Application Note Microcontrollers. SPI Program Examples. 1. Introduction. 1.1 References
|
|
|
- Emil Warren
- 9 years ago
- Views:
Transcription
1 SPI Program Examples 1. Introduction This Application Note provides to customers C and Assembler program examples for SPI. These examples are developped for the different configuration modes of this feature. 1.1 References Atmel 8051 Microcontrollers Hardware Manual 8051 Microcontrollers Application Note Rev. 1
2 2. C Examples 2.1 Master with Slaves Select $RCSfile: spi_master_ss.c,v $ Copyright (c) 2004 Atmel. Please read file license.txt for copyright This file is an example to use spi in master mode. This file can be parsed by Doxygen for automatic documentation generation. Put here the functional description of this file within the software architecture of your $Revision: 1.0 $ $Name: $ / I N C L U D E S / #include "reg_c51.h" char serial_data; char data_example=0x55; char data_save; bit transmit_completed= 0; / FUNCTION_PURPOSE: This file set up spi in master mode with Fclk Periph/128 as baud rate and with slave select pin. FUNCTION_INPUTS: P1.5(MISO) serial input FUNCTION_OUTPUTS: P1.7(MOSI) serial output / void main(void) SPCON = 0x10; / Master mode / P1_1=1; / enable master / SPCON = 0x82; / Fclk Periph/128 / SPCON &= ~0x08; / CPOL=0; transmit mode example / SPCON = 0x04; / CPHA=1; transmit mode example / IEN1 = 0x04; / enable spi interrupt / SPCON = 0x40; / run spi / EA=1; / enable interrupts / while(1) / endless / SPDAT=data_example; / send an example data / while(!transmit_completed);/ wait end of transmition / transmit_completed = 0; / clear software transfert flag / SPDAT=0x00; / data is send to generate SCK signal / while(!transmit_completed);/ wait end of transmition / transmit_completed = 0; / clear software transfert flag / data_save = serial_data; / save receive data / 2
3 / FUNCTION_PURPOSE:interrupt FUNCTION_INPUTS: void FUNCTION_OUTPUTS: transmit_complete is software transfert flag / void it_spi(void) interrupt 9 / interrupt address is 0x004B / switch( SPSTA ) / read and clear spi status register / case 0x80: serial_data=spdat; / read receive data / transmit_completed=1;/ set software flag / break; case 0x10: break; / put here for mode fault tasking / case 0x40: break; / put here for overrun tasking / 2.2 Slave with Slave Select $RCSfile: spi_slave_ss.c,v $ Copyright (c) 2004 Atmel. Please read file license.txt for copyright This file is an example to use spi in slave mode. This file can be parsed by Doxygen for automatic documentation generation. Put here the functional description of this file within the software architecture of your $Revision: 1.0 $ $Name: $ / I N C L U D E S / #include "reg_c51.h" bit transmit_completed; char serial_data; 3
4 / FUNCTION_PURPOSE: This file set up spi in slave mode with Fclk Periph/128 as baud rate and with slave select pin FUNCTION_INPUTS: P1.5(MISO) serial input P1.1(/SS)=0 slave selected FUNCTION_OUTPUTS: P1.7(MOSI) serial output / void main(void) SPCON &= ~0x10; / slave mode / SPCON &= ~0x08; / CPOL=0; transmit mode example/ SPCON = 0x04; / CPHA=1; transmit mode example/ IEN1 = 0x04; / enable spi interrupt / SPCON = 0x40; / spi run / transmit_completed = 0; / clear software transfert flag / EA=1; / enable interrupts / while(1) / endless / if(transmit_completed) SPDAT = serial_data; / echo data to master / transmit_completed = 0; / clear software transfert flag / / FUNCTION_PURPOSE: spi interrupt, receive data to master FUNCTION_INPUTS: void FUNCTION_OUTPUTS: void / void it_spi(void) interrupt 9 / interrupt address is 0x004B / switch( SPSTA ) / read and clear spi status register / case 0x80: serial_data=spdat; / read receive data / transmit_completed=1;/ set software flag / break; case 0x10: / put here for mode fault tasking / break; case 0x40: / put here for overrun tasking / break; SPDAT=serial_data; / needed to complete clearing sequence / 4
5 2.3 Master without Slave Select $RCSfile: spi_master_no_ss.c,v $ Copyright (c) 2004 Atmel. Please read file license.txt for copyright This file is an example to use spi in master mode. This file can be parsed by Doxygen for automatic documentation generation. Put here the functional description of this file within the software architecture of your $Revision: 1.0 $ $Name: $ / I N C L U D E S / #include "reg_c51.h" char serial_data; char data_example=0x55; char data_save; bit transmit_completed= 0; / FUNCTION_PURPOSE: This file set up spi in master mode with Fclk Periph/128 as baud rate and without slave select pin FUNCTION_INPUTS: P1.5(MISO) serial input FUNCTION_OUTPUTS: P1.7(MOSI) serial output P1.1 / void main(void) SPCON = 0x10; / Master mode / SPCON = 0x82; / Fclk Periph/128 / SPCON = 0x20; / P1.1 is available as standard I/O pin / SPCON &= ~0x08; / CPOL=0; transmit mode example / SPCON = 0x04; / CPHA=1; transmit mode example / IEN1 = 0x04; / enable spi interrupt / SPCON = 0x40; / run spi / EA=1; / enable interrupts / while(1) / endless / P1_1=~P1_1; / P1.1 is available as standard I/O pin / SPDAT=data_example; / send an example data / while(!transmit_completed);/ wait end of transmition / transmit_completed = 0; / clear software transfert flag / SPDAT=0x00; / data is send to generate SCK signal / while(!transmit_completed);/ wait end of transmition / transmit_completed = 0; / clear software transfert flag / data_save = serial_data; / save receive data / 5
6 / FUNCTION_PURPOSE:interrupt FUNCTION_INPUTS: void FUNCTION_OUTPUTS: transmit_complete is software transfert flag / void it_spi(void) interrupt 9 / interrupt address is 0x004B / switch( SPSTA ) / read and clear spi status register / case 0x80: serial_data=spdat; / read receive data / transmit_completed=1;/ set software flag / break; case 0x10: / put here for mode fault tasking / break; case 0x40: / put here for overrun tasking / break; 2.4 Slave without Slave Select $RCSfile: spi_slave_no_ss.c,v $ Copyright (c) 2004 Atmel. Please read file license.txt for copyright This file is an example to use spi in slave mode. This file can be parsed by Doxygen for automatic documentation generation. Put here the functional description of this file within the software architecture of your $Revision: 1.0 $ $Name: $ / I N C L U D E S / #include "reg_c51.h" bit transmit_completed; char serial_data; 6
7 / FUNCTION_PURPOSE: This file set up spi in slave mode with Fclk Periph/128 as baud rate and without slave select pin. FUNCTION_INPUTS: P1.5(MISO) serial input FUNCTION_OUTPUTS: P1.7(MOSI) serial output P1.1 / void main(void) SPCON = 0x20; / P1.1 is available as standard I/O pin / / SPCON.5(SSDIS) has no effect if CPHA=0 in slave mode then P1.1 is used to slave select / SPCON &= ~0x10; / slave mode / SPCON &= ~0x08; / CPOL=0; transmit mode example/ SPCON = 0x04; / CPHA=1; transmit mode example/ IEN1 = 0x04; / enable spi interrupt / SPCON = 0x40; / spi run / transmit_completed = 0; / clear software transfert flag / EA=1; / enable interrupts / while(1) / endless / P1_1=~P1_1; / P1.1 is available as standard I/O pin / if(transmit_completed) SPDAT = serial_data; / echo data to master / transmit_completed = 0; / clear software transfert flag / / FUNCTION_PURPOSE: spi interrupt, receive data to master FUNCTION_INPUTS: void FUNCTION_OUTPUTS: void / void it_spi(void) interrupt 9 / interrupt address is 0x004B / switch( SPSTA ) / read and clear spi status register / case 0x80: serial_data=spdat; / read receive data / transmit_completed=1;/ set software flag / break; case 0x10: / put here for mode fault tasking / break; case 0x40: / put here for overrun tasking / break; SPDAT=serial_data; / needed to complete clearing sequence / 7
8 2.5 SFR Register Definition /H NAME: reg_c51.h PURPOSE: SFR Description file for 8051 products ON KEIL compiler / #define Sfr(x, y) sfr x = y #define Sbit(x, y, z) sbit x = y^z #define Sfr16(x,y) sfr16 x = y / / / Include file for 8051 SFR Definitions / / / / BYTE Register / Sfr (P0, 0x80); Sbit (P0_7, 0x80, 7); Sbit (P0_6, 0x80, 6); Sbit (P0_5, 0x80, 5); Sbit (P0_4, 0x80, 4); Sbit (P0_3, 0x80, 3); Sbit (P0_2, 0x80, 2); Sbit (P0_1, 0x80, 1); Sbit (P0_0, 0x80, 0); Sfr (P1, 0x90); Sbit (P1_7, 0x90, 7); Sbit (P1_6, 0x90, 6); Sbit (P1_5, 0x90, 5); Sbit (P1_4, 0x90, 4); Sbit (P1_3, 0x90, 3); Sbit (P1_2, 0x90, 2); Sbit (P1_1, 0x90, 1); Sbit (P1_0, 0x90, 0); Sfr (P2, 0xA0); Sbit (P2_7, 0xA0, 7); Sbit (P2_6, 0xA0, 6); Sbit (P2_5, 0xA0, 5); Sbit (P2_4, 0xA0, 4); Sbit (P2_3, 0xA0, 3); 8
9 Sbit (P2_2, 0xA0, 2); Sbit (P2_1, 0xA0, 1); Sbit (P2_0, 0xA0, 0); Sfr (P3, 0xB0); Sbit (P3_7, 0xB0, 7); Sbit (P3_6, 0xB0, 6); Sbit (P3_5, 0xB0, 5); Sbit (P3_4, 0xB0, 4); Sbit (P3_3, 0xB0, 3); Sbit (P3_2, 0xB0, 2); Sbit (P3_1, 0xB0, 1); Sbit (P3_0, 0xB0, 0); Sbit (RD, 0xB0, 7); Sbit (WR, 0xB0, 6); Sbit (T1, 0xB0, 5); Sbit (T0, 0xB0, 4); Sbit (INT1, 0xB0, 3); Sbit (INT0, 0xB0, 2); Sbit (TXD, 0xB0, 1); Sbit (RXD, 0xB0, 0); Sfr (P4, 0xC0); Sbit (P4_7, 0xC0, 7); Sbit (P4_6, 0xC0, 6); Sbit (P4_5, 0xC0, 5); Sbit (P4_4, 0xC0, 4); Sbit (P4_3, 0xC0, 3); Sbit (P4_2, 0xC0, 2); Sbit (P4_1, 0xC0, 1); Sbit (P4_0, 0xC0, 0); Sfr (P5, 0xE8); Sbit (P5_7, 0xE8, 7); Sbit (P5_6, 0xE8, 6); Sbit (P5_5, 0xE8, 5); Sbit (P5_4, 0xE8, 4); Sbit (P5_3, 0xE8, 3); Sbit (P5_2, 0xE8, 2); Sbit (P5_1, 0xE8, 1); Sbit (P5_0, 0xE8, 0); Sfr (PSW, 0xD0); Sbit (CY, 0xD0, 7); Sbit (AC, 0xD0, 6); 9
10 Sbit (F0, 0xD0, 5); Sbit (RS1, 0xD0, 4); Sbit (RS0, 0xD0, 3); Sbit (OV, 0xD0, 2); Sbit (UD, 0xD0, 1); Sbit (P, 0xD0, 0); Sfr (ACC, 0xE0); Sfr (B, 0xF0); Sfr (SP, 0x81); Sfr (DPL, 0x82); Sfr (DPH, 0x83); Sfr (PCON, 0x87); Sfr (CKCON0, 0x8F); Sfr (CKCON1, 0xAF); / TIMERS registers / Sfr (TCON, 0x88); Sbit (TF1, 0x88, 7); Sbit (TR1, 0x88, 6); Sbit (TF0, 0x88, 5); Sbit (TR0, 0x88, 4); Sbit (IE1, 0x88, 3); Sbit (IT1, 0x88, 2); Sbit (IE0, 0x88, 1); Sbit (IT0, 0x88, 0); Sfr (TMOD, 0x89); Sfr (T2CON, 0xC8); Sbit (TF2, 0xC8, 7); Sbit (EXF2, 0xC8, 6); Sbit (RCLK, 0xC8, 5); Sbit (TCLK, 0xC8, 4); Sbit (EXEN2, 0xC8, 3); Sbit (TR2, 0xC8, 2); Sbit (C_T2, 0xC8, 1); Sbit (CP_RL2, 0xC8, 0); Sfr (T2MOD, 0xC9); Sfr (TL0, 0x8A); Sfr (TL1, 0x8B); Sfr (TL2, 0xCC); Sfr (TH0, 0x8C); Sfr (TH1, 0x8D); Sfr (TH2, 0xCD); Sfr (RCAP2L, 0xCA); Sfr (RCAP2H, 0xCB); Sfr (WDTRST, 0xA6); 10
11 Sfr (WDTPRG, 0xA7); / UART registers / Sfr (SCON, 0x98); Sbit (SM0, 0x98, 7); Sbit (FE, 0x98, 7); Sbit (SM1, 0x98, 6); Sbit (SM2, 0x98, 5); Sbit (REN, 0x98, 4); Sbit (TB8, 0x98, 3); Sbit (RB8, 0x98, 2); Sbit (TI, 0x98, 1); Sbit (RI, 0x98, 0); Sfr (SBUF, 0x99); Sfr (SADEN, 0xB9); Sfr (SADDR, 0xA9); / Internal Baud Rate Generator / Sfr (BRL, 0x9A); Sfr (BDRCON, 0x9B); / IT registers / Sfr (IEN0, 0xA8); Sfr (IEN1, 0xB1); Sfr (IPH0, 0xB7); Sfr (IPH1, 0xB3); Sfr (IPL0, 0xB8); Sfr (IPL1, 0xB2); / IEN0 / Sbit (EA, 0xA8, 7); Sbit (EC, 0xA8, 6); Sbit (ET2, 0xA8, 5); Sbit (ES, 0xA8, 4); Sbit (ET1, 0xA8, 3); Sbit (EX1, 0xA8, 2); Sbit (ET0, 0xA8, 1); Sbit (EX0, 0xA8, 0); / PCA registers / Sfr (CCON, 0xD8); Sfr (CMOD, 0xD9); Sfr (CH, 0xF9); 11
12 Sfr (CL, 0xE9); Sfr (CCAP0H, 0xFA); Sfr (CCAP0L, 0xEA); Sfr (CCAPM0, 0xDA); Sfr (CCAP1H, 0xFB); Sfr (CCAP1L, 0xEB); Sfr (CCAPM1, 0xDB); Sfr (CCAP2H, 0xFC); Sfr (CCAP2L, 0xEC); Sfr (CCAPM2, 0xDC); Sfr (CCAP3H, 0xFD); Sfr (CCAP3L, 0xED); Sfr (CCAPM3, 0xDD); Sfr (CCAP4H, 0xFE); Sfr (CCAP4L, 0xEE); Sfr (CCAPM4, 0xDE); / CCON / Sbit (CF, 0xD8, 7); Sbit (CR, 0xD8, 6); Sbit (CCF4, 0xD8, 4); Sbit (CCF3, 0xD8, 3); Sbit (CCF2, 0xD8, 2); Sbit (CCF1, 0xD8, 1); Sbit (CCF0, 0xD8, 0); / T W I registers / Sfr ( SSCON, 0x93); Sfr ( SSCS, 0x94); Sfr ( SSDAT, 0x95); Sfr ( SSADR, 0x96); Sfr ( PI2, 0xF8); Sbit (PI2_1, 0xF8, 1); Sbit (PI2_0, 0xF8, 0); / OSC control registers / Sfr ( CKSEL, 0x85 ); Sfr ( OSCCON, 0x86 ); Sfr ( CKRL, 0x97 ); / Keyboard control registers / Sfr ( KBLS, 0x9C ); Sfr ( KBE, 0x9D ); Sfr ( KBF, 0x9E ); / SPI / Sfr ( SPCON, 0xC3 ); Sfr ( SPSTA, 0xC4 ); Sfr ( SPDAT, 0xC5 ); 12
13 / Misc / Sfr( AUXR, 0x8E); Sfr ( AUXR1, 0xA2); Sfr ( FCON, 0xD1); / E data / Sfr ( EECON, 0xD2 ); 13
14 3. Assembler 51 Examples 3.1 Master with Slave Select $INCLUDE (reg_c51.inc) transmit_completed BIT 20H.1; software flag serial_data DATA 08H data_save DATA 09H data_example DATA 0AH; org 000h ljmp begin org 4Bh ljmp it_spi ;/ ; FUNCTION_PURPOSE: This file set up spi in master mode with ; Fclk Periph/128 as baud rate and with slave select pin. ; FUNCTION_INPUTS: P1.5(MISO) serial input ; FUNCTION_OUTPUTS: P1.7(MOSI) serial output ; / org 0100h begin: ;init MOV data_example,#55h; / data example / ORL SPCON,#10h; / Master mode / SETB P1.1; / enable master / ORL SPCON,#82h; / Fclk Periph/128 / ANL SPCON,#0F7h; / CPOL=0; transmit mode example / ORL SPCON,#04h; / CPHA=1; transmit mode example / ORL IEN1,#04h; / enable spi interrupt / ORL SPCON,#40h; / run spi / CLR transmit_completed; / clear software transfert flag / SETB EA; / enable interrupts / loop: / endless / MOV SPDAT,data_example; / send an example data / JNB transmit_completed,$; / wait end of transmition / CLR transmit_completed; / clear software transfert flag / MOV SPDAT,#00h; / data is send to generate SCK signal / JNB transmit_completed,$; / wait end of transmition / CLR transmit_completed; / clear software transfert flag / MOV data_save,serial_data; / save receive data / LJMP loop 14
15 ;/ ; FUNCTION_PURPOSE:interrupt ; FUNCTION_INPUTS: void ; FUNCTION_OUTPUTS: transmit_complete is software transfert flag ; / it_spi:; / interrupt address is 0x004B / MOV R7,SPSTA; MOV ACC,R7 JNB ACC.7,break1;case 0x80: MOV serial_data,spdat; / read receive data / SETB transmit_completed; / set software flag / break1: JNB ACC.4,break2;case 0x10: ; / put here for mode fault tasking / break2:; JNB ACC.6,break3;case 0x40: ; / put here for overrun tasking / break3:; RETI end 3.2 Slave with Slave Select $INCLUDE (reg_c51.inc) transmit_completed BIT 20H.1; software flag serial_data DATA 08H org 000h ljmp begin org 4Bh ljmp it_spi ;/ ; FUNCTION_PURPOSE: This file set up spi in slave mode with ; Fclk Periph/128 as baud rate and with slave select pin ; FUNCTION_INPUTS: P1.5(MISO) serial input ; P1.1(/SS)=0 slave selected ; FUNCTION_OUTPUTS: P1.7(MOSI) serial output ; / org 0100h begin: ANL SPCON,#0EFh; / slave mode / ANL SPCON,#0F7h; / CPOL=0; transmit mode example / ORL SPCON,#04h; / CPHA=1; transmit mode example / ORL IEN1,#04h; / enable spi interrupt / ORL SPCON,#40h; / run spi / CLR transmit_completed; / clear software transfert flag / SETB EA; / enable interrupts / 15
16 loop: / endless / JNB transmit_completed,end_if MOV SPDAT,serial_data; / echo data to master / CLR transmit_completed; / clear software transfert flag / end_if: LJMP loop ;/ ; FUNCTION_PURPOSE: spi interrupt, receive data to master ; FUNCTION_INPUTS: void ; FUNCTION_OUTPUTS: void ; / it_spi:; / interrupt address is 0x004B / MOV R7,SPSTA; MOV ACC,R7 JNB ACC.7,break1;case 0x80: MOV serial_data,spdat; / read receive data / SETB transmit_completed; / set software flag / break1: JNB ACC.4,break2;case 0x10: ; / put here for mode fault tasking / break2:; JNB ACC.6,break3;case 0x40: ; / put here for overrun tasking / break3:; MOV SPDAT,serial_data; / needed to complete clearing sequence / RETI end 16
17 3.3 Master without Slave Select $INCLUDE (reg_c51.inc) transmit_completed BIT 20H.1; software flag serial_data DATA 08H data_save DATA 09H data_example DATA 0AH; org 000h ljmp begin org 4Bh ljmp it_spi ;/ ; FUNCTION_PURPOSE: This file set up spi in master mode with ; Fclk Periph/128 as baud rate and without slave select pin ; FUNCTION_INPUTS: P1.5(MISO) serial input ; FUNCTION_OUTPUTS: P1.7(MOSI) serial output ; P1.1 ; / org 0100h begin: ;init MOV data_example,#55h; / data example / ORL SPCON,#10h; / Master mode / ORL SPCON,#20h; / P1.1 is available as standard I/O pin / ORL SPCON,#82h; / Fclk Periph/128 / ANL SPCON,#0F7h; / CPOL=0; transmit mode example / ORL SPCON,#04h; / CPHA=1; transmit mode example / ORL IEN1,#04h; / enable spi interrupt / ORL SPCON,#40h; / run spi / CLR transmit_completed; / clear software transfert flag / SETB EA; / enable interrupts / loop: / endless / CPL P1.1; / P1.1 is available as standard I/O pin / MOV SPDAT,data_example; / send an example data / JNB transmit_completed,$; / wait end of transmition / CLR transmit_completed; / clear software transfert flag / MOV SPDAT,#00h; / data is send to generate SCK signal / JNB transmit_completed,$; / wait end of transmition / CLR transmit_completed; / clear software transfert flag / MOV data_save,serial_data; / save receive data / LJMP loop 17
18 ;/ ; FUNCTION_PURPOSE:interrupt ; FUNCTION_INPUTS: void ; FUNCTION_OUTPUTS: transmit_complete is software transfert flag ; / it_spi:; / interrupt address is 0x004B / MOV R7,SPSTA; MOV ACC,R7 JNB ACC.7,break1;case 0x80: MOV serial_data,spdat; / read receive data / SETB transmit_completed; / set software flag / break1: JNB ACC.4,break2;case 0x10: ; / put here for mode fault tasking / break2:; JNB ACC.6,break3;case 0x40: ; / put here for overrun tasking / break3:; RETI end 3.4 Slave without Slave Select $INCLUDE (reg_c51.inc) transmit_completed BIT 20H.1; software flag serial_data DATA 08H org 000h ljmp begin org 4Bh ljmp it_spi ;/ ; FUNCTION_PURPOSE: This file set up spi in slave mode with ; Fclk Periph/128 as baud rate and without slave select pin. ; FUNCTION_INPUTS: P1.5(MISO) serial input ; FUNCTION_OUTPUTS: P1.7(MOSI) serial output ; P1.1 ; / org 0100h begin: ORL SPCON,#20h; / P1.1 is available as standard I/O pin / ;/ SPCON.5(SSDIS) has no effect if CPHA=0 in slave mode then P1.1 is used to slave select / ANL SPCON,#0EFh; / slave mode / ANL SPCON,#0F7h; / CPOL=0; transmit mode example / ORL SPCON,#04h; / CPHA=1; transmit mode example / 18
19 ORL IEN1,#04h; / enable spi interrupt / ORL SPCON,#40h; / run spi / CLR transmit_completed; / clear software transfert flag / SETB EA; / enable interrupts / loop: / endless / CPL P1.1; / P1.1 is available as standard I/O pin / JNB transmit_completed,end_if MOV SPDAT,serial_data; / echo data to master / CLR transmit_completed; / clear software transfert flag / end_if: LJMP loop ;/ ; FUNCTION_PURPOSE: spi interrupt, receive data to master ; FUNCTION_INPUTS: void ; FUNCTION_OUTPUTS: void ; / it_spi:; / interrupt address is 0x004B / MOV R7,SPSTA; MOV ACC,R7 JNB ACC.7,break1;case 0x80: MOV serial_data,spdat; / read receive data / SETB transmit_completed; / set software flag / break1: JNB ACC.4,break2;case 0x10: ; / put here for mode fault tasking / break2:; JNB ACC.6,break3;case 0x40: ; / put here for overrun tasking / break3:; MOV SPDAT,serial_data; / needed to complete clearing sequence / RETI end 19
20 3.5 SFR Register Definition $SAVE $NOLIST P0 DATA 80H TCONDATA88H ;--- TCON Bits --- TF1 BIT 8FH TR1 BIT 8EH TF0 BIT 8DH TR0 BIT 8CH IE1 BIT 8BH IT1 BIT 8AH IE0 BIT 89H IT0 BIT 88H P1 DATA 90H SCON DATA 98H ;--- SCON Bits ---- SM0 BIT 9FH SM1 BIT 9EH SM2 BIT 9DH REN BIT 9CH TB8 BIT 9BH RB8 BIT 9AH TI BIT 99H RI BIT 98H P2 DATA 0A0H IEN0 DATA 0A8H ;--- IEN0 Bits EA BIT0AFH EC BIT0AEH ET2 BIT0ADH ES BIT0ACH ET1 BIT0ABH EX1 BIT0AAH ET0 BIT0A9H EX0BIT0A8H P3 DATA 0B0H ;--- P3 Bits RD BIT 0B7H WR BIT 0B6H T1 BIT 0B5H T0 BIT 0B4H INT1 BIT 0B3H 20
21 INT0 BIT 0B2H TXD BIT 0B1H RXD BIT 0B0H P4 DATA 0C0H P5 DATA 0E8H IPL0DATA0B8H ;--- IPL0 Bits PPCL BIT0BEH PT2L BIT0BDH PSL BIT0BCH PT1L BIT0BBH PX1L BIT0BAH PT0L BIT0B9H PX0LBIT0B8H T2CON DATA 0C8H ;--- T2CON bits ---- TF2 BIT 0CFH EXF2 BIT 0CEH RCLK BIT 0CDH TCLK BIT 0CCH EXEN2 BIT 0CBH TR2 BIT 0CAH C_T2 BIT 0C9H CP_RL2 BIT 0C8H PSW DATA 0D0H ;--- PSW bits CY BIT 0D7H AC BIT 0D6H F0 BIT 0D5H RS1 BIT 0D4H RS0 BIT 0D3H OV BIT 0D2H P BIT 0D0H CCONDATA0D8H ;--- CCON bits CF BIT 0DFH CR BIT 0DEH CCF4 BIT 0DCH CCF3 BIT 0DBH CCF2 BIT 0DAH CCF1 BIT 0D9H CCF0 BIT 0D8H 21
22 ACC DATA 0E0H B DATA 0F0H SP DATA 81H DPL DATA 82H DPH DATA 83H PCON DATA 87H TMOD DATA 89H TL0 DATA 8AH TL1 DATA 8BH TH0 DATA 8CH TH1 DATA 8DH AUXRDATA08EH CKCON0DATA08Fh SBUF DATA 99H ;-- Baud Rate generator BRL DATA09AH BDRCON DATA 09BH ;--- Keyboard KBLSDATA09CH KBEDATA09DH KBFDATA09EH ;--- Watchdog timer WDTRSTDATA0A6H WDTPRG DATA0A7H SADDRDATA0A9H CKCON1DATA0AFH IEN1DATA0B1H IPL1DATA0B2H IPH1DATA0B3H IPH0DATA0B7H SADENDATA0B9H 22
23 T2MODDATA 0C9h RCAP2L DATA 0CAH RCAP2H DATA 0CBH TL2 DATA 0CCH TH2 DATA 0CDH CMODDATA0D9H CCAPM0DATA0DAH CCAPM1DATA0DBH CCAPM2DATA0DCH CCAPM3DATA0DDH CCAPM4DATA0DEH CHDATA0F9H CCAP0HDATA0FAH CCAP1HDATA0FBH CCAP2HDATA0FCH CCAP3HDATA0FDH CCAP4HDATA0FEH CLDATA0E9H CCAP0LDATA0EAH CCAP1LDATA0EBH CCAP2LDATA0ECH CCAP3LDATA0EDH CCAP4LDATA0EEH ; SPI SPCON DATA 0C3H SPSTA DATA 0C4H SPDAT DATA 0C5H ; TWI PI2DATA 0F8h SSCONDATA093H SSCSDATA094H SSDATDATA095H SSADRDATA096H PI2_OBIT0F8H PI2_1BIT0F9H ; Clock Control OSCCONDATA086H CKSELDATA085H CKRLDATA097H ;MISC AUXR1DATA0A2H 23
24 ; Flash control FCON DATA 0D1H ;EEData EECONDATA0D2H $RESTORE 24
25 Table of Contents Introduction... 1 References... 1 C Examples... 2 Master with Slaves Select... 2 Slave with Slave Select... 3 Master without Slave Select... 5 Slave without Slave Select... 6 SFR Register Definition... 8 Assembler 51 Examples Master with Slave Select Slave with Slave Select Master without Slave Select Slave without Slave Select SFR Register Definition
26 Atmel Corporation 2325 Orchard Parkway San Jose, CA Tel: 1(408) Fax: 1(408) Regional Headquarters Europe Atmel Sarl Route des Arsenaux 41 Case Postale 80 CH-1705 Fribourg Switzerland Tel: (41) Fax: (41) Asia Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong Tel: (852) Fax: (852) Japan 9F, Tonetsu Shinkawa Bldg Shinkawa Chuo-ku, Tokyo Japan Tel: (81) Fax: (81) Atmel Operations Memory 2325 Orchard Parkway San Jose, CA Tel: 1(408) Fax: 1(408) Microcontrollers 2325 Orchard Parkway San Jose, CA Tel: 1(408) Fax: 1(408) La Chantrerie BP Nantes Cedex 3, France Tel: (33) Fax: (33) ASIC/ASSP/Smart Cards Zone Industrielle Rousset Cedex, France Tel: (33) Fax: (33) East Cheyenne Mtn. Blvd. Colorado Springs, CO Tel: 1(719) Fax: 1(719) Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland Tel: (44) Fax: (44) RF/Automotive Theresienstrasse 2 Postfach Heilbronn, Germany Tel: (49) Fax: (49) East Cheyenne Mtn. Blvd. Colorado Springs, CO Tel: 1(719) Fax: 1(719) Biometrics/Imaging/Hi-Rel MPU/ High Speed Converters/RF Datacom Avenue de Rochepleine BP Saint-Egreve Cedex, France Tel: (33) Fax: (33) [email protected] Web Site Disclaimer: Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company s standard warranty which is detailed in Atmel s Terms and Conditions located on the Company s web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel s products are not authorized for use as critical components in life support devices or systems. Atmel Corporation All rights reserved. Atmel and combinations thereof are the registered trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be the trademarks of others. Printed on recycled paper. /xm
8-bit Microcontroller. Application Note. AVR222: 8-point Moving Average Filter
AVR222: 8-point Moving Average Filter Features 31-word Subroutine Filters Data Arrays up to 256 Bytes Runable Demo Program Introduction The moving average filter is a simple Low Pass FIR (Finite Impulse
AVR305: Half Duplex Compact Software UART. 8-bit Microcontrollers. Application Note. Features. 1 Introduction
AVR305: Half Duplex Compact Software UART Features 32 Words of Code, Only Handles Baud Rates of up to 38.4 kbps with a 1 MHz XTAL Runs on Any AVR Device Only Two Port Pins Required Does Not Use Any Timer
8-bit RISC Microcontroller. Application Note. AVR182: Zero Cross Detector
AVR182: Zero Cross Detector Features Interrupt Driven Modular C Source Code Size Efficient Code Accurate and Fast Detection A Minimum of External Components Introduction One of the many issues with developing
AVR317: Using the Master SPI Mode of the USART module. 8-bit Microcontrollers. Application Note. Features. Introduction
AVR317: Using the Master SPI Mode of the USART module Features Enables Two SPI buses in one device Hardware buffered SPI communication Polled communication example Interrupt-controlled communication example
AVR319: Using the USI module for SPI communication. 8-bit Microcontrollers. Application Note. Features. Introduction
AVR319: Using the USI module for SPI communication Features C-code driver for SPI master and slave Uses the USI module Supports SPI Mode 0 and 1 Introduction The Serial Peripheral Interface (SPI) allows
AT89C5131A Starter Kit... Software User Guide
AT89C5131A Starter Kit... Software User Guide Table of Contents Section 1 Introduction... 1-1 1.1 Abbreviations...1-1 Section 2 Getting Started... 2-3 2.1 Hardware Requirements...2-3 2.2 Software Requirements...2-3
AVR106: C functions for reading and writing to Flash memory. 8-bit Microcontrollers. Application Note. Features. Introduction
AVR106: C functions for reading and writing to Flash memory Features C functions for accessing Flash memory - Byte read - Page read - Byte write - Page write Optional recovery on power failure Functions
8-bit Microcontroller. Application Note. AVR415: RC5 IR Remote Control Transmitter. Features. Introduction. Figure 1.
AVR415: RC5 IR Remote Control Transmitter Features Utilizes ATtiny28 Special HW Modulator and High Current Drive Pin Size Efficient Code, Leaves Room for Large User Code Low Power Consumption through Intensive
8-bit RISC Microcontroller. Application Note. AVR236: CRC Check of Program Memory
AVR236: CRC Check of Program Memory Features CRC Generation and Checking of Program Memory Supports all AVR Controllers with LPM Instruction Compact Code Size, 44 Words (CRC Generation and CRC Checking)
How to Calculate the Capacitor of the Reset Input of a C51 Microcontroller 80C51. Application Note. Microcontrollers. Introduction
How to Calculate the Capacitor of the Reset Input of a C51 Microcontroller This application note explains how the reset of the 80C51 microcontroller works when the RST pin is a pure input pin and when
AVR034: Mixing C and Assembly Code with IAR Embedded Workbench for AVR. 8-bit Microcontroller. Application Note. Features.
AVR034: Mixing C and Assembly Code with IAR Embedded Workbench for AVR Features Passing Variables Between C and Assembly Code Functions Calling Assembly Code Functions from C Calling C Functions from Assembly
AT91 ARM Thumb Microcontrollers. Application Note. Interfacing a PC Card to an AT91RM9200-DK. Introduction. Hardware Interface
Interfacing a PC Card to an AT91RM9200-DK Introduction This Application Note describes the implementation of a PCMCIA interface on an AT91RM9200 Development Kit (DK) using the External Bus Interface (EBI).
8-bit Microcontroller. Application Note. AVR400: Low Cost A/D Converter
AVR400: Low Cost A/D Converter Features Interrupt Driven : 23 Words Low Use of External Components Resolution: 6 Bits Measurement Range: 0-2 V Runs on Any AVR Device with 8-bit Timer/Counter and Analog
8-bit Microcontroller. Application Note. AVR314: DTMF Generator
AVR314: DTMF Generator Features Generation of Sine Waves Using PWM (Pulse-Width Modulation) Combine Different Sine Waves to DTMF Signal Assembler and C High-level Language Code STK500 Top-Module Design
Quick Start Guide. CAN Microcontrollers. ATADAPCAN01 - STK501 CAN Extension. Requirements
ATADAPCAN01 - STK501 CAN Extension The ATADAPCAN01 - STK501 CAN add-on is an extension to the STK500 and STK501 development boards from Atmel Corporation, adding support for the AVR AT90CAN128 device in
Application Note. C51 Bootloaders. C51 General Information about Bootloader and In System Programming. Overview. Abreviations
C51 General Information about Bootloader and In System Programming Overview This document describes the Atmel Bootloaders for 8051 family processors. Abreviations ISP: In-System Programming API : Applications
General Porting Considerations. Memory EEPROM XRAM
AVR097: Migration between ATmega128 and ATmega2561 Features General Porting Considerations Memory Clock sources Interrupts Power Management BOD WDT Timers/Counters USART & SPI ADC Analog Comparator ATmega103
Tag Tuning/RFID. Application Note. Tag Tuning. Introduction. Antenna Equivalent Circuit
Tag Tuning Introduction RFID tags extract all of their power to both operate and communicate from the reader s magnetic field. Coupling between the tag and reader is via the mutual inductance of the two
8-bit Microcontroller. Application Note. AVR201: Using the AVR Hardware Multiplier
AVR201: Using the AVR Hardware Multiplier Features 8- and 16-bit Implementations Signed and Unsigned Routines Fractional Signed and Unsigned Multiply Executable Example Programs Introduction The megaavr
AVR245: Code Lock with 4x4 Keypad and I2C LCD. 8-bit Microcontrollers. Application Note. Features. 1 Introduction
AVR245: Code Lock with 4x4 Keypad and I2C LCD Features Application example for code lock - Ideal for low pin count AVRs Uses I/O pins to read 4x4 keypad Uses Timer/Counter to control piezoelectric buzzer
AVR030: Getting Started with IAR Embedded Workbench for Atmel AVR. 8-bit Microcontrollers. Application Note. Features.
AVR030: Getting Started with IAR Embedded Workbench for Atmel AVR Features How to open a new workspace and project in IAR Embedded Workbench Description and option settings for compiling the c-code Setting
8-bit Microcontroller. Application Note. AVR105: Power Efficient High Endurance Parameter Storage in Flash Memory
AVR105: Power Efficient High Endurance Parameter Storage in Flash Memory Features Fast Storage of Parameters High Endurance Flash Storage 350K Write Cycles Power Efficient Parameter Storage Arbitrary Size
AT91 ARM Thumb Microcontrollers. AT91SAM CAN Bootloader. AT91SAM CAN Bootloader User Notes. 1. Description. 2. Key Features
User Notes 1. Description The CAN bootloader SAM-BA Boot4CAN allows the user to program the different memories and registers of any Atmel AT91SAM product that includes a CAN without removing them from
Flash Microcontroller. Memory Organization. Memory Organization
The information presented in this chapter is collected from the Microcontroller Architectural Overview, AT89C51, AT89LV51, AT89C52, AT89LV52, AT89C2051, and AT89C1051 data sheets of this book. The material
8-bit Microcontroller. Application. Note. AVR204: BCD Arithmetics. Features. Introduction. 16-bit Binary to 5-digit BCD Conversion bin2bcd16
AVR204: BCD Arithmetics Features Conversion 16 Bits 5 Digits, 8 Bits 2 Digits 2-digit Addition and Subtraction Superb Speed and Code Density Runable Example Program Introduction This application note lists
AVR32100: Using the AVR32 USART. 32-bit Microcontrollers. Application Note. Features. 1 Introduction
AVR32100: Using the AVR32 USART Features Supports character length from 5 to 9 bits Interrupt Generation Parity, Framing and Overrun Error Detection Programmable Baud Rate Generator Line Break Generation
AVR134: Real Time Clock (RTC) using the Asynchronous Timer. 8-bit Microcontrollers. Application Note. Features. 1 Introduction
AVR134: Real Time Clock (RTC) using the Asynchronous Timer Features Real Time Clock with Very Low Power Consumption (4 μa @ 3.3V) Very Low Cost Solution Adjustable Prescaler to Adjust Precision Counts
Application Note. Migrating from RS-232 to USB Bridge Specification USB Microcontrollers. Doc Control. References. Abbreviations
Migrating from RS-232 to USB Bridge Specification USB Microcontrollers Doc Control Rev Purpose of Modifications Date 0.0 Creation date 24 Nov 2003 Application Note 1.0 updates 22 Dec 2003 References Universal
AVR32110: Using the AVR32 Timer/Counter. 32-bit Microcontrollers. Application Note. Features. 1 Introduction
AVR32110: Using the AVR32 Timer/Counter Features Three independent 16 bit Timer/Counter Channels Multiple uses: - Waveform generation - Analysis and measurement support: Frequency and interval measurements
8-bit RISC Microcontroller. Application Note. AVR155: Accessing an I 2 C LCD Display using the AVR 2-wire Serial Interface
AVR155: Accessing an I 2 C LCD Display using the AVR 2-wire Serial Interface Features Compatible with Philips' I 2 C protocol 2-wire Serial Interface Master Driver for Easy Transmit and Receive Function
AVR241: Direct driving of LCD display using general IO. 8-bit Microcontrollers. Application Note. Features. Introduction AVR
AVR241: Direct driving of LCD display using general IO Features Software driver for displays with one common line Suitable for parts without on-chip hardware for LCD driving Control up to 15 segments using
3-output Laser Driver for HD-DVD/ Blu-ray/DVD/ CD-ROM ATR0885. Preliminary. Summary
Features Three Selectable Outputs All Outputs Can Be Used Either for Standard (5V) or High Voltage (9V) Maximum Output Current at All Outputs Up to 150 ma On-chip Low-EMI RF Oscillator With Spread-spectrum
USB 2.0 Full-Speed Host/Function Processor AT43USB370. Summary. Features. Overview
Features USB 2.0 Full Speed Host/Function Processor Real-time Host/Function Switching Capability Internal USB and System Interface Controllers 32-bit Generic System Processor Interface with DMA Separate
Application Note. 8-bit Microcontrollers. AVR091: Replacing AT90S2313 by ATtiny2313. Features. Introduction
AVR091: Replacing AT90S2313 by ATtiny2313 Features AT90S2313 Errata Corrected in ATtiny2313 Changes to Bit and Register Names Changes to Interrupt Vector Oscillators and Selecting Start-up Delays Improvements
8-bit Microcontroller. Application Note. AVR461: Quick Start Guide for the Embedded Internet Toolkit. Introduction. System Requirements
AVR461: Quick Start Guide for the Embedded Internet Toolkit Introduction Congratulations with your AVR Embedded Internet Toolkit. This Quick-start Guide gives an introduction to using the AVR Embedded
AVR1309: Using the XMEGA SPI. 8-bit Microcontrollers. Application Note. Features. 1 Introduction SCK MOSI MISO SS
AVR1309: Using the XMEGA SPI Features Introduction to SPI and the XMEGA SPI module Setup and use of the XMEGA SPI module Implementation of module drivers Polled master Interrupt controlled master Polled
AVR442: PC Fan Control using ATtiny13. 8-bit Microcontrollers. Application Note. Features. 1 Introduction
AVR442: PC Fan Control using ATtiny13 Features Variable speed based on: - Temperature sensor (NTC). - External PWM input. Stall detection with alarm output. Implementation in C code to ease modification.
8051 Serial Port. Crystal TXD. I/O Device RXD. Embedded Systems 1 5-1 8051 Peripherals
8051 Serial Port The 8051 contains a UART Universal Asynchronous Receiver Transmitter The serial port is full-duplex It can transmit and receive simultaneously 2 Port 3 pins are used to provide the serial
AVR120: Characterization and Calibration of the ADC on an AVR. 8-bit Microcontrollers. Application Note. Features. Introduction
AVR120: Characterization and Calibration of the ADC on an AVR Features Understanding Analog to Digital Converter (ADC) characteristics Measuring parameters describing ADC characteristics Temperature, frequency
8-bit Microcontroller. Application Note. AVR134: Real-Time Clock (RTC) using the Asynchronous Timer. Features. Theory of Operation.
AVR134: Real-Time Clock (RTC) using the Asynchronous Timer Features Real-Time Clock with Very Low Power Consumption (4µA @ 3.3V) Very Low Cost Solution Adjustable Prescaler to Adjust Precision Counts Time,
8-bit Microcontroller with 16K/ 32K Bytes Flash AT89C51RB2 AT89C51RC2
Features 80C52 Compatible 8051 Pin and Instruction Compatible Four 8-bit I/O Ports Three 16-bit Timer/Counters 256 Bytes Scratch Pad RAM 9 Interrupt Sources with 4 Priority Levels Dual Data Pointer Variable
2-wire Serial EEPROM AT24C1024. Advance Information
Features Low-voltage Operation 2.7(V CC =2.7Vto5.5V) Internally Organized 3,072 x 8 2-wire Serial Interface Schmitt Triggers, Filtered Inputs for Noise Suppression Bi-directional Data Transfer Protocol
USB Test Environment ATUSBTEST- SS7400. Summary
Features Simple Command-driven Host Model Comprehensive Reports by Monitor Protocol Validation by Monitor Comprehensive Test Suite Fully Compliant with USB Forum Checklist Generates and Monitors Packets
Application Note. USB Mass Storage Device Implementation. USB Microcontrollers. References. Abbreviations. Supported Controllers
USB Mass Storage Device Implementation References Universal Serial Bus Specification, revision 2.0 Universal Serial Bus Class Definition for Communication Devices, version 1.1 USB Mass Storage Overview,
2-Wire Serial EEPROM AT24C32 AT24C64. 2-Wire, 32K Serial E 2 PROM. Features. Description. Pin Configurations. 32K (4096 x 8) 64K (8192 x 8)
Features Low-Voltage and Standard-Voltage Operation 2.7 (V CC = 2.7V to 5.5V) 1.8 (V CC = 1.8V to 5.5V) Low-Power Devices (I SB = 2 µa at 5.5V) Available Internally Organized 4096 x 8, 8192 x 8 2-Wire
8-bit Microcontroller. Application Note. AVR410: RC5 IR Remote Control Receiver
AVR410: RC5 IR Remote Control Receiver Features Low-cost Compact Design, Only One External Component Requires Only One Controller Pin, Any AVR Device Can be Used Size-efficient Code Introduction Most audio
Two-wire Automotive Serial EEPROM AT24C01A AT24C02 AT24C04 AT24C08 (1) AT24C16 (2)
Features Medium-voltage and Standard-voltage Operation 5.0 (V CC = 4.5V to 5.5V) 2.7 (V CC = 2.7V to 5.5V) Internally Organized 128 x 8 (1K), 256 x 8 (2K), 512 x 8 (4K), 1024 x 8 (8K) or 2048 x 8 (16K)
8-bit Flash Microcontroller AT89C51RD2 AT89C51ED2
Features 80C52 Compatible 8051 Instruction Compatible Six 8-bit I/O Ports (64 Pins or 68 Pins Versions) Four 8-bit I/O Ports (44 Pins Version) Three 16-bit Timer/Counters 256 Bytes Scratch Pad RAM 9 Interrupt
Application Note. 8-bit Microcontrollers. AVR280: USB Host CDC Demonstration. 1. Introduction
AVR280: USB Host CDC Demonstration 1. Introduction The RS232 interface has disappeared from the new generation of PCs replaced by the USB interface. To follow this change, applications based on UART interface
Application Note. 8-bit Microcontrollers. AVR307: Half Duplex UART Using the USI Module
AVR307: Half Duplex UART Using the USI Module Features Half Duplex UART Communication Communication Speed Up To 230.4 kbps at 14.75MHz Interrupt Controlled Communication Eight Bit Data, One Stop-bit, No
DIP Top View VCC A16 A15 A12 A7 A6 A5 A4 A3 A2 A1 A0 I/O0 I/O1 I/O2 GND A17 A14 A13 A8 A9 A11 A10 I/O7 I/O6 I/O5 I/O4 I/O3. PLCC Top View VCC A17
Features Fast Read Access Time 70 ns 5-volt Only Reprogramming Sector Program Operation Single Cycle Reprogram (Erase and Program) 1024 Sectors (256 Bytes/Sector) Internal Address and Data Latches for
Serial Communications
Serial Communications 1 Serial Communication Introduction Serial communication buses Asynchronous and synchronous communication UART block diagram UART clock requirements Programming the UARTs Operation
Step Motor Controller. Application Note. AVR360: Step Motor Controller. Theory of Operation. Features. Introduction
AVR360: Step Motor Controller Features High-Speed Step Motor Controller Interrupt Driven Compact Code (Only 10 Bytes Interrupt Routine) Very High Speed Low Computing Requirement Supports all AVR Devices
Two-wire Serial EEPROM AT24C1024 (1)
Features Low-voltage Operation 2.7 (V CC = 2.7V to 5.5V) Internally Organized 131,072 x 8 Two-wire Serial Interface Schmitt Triggers, Filtered Inputs for Noise Suppression Bidirectional Data Transfer Protocol
AN108 IMPLEMENTING A REALTIME CLOCK. Relevant Devices. Introduction. Key Points. Overview
IMPLEMENTING A REALTIME CLOCK Relevant Devices This application note applies to the following devices: C8051F000, C8051F001, C8051F002, C8051F005, C8051F006, C8051F007, C8051F010, C8051F011, and C8051F012.
AT86RF230 (2450 MHz band) Radio Transceiver... User Guide
ATAVRRZ200 Demonstration Kit AT86RF230 (2450 MHz band) Radio Transceiver... User Guide Section 1 1.1 Organization...1-1 1.2 General Description...1-1 1.3 Demonstration kit features...1-2 1.4 Included
AVR1318: Using the XMEGA built-in AES accelerator. 8-bit Microcontrollers. Application Note. Features. 1 Introduction
AVR1318: Using the XMEGA built-in AES accelerator Features Full compliance with AES (FIPS Publication 197, 2002) - Both encryption and decryption procedures 128-bit Key and State memory XOR load option
AVR32138: How to optimize the ADC usage on AT32UC3A0/1, AT32UC3A3 and AT32UC3B0/1 series. 32-bit Microcontrollers. Application Note.
AVR32138: How to optimize the ADC usage on AT32UC3A0/1, AT32UC3A3 and AT32UC3B0/1 series 1 Introduction This application note outlines the steps necessary to optimize analog to digital conversions on AT32UC3A0/1,
Table of Contents. Section 1 Introduction... 1-1. Section 2 Getting Started... 2-1. Section 3 Hardware Description... 3-1
ISP... User Guide Table of Contents Table of Contents Section 1 Introduction... 1-1 1.1 Features...1-1 1.2 Device Support...1-2 Section 2 Getting Started... 2-1 2.1 Unpacking the System...2-1 2.2 System
8-bit Microcontroller with 12K Bytes Flash and 2K Bytes EEPROM AT89S8253
Features Compatible with MCS -51 Products 12K Bytes of In-System Programmable (ISP) Flash Program Memory SPI Serial Interface for Program Downloading Endurance: 10,000 Write/Erase Cycles 2K Bytes EEPROM
Using CryptoMemory in Full I 2 C Compliant Mode. Using CryptoMemory in Full I 2 C Compliant Mode AT88SC0104CA AT88SC0204CA AT88SC0404CA AT88SC0808CA
Using CryptoMemory in Full I 2 C Compliant Mode 1. Introduction This application note describes how to communicate with CryptoMemory devices in full I 2 C compliant mode. Full I 2 C compliance permits
AVR033: Getting Started with the CodeVisionAVR C Compiler. 8-bit Microcontrollers. Application Note. Features. 1 Introduction
AVR033: Getting Started with the CodeVisionAVR C Compiler Features Installing and Configuring CodeVisionAVR to Work with the Atmel STK 500 Starter Kit and AVR Studio Debugger Creating a New Project Using
8-bit. Application Note. Microcontrollers. AVR282: USB Firmware Upgrade for AT90USB
AVR282: USB Firmware Upgrade for AT90USB Features Supported by Atmel FLIP program on all Microsoft O/S from Windows 98SE and later FLIP 3.2.1 or greater supports Linux Default on chip USB bootloader In-System
AVR32701: AVR32AP7 USB Performance. 32-bit Microcontrollers. Application Note. Features. 1 Introduction
AVR32701: AVR32AP7 USB Performance Features Linux USB bulk transfer performance ATSTK1000 (32-bit SDRAM bus width) ATNGW100 (16-bit SDRAM bus width) GadgetFS driver and gadgetfs-test application USB performance
AVR318: Dallas 1-Wire master. 8-bit Microcontrollers. Application Note. Features. Introduction
AVR318: Dallas 1-Wire master Features Supports standard speed Dallas 1-Wire protocol. Compatible with all AVRs. Polled or interrupt-driven implementation. Polled implementation requires no external hardware.
How To Prevent Power Supply Corruption On An 8Bit Microcontroller From Overheating
AVR180: External Brown-out Protection Features Low-voltage Detector Prevent Register and EEPROM Corruption Two Discrete Solutions Integrated IC Solution Extreme Low-cost Solution Extreme Low-power Solution
ATF15xx Product Family Conversion. Application Note. ATF15xx Product Family Conversion. Introduction
ATF15xx Product Family Conversion Introduction Table 1. Atmel s ATF15xx Family The ATF15xx Complex Programmable Logic Device (CPLD) product family offers high-density and high-performance devices. Atmel
AVR1922: Xplain Board Controller Firmware. 8-bit Microcontrollers. Application Note. Features. 1 Introduction
AVR1922: Xplain Board Controller Firmware Features USB interface - Mass-storage to on-board DataFlash memory Atmel AVR XMEGA TM reset control 1 Introduction The Xplain board controller, an AT90USB1287,
AVR1900: Getting started with ATxmega128A1 on STK600. 8-bit Microcontrollers. Application Note. 1 Introduction
AVR1900: Getting started with ATxmega128A1 on STK600 1 Introduction This document contains information about how to get started with the ATxmega128A1 on STK 600. The first three sections contain information
CTNET Field Protocol Specification November 19, 1997 DRAFT
CTNET Field Protocol Specification November 19, 1997 DRAFT Introduction Version 1.0 of CTNET will support the AB3418 protocol for communication to field controllers. AB3418 is a point-topoint protocol
8-bit Microcontroller. Application Note. AVR313: Interfacing the PC AT Keyboard
AVR313: Interfacing the PC AT Keyboard Features Interfacing Standard PC AT Keyboards Requires Only Two I/O Pins. One of them must be an External Interrupt Pin No Extra Hardware Required Complete Example
TDA8029. 1. General description. 2. Features and benefits. Low power single card reader
Rev. 3.3 19 July 2016 Product data sheet 1. General description The is a complete one chip, low cost, low power, robust smart card reader. Its different power reduction modes and its wide supply voltage
AVR444: Sensorless control of 3-phase brushless DC motors. 8-bit Microcontrollers. Application Note. Features. 1 Introduction
AVR444: Sensorless control of 3-phase brushless DC motors Features Robust sensorless commutation control. External speed reference. Overcurrent detection/protection. Basic speed controller included. Full
AVR1600: Using the XMEGA Quadrature Decoder. 8-bit Microcontrollers. Application Note. Features. 1 Introduction. Sensors
AVR1600: Using the XMEGA Quadrature Decoder Features Quadrature Decoders 16-bit angular resolution Rotation speed and acceleration 1 Introduction Quadrature encoders are used to determine the position
8051 hardware summary
8051 hardware summary 8051 block diagram 8051 pinouts + 5V ports port 0 port 1 port 2 port 3 : dual-purpose (general-purpose, external memory address and data) : dedicated (interfacing to external devices)
AVR068: STK500 Communication Protocol. 8-bit Microcontrollers. Application Note. Features. 1 Introduction
AVR068: STK500 Communication Protocol Features Interfaces both STK500 and AVRISP Supports STK500 FW 2.XX 1 Introduction This document describes the 2.0 version of the communication protocol between the
Application Note. 8-bit Microcontrollers. AVR270: USB Mouse Demonstration
AVR270: USB Mouse Demonstration Features Runs with AT90USB Microcontrollers at 8MHz USB Low Power Bus Powered Device (less then 100mA) Supported by any PC running Windows (98SE or later), Linux or Mac
AVR1301: Using the XMEGA DAC. 8-bit Microcontrollers. Application Note. Features. 1 Introduction
AVR1301: Using the XMEGA DAC Features 12 bit resolution Up to 1 M conversions per second Continuous drive or sample-and-hold output Built-in offset and gain calibration High drive capabilities Driver source
256K (32K x 8) OTP EPROM AT27C256R 256K EPROM. Features. Description. Pin Configurations
Features Fast Read Access Time - 45 ns Low-Power CMOS Operation 100 µa max. Standby 20 ma max. Active at 5 MHz JEDEC Standard Packages 28-Lead 600-mil PDIP 32-Lead PLCC 28-Lead TSOP and SOIC 5V ± 10% Supply
2-wire Serial EEPROM AT24C512
Features Low-voltage and Standard-voltage Operation 5.0 (V CC = 4.5V to 5.5V). (V CC =.V to 5.5V). (V CC =.V to.v) Internally Organized 5,5 x -wire Serial Interface Schmitt Triggers, Filtered Inputs for
Soft-Starter SSW-06 V1.6X
Motors Energy Automation Coatings Soft-Starter SSW-06 V1.6X Serial Communication Manual Language: English Document: 0899.5731 / 04 Serial Communication Manual Series: SSW-06 V1.6X Language: English Document
AVR115: Data Logging with Atmel File System on ATmega32U4. Microcontrollers. Application Note. 1 Introduction. Atmel
AVR115: Data Logging with Atmel File System on ATmega32U4 Microcontrollers 01101010 11010101 01010111 10010101 Application Note 1 Introduction Atmel provides a File System management for AT90USBx and ATmegaxxUx
Flash Microcontroller. Architectural Overview. Features. Block Diagram. Figure 1. Block Diagram of the AT89C core
Features 8-Bit CPU Optimized for Control Applications Extensive Boolean Processing Capabilities (Single-Bit Logic) On-Chip Flash Program Memory On-Chip Data RAM Bidirectional and Individually Addressable
8-bit RISC Microcontroller. Application Note. AVR335: Digital Sound Recorder with AVR and DataFlash
AVR5: Digital Sound Recorder with AVR and DataFlash Features Digital Voice Recorder 8-bit Sound Recording 8 khz Sampling Rate Sound Frequency up to 4000 Hz Maximum Recording Time 4 /4 Minutes Very Small
Application Note 162 INTERFACING THE DS18X20/DS1822 1-WIRE TEMPERATURE SENSOR IN A MICRO-CONTROLLER ENVIRONMENT. www.maxim-ic.com
www.maxim-ic.com Application Note 162 INTERFACING THE DS18X20/DS1822 1-WIRE TEMPERATURE SENSOR IN A MICRO-CONTROLLER ENVIRONMENT INTRODUCTION There are several methods available for interfacing 1- Wire
8-bit Microcontroller with 8K Bytes In-System Programmable Flash AT89S52
Features Compatible with MCS -51 Products 8K Bytes of In-System Programmable (ISP) Flash Memory Endurance: 10,000 Write/Erase Cycles 4.0V to 5.5V Operating Range Fully Static Operation: 0 Hz to 33 MHz
AVR353: Voltage Reference Calibration and Voltage ADC Usage. 8-bit Microcontrollers. Application Note. Features. 1 Introduction
AVR353: Voltage Reference Calibration and Voltage ADC Usage Features Voltage reference calibration. - 1.100V +/-1mV (typical) and < 90ppm/ C drift from 10 C to +70 C. Interrupt controlled voltage ADC sampling.
AVR1510: Xplain training - XMEGA USART. 8-bit Microcontrollers. Application Note. Prerequisites. 1 Introduction
AVR1510: Xplain training - XMEGA USART Prerequisites Required knowledge AVR1500: Xplain training XMEGA Basics AVR1502: Xplain training XMEGA Direct Memory Access Controller Software prerequisites Atmel
8-bit Flash Microcontroller with Full Speed USB Device AT89C5131
Features 8C52X2 Core (6 Clocks per Instruction) Maximum Core Frequency 48 MHz in X1 Mode, 24MHz in X2 Mode Dual Data Pointer Full-duplex Enhanced UART (EUART) Three 16-bit Timer/Counters: T, T1 and T2
80C51/87C51/80C52/87C52 80C51 8-bit microcontroller family 4 K/8 K OTP/ROM low voltage (2.7 V 5.5 V), low power, high speed (33 MHz), 128/256 B RAM
INTEGRATED CIRCUITS low power, high speed (33 MHz), 28/256 B RAM Replaces datasheet 80C5/87C5/80C3 of 2000 Jan 20 2000 Aug 07 DESCRIPTION The Philips is a high-performance static 80C5 design fabricated
AN135 CACHE OPTIMIZATIONS FOR C8051F12X. Overview. Relevant Devices. Introduction. Key Points
CACHE OPTIMIZATIONS FOR C8051F12X Relevant Devices This application note applies to the following devices: C8051F120, C8051F121, C8051F122, C8051F123, C8051F124, C8051F125, C8051F126, and C8051F127. Introduction
8-bit Microcontroller with 2/4-Kbyte Flash AT89LP2052 AT89LP4052
Features Compatible with MCS 51 Products 20 MIPS Throughput at 20 MHz Clock Frequency and 2.4V, 85 C Operating Conditions Single Clock Cycle per Byte Fetch 2/4K Bytes of In-System Programmable (ISP) Flash
T89C5115 AT89C5115. Low Pin Count 8-bit Microcontroller with A/D Converter and 16 KBytes Flash Memory
Features 80C51 Core Architecture 256 Bytes of On-chip RAM 256 Bytes of On-chip XRAM 16K Bytes of On-chip Flash Memory Data Retention: 10 Years at 85 C Erase/Write Cycle: 100K 2K Bytes of On-chip Flash
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING Question Bank Subject Name: EC6504 - Microprocessor & Microcontroller Year/Sem : II/IV
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING Question Bank Subject Name: EC6504 - Microprocessor & Microcontroller Year/Sem : II/IV UNIT I THE 8086 MICROPROCESSOR 1. What is the purpose of segment registers
8-bit Flash Microcontroller with Full Speed USB Device AT89C5130A-M AT89C5131A-M
Features 8C52X2 Core (6 Clocks per Instruction) Maximum Core Frequency 48 MHz in X1 Mode, 24 MHz in X2 Mode Dual Data Pointer Full-duplex Enhanced UART (EUART) Three 16-bit Timer/Counters: T, T1 and T2
Application Note. 8-bit Microcontrollers. AVR272: USB CDC Demonstration UART to USB Bridge
AVR272: USB CDC Demonstration UART to USB Bridge Features Supported by Windows 2000 or later No driver installation Virtual COM Port Enumeration USB to RS232 Bridge with dynamic baudrate Bus powered 8-bit
Atmel AVR4920: ASF - USB Device Stack - Compliance and Performance Figures. Atmel Microcontrollers. Application Note. Features.
Atmel AVR4920: ASF - USB Device Stack - Compliance and Performance Figures Features Compliance to USB 2.0 - Chapters 8 and 9 - Classes: HID, MSC, CDC, PHDC Interoperability: OS, classes, self- and bus-powered
FlashFlex MCU SST89E516RD2 / SST89E516RD SST89V516RD2 / SST89V516RD
The SST89E516RDx and SST89V516RDx are members of the FlashFlex family of 8-bit microcontroller products designed and manufactured with SST s patented and proprietary SuperFlash CMOS semiconductor process
DS87C520/DS83C520 EPROM/ROM High-Speed Micro
www.maxim-ic.com PRELIMINARY EPROM/ROM High-Speed Micro FEATURES 80C52-compatible - 8051 pin and instruction set compatible - Four 8-bit I/O ports - Three 16-bit timer/counters - 256 bytes scratchpad RAM
