Line Reactors and AC Drives

Line Reactors and AC Drives Rockwell Automation Mequon Wisconsin Quite often, line and load reactors are installed on AC drives without a solid understanding of why or what the positive and negative consequences

### Understanding Power Factor and How it Affects Your Electric Bill. Presented by Scott Peele PE

Understanding Power Factor and How it Affects Your Electric Bill Presented by Scott Peele PE Understanding Power Factor Definitions kva, kvar, kw, Apparent Power vs. True Power Calculations Measurements

### GenTech Practice Questions

GenTech Practice Questions Basic Electronics Test: This test will assess your knowledge of and ability to apply the principles of Basic Electronics. This test is comprised of 90 questions in the following

### Measurement of Capacitance

Measurement of Capacitance Pre-Lab Questions Page Name: Class: Roster Number: Instructor:. A capacitor is used to store. 2. What is the SI unit for capacitance? 3. A capacitor basically consists of two

### GUIDE TO CONSTANT-VOLTAGE SYSTEMS by the Crown Engineering staff

GUIDE TO CONSTANT-VOLTAGE SYSTEMS by the Crown Engineering staff Electric-power companies have a good idea which has been applied to audio engineering. When they run power through miles of cable, they

### Tristan s Guide to: Solving Series Circuits. Version: 1.0 Written in 2006. Written By: Tristan Miller Tristan@CatherineNorth.com

Tristan s Guide to: Solving Series Circuits. Version: 1.0 Written in 2006 Written By: Tristan Miller Tristan@CatherineNorth.com Series Circuits. A Series circuit, in my opinion, is the simplest circuit

### Impedance Matching and Matching Networks. Valentin Todorow, December, 2009

Impedance Matching and Matching Networks Valentin Todorow, December, 2009 RF for Plasma Processing - Definition of RF What is RF? The IEEE Standard Dictionary of Electrical and Electronics Terms defines

### Section 3. Sensor to ADC Design Example

Section 3 Sensor to ADC Design Example 3-1 This section describes the design of a sensor to ADC system. The sensor measures temperature, and the measurement is interfaced into an ADC selected by the systems

### Circuits with inductors and alternating currents. Chapter 20 #45, 46, 47, 49

Circuits with inductors and alternating currents Chapter 20 #45, 46, 47, 49 RL circuits Ch. 20 (last section) Symbol for inductor looks like a spring. An inductor is a circuit element that has a large

### LM 358 Op Amp. If you have small signals and need a more useful reading we could amplify it using the op amp, this is commonly used in sensors.

LM 358 Op Amp S k i l l L e v e l : I n t e r m e d i a t e OVERVIEW The LM 358 is a duel single supply operational amplifier. As it is a single supply it eliminates the need for a duel power supply, thus

### DRAFT. University of Pennsylvania Moore School of Electrical Engineering ESE319 Electronic Circuits - Modeling and Measurement Techniques

University of Pennsylvania Moore School of Electrical Engineering ESE319 Electronic Circuits - Modeling and Measurement Techniques 1. Introduction. Students are often frustrated in their attempts to execute

### TESTS OF 1 MHZ SIGNAL SOURCE FOR SPECTRUM ANALYZER CALIBRATION 7/8/08 Sam Wetterlin

TESTS OF 1 MHZ SIGNAL SOURCE FOR SPECTRUM ANALYZER CALIBRATION 7/8/08 Sam Wetterlin (Updated 7/19/08 to delete sine wave output) I constructed the 1 MHz square wave generator shown in the Appendix. This

### Balanced vs. Unbalanced Audio Interconnections

Revised 7/2/08 Balanced vs. Unbalanced Audio Interconnections In discussing the characteristics and performance of various interconnect systems; two points should be kept in mind. Balance is defined in

### Kit 106. 50 Watt Audio Amplifier

Kit 106 50 Watt Audio Amplifier T his kit is based on an amazing IC amplifier module from ST Electronics, the TDA7294 It is intended for use as a high quality audio class AB amplifier in hi-fi applications

### On Cables and Connections A discussion by Dr. J. Kramer

KRAMER ELECTRONICS LTD. On Cables and Connections A discussion by Dr. J. Kramer We are frequently asked - "what length of cable can I use for a specific application?" Seemingly a simple question, but the

### DDX 7000 & 8003. Digital Partial Discharge Detectors FEATURES APPLICATIONS

DDX 7000 & 8003 Digital Partial Discharge Detectors The HAEFELY HIPOTRONICS DDX Digital Partial Discharge Detector offers the high accuracy and flexibility of digital technology, plus the real-time display

### Precision Diode Rectifiers

by Kenneth A. Kuhn March 21, 2013 Precision half-wave rectifiers An operational amplifier can be used to linearize a non-linear function such as the transfer function of a semiconductor diode. The classic

### WHY DIFFERENTIAL? instruments connected to the circuit under test and results in V COMMON.

WHY DIFFERENTIAL? Voltage, The Difference Whether aware of it or not, a person using an oscilloscope to make any voltage measurement is actually making a differential voltage measurement. By definition,

### Price List - including VAT - Effective October 2015 - US\$ Pricing is excluding tax

PAG 1/8 PREAMPLIFIERS - Class A FET Preamplifier 07X FET Phono Preamplifier 06X The Preamplifier 07X is Coda s flagship preamplifier, offering distortion-free preamplification and unsurpassed sonic performance

### High Common-Mode Rejection. Differential Line Receiver SSM2141. Fax: 781/461-3113 FUNCTIONAL BLOCK DIAGRAM FEATURES. High Common-Mode Rejection

a FEATURES High Common-Mode Rejection DC: 00 db typ 60 Hz: 00 db typ 20 khz: 70 db typ 40 khz: 62 db typ Low Distortion: 0.00% typ Fast Slew Rate: 9.5 V/ s typ Wide Bandwidth: 3 MHz typ Low Cost Complements

### Lecture - 4 Diode Rectifier Circuits

Basic Electronics (Module 1 Semiconductor Diodes) Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Lecture - 4 Diode Rectifier Circuits

### Critical thin-film processes such as deposition and etching take place in a vacuum

WHITEPAPER INTRODUCING POWER SUPPLIES AND PLASMA Critical thin-film processes such as deposition and etching take place in a vacuum SYSTEMS chamber in the presence of a plasma. A plasma is an electrically

### Timing Errors and Jitter

Timing Errors and Jitter Background Mike Story In a sampled (digital) system, samples have to be accurate in level and time. The digital system uses the two bits of information the signal was this big

### 11: AUDIO AMPLIFIER I. INTRODUCTION

11: AUDIO AMPLIFIER I. INTRODUCTION The properties of an amplifying circuit using an op-amp depend primarily on the characteristics of the feedback network rather than on those of the op-amp itself. A

### Keysight Technologies Understanding the Fundamental Principles of Vector Network Analysis. Application Note

Keysight Technologies Understanding the Fundamental Principles of Vector Network Analysis Application Note Introduction Network analysis is the process by which designers and manufacturers measure the

### EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 4 - ALTERNATING CURRENT

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 4 - ALTERNATING CURRENT 4 Understand single-phase alternating current (ac) theory Single phase AC

### Review of Scientific Notation and Significant Figures

II-1 Scientific Notation Review of Scientific Notation and Significant Figures Frequently numbers that occur in physics and other sciences are either very large or very small. For example, the speed of

### Transistor Amplifiers

Physics 3330 Experiment #7 Fall 1999 Transistor Amplifiers Purpose The aim of this experiment is to develop a bipolar transistor amplifier with a voltage gain of minus 25. The amplifier must accept input

### Op Amp Circuit Collection

Op Amp Circuit Collection Note: National Semiconductor recommends replacing 2N2920 and 2N3728 matched pairs with LM394 in all application circuits. Section 1 Basic Circuits Inverting Amplifier Difference

### MODEL 2202IQ (1991-MSRP \$549.00)

F O R T H E L O V E O F M U S I C F O R T H E L O V E O F M U S I C MODEL 2202IQ (1991-MSRP \$549.00) OWNER'S MANUAL AND INSTALLATION GUIDE INTRODUCTION Congratulations on your decision to purchase a LINEAR

### RLC Resonant Circuits

C esonant Circuits Andrew McHutchon April 20, 203 Capacitors and Inductors There is a lot of inconsistency when it comes to dealing with reactances of complex components. The format followed in this document

### Chapter 10. RC Circuits ISU EE. C.Y. Lee

Chapter 10 RC Circuits Objectives Describe the relationship between current and voltage in an RC circuit Determine impedance and phase angle in a series RC circuit Analyze a series RC circuit Determine

### Power Supply V- Bonding, Hum, Buzz, and RFI Should We Bond V- at the Power Supply or Not? Jim Brown K9YC

Power Supply V- Bonding, Hum, Buzz, and RFI Should We Bond V- at the Power Supply or Not? Jim Brown K9YC I've seen numerous anecdotal comments suggesting that all might not be right with the grounding

### BJT AC Analysis. by Kenneth A. Kuhn Oct. 20, 2001, rev Aug. 31, 2008

by Kenneth A. Kuhn Oct. 20, 2001, rev Aug. 31, 2008 Introduction This note will discuss AC analysis using the beta, re transistor model shown in Figure 1 for the three types of amplifiers: common-emitter,

### Three phase circuits

Three phase circuits THREE PHASE CIRCUITS THREE-PHASE ADVANTAGES 1. The horsepower rating of three-phase motors and the kva rating of three-phase transformers are 150% greater than single-phase motors

### Understanding Power Impedance Supply for Optimum Decoupling

Introduction Noise in power supplies is not only caused by the power supply itself, but also the load s interaction with the power supply (i.e. dynamic loads, switching, etc.). To lower load induced noise,

### Signal Integrity: Tips and Tricks

White Paper: Virtex-II, Virtex-4, Virtex-5, and Spartan-3 FPGAs R WP323 (v1.0) March 28, 2008 Signal Integrity: Tips and Tricks By: Austin Lesea Signal integrity (SI) engineering has become a necessary

### Current Probes, More Useful Than You Think

Current Probes, More Useful Than You Think Training and design help in most areas of Electrical Engineering Copyright 1998 Institute of Electrical and Electronics Engineers. Reprinted from the IEEE 1998

### The Effect of Network Cabling on Bit Error Rate Performance. By Paul Kish NORDX/CDT

The Effect of Network Cabling on Bit Error Rate Performance By Paul Kish NORDX/CDT Table of Contents Introduction... 2 Probability of Causing Errors... 3 Noise Sources Contributing to Errors... 4 Bit Error

### Aircraft Electrical System

Chapter 9 Aircraft Electrical System Introduction The satisfactory performance of any modern aircraft depends to a very great degree on the continuing reliability of electrical systems and subsystems.

### Amplifier Teaching Aid

Amplifier Teaching Aid Table of Contents Amplifier Teaching Aid...1 Preface...1 Introduction...1 Lesson 1 Semiconductor Review...2 Lesson Plan...2 Worksheet No. 1...7 Experiment No. 1...7 Lesson 2 Bipolar

### Electronics for Analog Signal Processing - II Prof. K. Radhakrishna Rao Department of Electrical Engineering Indian Institute of Technology Madras

Electronics for Analog Signal Processing - II Prof. K. Radhakrishna Rao Department of Electrical Engineering Indian Institute of Technology Madras Lecture - 18 Wideband (Video) Amplifiers In the last class,

### ANALYZER BASICS WHAT IS AN FFT SPECTRUM ANALYZER? 2-1

WHAT IS AN FFT SPECTRUM ANALYZER? ANALYZER BASICS The SR760 FFT Spectrum Analyzer takes a time varying input signal, like you would see on an oscilloscope trace, and computes its frequency spectrum. Fourier's

### Understanding Mixers Terms Defined, and Measuring Performance

Understanding Mixers Terms Defined, and Measuring Performance Mixer Terms Defined Statistical Processing Applied to Mixers Today's stringent demands for precise electronic systems place a heavy burden

### EEL303: Power Engineering I - Tutorial 4

1. Determine the voltage at the generating station and the efficiency of the following system (Figure 1): Both transformers have ratio of 2kV/11kV. The resistance on LV side of both Figure 1: transformers

### Power Supplies. 1.0 Power Supply Basics. www.learnabout-electronics.org. Module

Module 1 www.learnabout-electronics.org Power Supplies 1.0 Power Supply Basics What you ll learn in Module 1 Section 1.0 Power Supply Basics. Basic functions of a power supply. Safety aspects of working

### 1. ANSI T1.102-1993 T1

AN7 Application Note Measurement and Evaluation of Pulse Shapes in T1/E1 Transmission Systems By Roger Taylor Crystal Semiconductor Corporation P.O. Box 17847, Austin, TX 78760 (512) 445-7222 FAX: (512)

### electronics fundamentals

electronics fundamentals circuits, devices, and applications THOMAS L. FLOYD DAVID M. BUCHLA Lesson 1: Diodes and Applications Center-Tapped Full-wave Rectifier The center-tapped (CT) full-wave rectifier

### See Horenstein 4.3 and 4.4

EE 462: Laboratory # 4 DC Power Supply Circuits Using Diodes by Drs. A.V. Radun and K.D. Donohue (2/14/07) Department of Electrical and Computer Engineering University of Kentucky Lexington, KY 40506 Updated

### APPLICATION NOTE AP050830

APPLICATION NOTE AP050830 Selection and use of Ultrasonic Ceramic Transducers Pro-Wave Electronics Corp. E-mail: sales@pro-wave.com.tw URL: http://www.prowave.com.tw The purpose of this application note

### ε: Voltage output of Signal Generator (also called the Source voltage or Applied

Experiment #10: LR & RC Circuits Frequency Response EQUIPMENT NEEDED Science Workshop Interface Power Amplifier (2) Voltage Sensor graph paper (optional) (3) Patch Cords Decade resistor, capacitor, and

### ENGR-4300 Electronic Instrumentation Quiz 4 Spring 2011 Name Section

ENGR-4300 Electronic Instrumentation Quiz 4 Spring 2011 Name Section Question I (20 points) Question II (20 points) Question III (20 points) Question IV (20 points) Question V (20 points) Total (100 points)

### Properties of electrical signals

DC Voltage Component (Average voltage) Properties of electrical signals v(t) = V DC + v ac (t) V DC is the voltage value displayed on a DC voltmeter Triangular waveform DC component Half-wave rectifier

### THE MclNTOSH MC 2100 SOLID STATE STEREO POWER AMPLIFIER

THE MclNTOSH MC 2100 SOLID STATE STEREO POWER AMPLIFIER Price \$1.25 Your MC 2100 stereo amplifier will give you many years of pleasant and satisfactory performance. If you have any questions concerning

### AUDIO. 1. An audio signal is an representation of a sound. a. Acoustical b. Environmental c. Aesthetic d. Electrical

Essentials of the AV Industry Pretest Not sure if you need to take Essentials? Do you think you know the basics of Audio Visual? Take this quick assessment test on Audio, Visual, and Systems to find out!

### Programmable-Gain Transimpedance Amplifiers Maximize Dynamic Range in Spectroscopy Systems

Programmable-Gain Transimpedance Amplifiers Maximize Dynamic Range in Spectroscopy Systems PHOTODIODE VOLTAGE SHORT-CIRCUIT PHOTODIODE SHORT- CIRCUIT VOLTAGE 0mV DARK ark By Luis Orozco Introduction Precision

### Routinely DIYers opt to make themselves a passive preamp - just an input selector and a volume control.

The First Watt B1 Buffer Preamp Nelson Pass, June 2008 Side A So here we are in the New Millennium, and thanks to Tom Holman and THX we ve got lots of gain in our electronics. More gain than some of us

### A Tutorial on the Decibel

A Tutorial on the Decibel This tutorial combines information from several authors, including Bob DeVarney, W1ICW; Walter Bahnzaf, WB1ANE; and Ward Silver, NØAX Decibels are part of many questions in the

### Voltage, Current, Resistance, Capacitance and Inductance

Voltage, Current, Resistance, Capacitance and Inductance Really basic electrical engineering. 1 Electricity and conductors Electricity is the movement of electrons. Electrons move easily through a conductor

### Diode Applications. As we have already seen the diode can act as a switch Forward biased or reverse biased - On or Off.

Diode Applications Diode Switching As we have already seen the diode can act as a switch Forward biased or reverse biased - On or Off. Voltage Rectifier A voltage rectifier is a circuit that converts an

### Lecture 24. Inductance and Switching Power Supplies (how your solar charger voltage converter works)

Lecture 24 Inductance and Switching Power Supplies (how your solar charger voltage converter works) Copyright 2014 by Mark Horowitz 1 Roadmap: How Does This Work? 2 Processor Board 3 More Detailed Roadmap

### DDX 7000 & 8003. Digital Partial Discharge Detectors FEATURES APPLICATIONS

DDX 7000 & 8003 Digital Partial Discharge Detectors The HAEFELY HIPOTRONICS DDX Digital Partial Discharge Detector offers the high accuracy and flexibility of digital technology, plus the real-time display

### BASIC ELECTRONICS AC CIRCUIT ANALYSIS. December 2011

AM 5-202 BASIC ELECTRONICS AC CIRCUIT ANALYSIS December 2011 DISTRIBUTION RESTRICTION: Approved for Pubic Release. Distribution is unlimited. DEPARTMENT OF THE ARMY MILITARY AUXILIARY RADIO SYSTEM FORT

### Content Map For Career & Technology

Content Strand: Applied Academics CT-ET1-1 analysis of electronic A. Fractions and decimals B. Powers of 10 and engineering notation C. Formula based problem solutions D. Powers and roots E. Linear equations

### TAN δ (DELTA) CABLE TESTING OVERVIEW AND ANSWERS TO FREQUENTLY ASKED QUESTIONS. What Is Tan δ, Or Tan Delta?

TAN δ (DELTA) CABLE TESTING OVERVIEW AND ANSWERS TO FREQUENTLY ASKED QUESTIONS What Is Tan δ, Or Tan Delta? Tan Delta, also called Loss Angle or Dissipation Factor testing, is a diagnostic method of testing

### BXR 300C BXR 300R. Owner, s Manual P/N 040294

THE SOUND THAT CREATES LEGENDS BXR 300C BXR 300R Owner, s Manual P/N 040294 INTRODUCTION The Fender BXR 300 AMPLIFIER is the most recent effort in state of the art bass amplifier technology, and is a member

### Inductors in AC Circuits

Inductors in AC Circuits Name Section Resistors, inductors, and capacitors all have the effect of modifying the size of the current in an AC circuit and the time at which the current reaches its maximum

### Description. 5k (10k) - + 5k (10k)

THAT Corporation Low Noise, High Performance Microphone Preamplifier IC FEATURES Excellent noise performance through the entire gain range Exceptionally low THD+N over the full audio bandwidth Low power

### INTRODUCTION. Please read this manual carefully for a through explanation of the Decimator ProRackG and its functions.

INTRODUCTION The Decimator ProRackG guitar noise reduction system defines a new standard for excellence in real time noise reduction performance. The Decimator ProRackG was designed to provide the maximum

### Two year Claritycap research programme finally answers an audio capacitors influence on sound quality.

Two year Claritycap research programme finally answers an audio capacitors influence on sound quality. ClarityCap have been supplying high-quality audio capacitors to some of the world s top HiFi and loudspeaker

### T = 1 f. Phase. Measure of relative position in time within a single period of a signal For a periodic signal f(t), phase is fractional part t p

Data Transmission Concepts and terminology Transmission terminology Transmission from transmitter to receiver goes over some transmission medium using electromagnetic waves Guided media. Waves are guided

### Transistor Characteristics and Single Transistor Amplifier Sept. 8, 1997

Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 8, 1997 1 Purpose To measure and understand the common emitter transistor characteristic curves. To use the base current gain

### Electronics. Discrete assembly of an operational amplifier as a transistor circuit. LD Physics Leaflets P4.2.1.1

Electronics Operational Amplifier Internal design of an operational amplifier LD Physics Leaflets Discrete assembly of an operational amplifier as a transistor circuit P4.2.1.1 Objects of the experiment

### Application Note #49 RF Amplifier Output Voltage, Current, Power, and Impedance Relationship

Application Note #49 RF Amplifier Output Voltage, Current, Power, and Impedance Relationship By: Jason Smith; Manager Applications Engineer and Pat Malloy; Sr. Applications Engineer How much output voltage,

### FREQUENCY RESPONSE ANALYZERS

FREQUENCY RESPONSE ANALYZERS Dynamic Response Analyzers Servo analyzers When you need to stabilize feedback loops to measure hardware characteristics to measure system response BAFCO, INC. 717 Mearns Road

### LM101A LM201A LM301A Operational Amplifiers

LM101A LM201A LM301A Operational Amplifiers General Description The LM101A series are general purpose operational amplifiers which feature improved performance over industry standards like the LM709 Advanced

### TIMING SIGNALS, IRIG-B AND PULSES

TIMING SIGNALS, IRIG-B AND PULSES Document No. PD0043200B July 2013 Arbiter Systems, Inc. 1324 Vendels Circle, Suite 121 Paso Robles, CA 93446 U.S.A. (805) 237-3831, (800) 321-3831 http://www.arbiter.com

### UNDERSTANDING POWER FACTOR AND INPUT CURRENT HARMONICS IN SWITCHED MODE POWER SUPPLIES

UNDERSTANDING POWER FACTOR AND INPUT CURRENT HARMONICS IN SWITCHED MODE POWER SUPPLIES WHITE PAPER: TW0062 36 Newburgh Road Hackettstown, NJ 07840 Feb 2009 Alan Gobbi About the Author Alan Gobbi Alan Gobbi

### BSNL TTA Question Paper-Instruments and Measurement Specialization 2007

BSNL TTA Question Paper-Instruments and Measurement Specialization 2007 (1) Instrument is a device for determining (a) the magnitude of a quantity (b) the physics of a variable (c) either of the above

### Bipolar Transistor Amplifiers

Physics 3330 Experiment #7 Fall 2005 Bipolar Transistor Amplifiers Purpose The aim of this experiment is to construct a bipolar transistor amplifier with a voltage gain of minus 25. The amplifier must

### Analog and Digital Filters Anthony Garvert November 13, 2015

Analog and Digital Filters Anthony Garvert November 13, 2015 Abstract In circuit analysis and performance, a signal transmits some form of information, such as a voltage or current. However, over a range

### EXPERIMENT NUMBER 8 CAPACITOR CURRENT-VOLTAGE RELATIONSHIP

1 EXPERIMENT NUMBER 8 CAPACITOR CURRENT-VOLTAGE RELATIONSHIP Purpose: To demonstrate the relationship between the voltage and current of a capacitor. Theory: A capacitor is a linear circuit element whose

### APPLICATION NOTE ULTRASONIC CERAMIC TRANSDUCERS

APPLICATION NOTE ULTRASONIC CERAMIC TRANSDUCERS Selection and use of Ultrasonic Ceramic Transducers The purpose of this application note is to aid the user in the selection and application of the Ultrasonic

### Measurement of Inductor Q with the MSA Sam Wetterlin 3/31/11. Equation 1 Determining Resonant Q from Inductor Q and Capacitor Q

Measurement of Inductor with the MSA Sam Wetterlin 3/31/11 The of an inductor, which is its reactance divided by its internal series resistance, is used as an indication of how well it will perform at