General Porting Considerations. Memory EEPROM XRAM
|
|
|
- Shanon Mosley
- 10 years ago
- Views:
Transcription
1 AVR097: Migration between ATmega128 and ATmega2561 Features General Porting Considerations Memory Clock sources Interrupts Power Management BOD WDT Timers/Counters USART & SPI ADC Analog Comparator ATmega103 Compatibility Operational Range 8-bit Microcontrollers Application Note Introduction This application note summarizes the differences between ATmega128 and ATmega2561. For detailed information on the devices, refer to the datasheets. ATmega128 and ATmega2561 are designed to be a pin and functionality compatible sub family. This application note points out the differences to be aware of when porting code between the devices. Rev.
2 General Porting Considerations Between the devices described in this application note, some register bits are in different locations within a register. But note that neither registers nor bits have different names. The only bits that are relocated into other registers are the XRAM register bits SRE and SRW10. To make the porting process as easy as possible, always refer to registers and bit positions using their defined names. Avoid using absolute addresses and values. In most cases, the register and bit names are unchanged from device to device. When you are porting a design, it is more convenient to include the correct definition file for the new device, rather than manually changing all your addresses and bit values. It is also considered good programming practice to use named references instead of absolute values. An example is shown below. PORTE = (1<<PORTE5); // Set pin 5 on port E high DDR &= ~(1<<PORTE5); // Set pin 5 on port E as input // Configure USI USICR = (1<<USISIE) (0<<USIOIE) (1<<USIWM1) (0<<USIWM0) (1<<USICS1) (0<<USICS0) (0<<USICLK) (0<<USITC); To avoid conflicts with added features and register functionality, never access registers that are marked as reserved. Reserved bits should always be written to zero if accessed. This ensures forward compatibility, and added features will stay in their default states when unused. Memory The sizes of the memories are the main difference between the ATmega128, ATmega2561. They are all summarized in Table 1. Table 1. Memory sizes FLASH [bytes] SRAM [bytes] EEPROM [bytes] ATmega k 4k 4k ATmega k 8k 4k EEPROM The time to wait for a programming of an EEPROM page is different on ATmega128 compared to ATmega2561. Typical programming times are listed in Table 2. Note that ATmega2561 has an additional option for splitting the eeprom write into a separate erase and write operation. For more details on this feature refer to the datasheet or the application note: AVR103: Using the EEPROM Programming Modes. Table 2. Wait times when programming EEPROM ATmega128 ATmega2561 Typical programming time 8.5 ms 3.3 ms XRAM 2 AVR097 The register bits SRE (External SRAM/XMEM Enable) and SRW10 (Wait-state Select Bit) is located in MCUCR in ATmega128 and in XMCRA in ATmega2561.
3 AVR097 Clock sources ATmega128 has nearly all the same clock options, settings and timing as the ATmega2561. An exception is that ATmega2561 has an additional internal 128kHz RC Oscillator. All start-up delays on ATmega2561 have a constant of 14 clock cycles added to the standard value compared to Atmega128. The functionality of the Clock Select bits (CKSEL3..0, SUT1,0, CKOPT) themselves are not equal between the devices. Refer to the datasheet to find new matching settings for the clock select configuration. The ATmega2561 has a system clock prescaler that can/has to be altered runtime from the application code to achieve the desired system clock frequency. Interrupts ATmega2561 has 57 interrupts. ATmega128 has 35 interrupts. The additional interrupts in ATmega2561 reflects the additional features in the device. ATmega2561 can trigger on 9 pin change events with two different interrupt vectors. ATmega128 does not have this feature. Power Management ATmega2561 has a Power Reduction Register (PRR) that provides a method to stop the clock to individual peripherals. ATmega128 does not have this feature. BOD The Brown Out Detection (BOD) options are similar between the devices, except for that ATmega2561 has an additional level to support the extended operation range. The bit setting to select the BOD configuration varies, Table 3 and Table 4 show the settings for the two devices. Note that the voltage BOD levels are slightly higher on ATmega2561 then on ATmega128. Table 3. BOD fuse configuration on ATmega128 BODEN BODLEVEL Typical V BOT [V] BOD disabled 1 0 BOD disabled Table 4. BOD fuse configuration on ATmega2561 BODLEVEL 2..0 Typical V BOT [V] 111 BOD disabled
4 WDT Timers/Counters USART & SPI ADC 4 AVR097 The ATmega2561 has the Enhanced Watchdog Timer (WDT) which is improved compared to the one in ATmega128. If the WDT is not used, it is still recommended to disable it initially in the application code to clear unintentional WDT enabled events. If the operation voltage is 5V and the WDTON fuse is left unprogrammed, the WDT will behave similar on both devices. The frequency of the Watchdog Oscillator in ATmega2561 is approximately 128 khz for all supply voltages. The typical frequency of the Watchdog Oscillator in ATmega128 is close to 1.0 MHz at 5V, but the time-out period increases with decreasing VCC. This means that the selection of Time-out period for the Watchdog Timer (in terms of number of WDT Oscillator cycles) must be reconsidered when porting the design. In ATmega128, the Watchdog Timer is either enabled or disabled, while ATmega2561 supports two safety levels selected by the WDTON Fuse. The ATmega2561 has a watchdog interrupt mode that is not supported in ATmega128. Refer to the ATmega2561 datasheet or the Application note "AVR132 - Enhanced Watchdog Timer" for more information. Timer/counter 1 and 3 are equal between the devices, except for the TIMSK registers. Here the register names and bits are differently organized. Refer to the datasheets to find the new configuration settings. Essentially the timers/counters 0 and 2 are only swapped between the devices. I.e. the features of timer 0 in ATmega128 can be found in timer 2 in ATmega2561, and vice versa. The pin mappings for these timers are also swapped. I.e. after porting the code to the other timer the pin features are still associated with the same pin as the other device. The control registers are differently organized between the devices. Please check the naming and positioning of all registers associated with timer/counter 0 and 2 when porting code, and find the new settings according to the datasheets. ATmega2561 has two Output Compare units on both timer/counter 0 and 2, while ATmega128 has one on each. The USART s are equal between the devices, except for that the ATmega2561 has an additional SPI master mode within the USART that is not available in ATmega128. For additional SPI interface support one can use a software implementation as described in AVR320: Software SPI Master. Both devices have an option to use an internal 2.56V voltage reference. In addition the Atmega2561 also has an option for 1.1V internal voltage reference. Both devices have an option to run the ADC in a Free Running Mode. But due to that Atmega2561 also has an option to use many other auto trigger sources; the name of the feature enable bit in the control register is different. On Atmega128 it is ADFR (ADC Free Running Select), and on Atmega2561 it is ADATE (ADC Auto Trigger Enable). The default setting of the ADATE is Free Running Mode. The internal bandgap reference used in Atmega128 is typical 1.23V, and in Atmega2561 it is 1.1V.
5 AVR097 Analog Comparator The ACME (Analog Comparator Multiplexer Enable) bit is located in different register bytes in the two devices. In Atmega128 it is located in SFIOR, and in Atmega2561 it is located in ADCSRB. The internal bandgap reference used in Atmega128 is typical 1.23V, and in Atmega2561 it is 1.1V. ATmega103 Compatibility ATmega128 has a special option for compatibility to ATmega103. ATmega2561 does not have this option. Operational Range Table 5. Operating voltage and Speed grades. Operating Voltage Speed Grade ATmega V 0-16 MHz ATmega128L V 0-8 MHz ATmega V V V ATmega2561V V V V 5
6 Disclaimer Atmel Corporation 2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) Fax: 1(408) Regional Headquarters Europe Atmel Sarl Route des Arsenaux 41 Case Postale 80 CH-1705 Fribourg Switzerland Tel: (41) Fax: (41) Asia Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong Tel: (852) Fax: (852) Japan 9F, Tonetsu Shinkawa Bldg Shinkawa Chuo-ku, Tokyo Japan Tel: (81) Fax: (81) Atmel Operations Memory 2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) Fax: 1(408) Microcontrollers 2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) Fax: 1(408) La Chantrerie BP Nantes Cedex 3, France Tel: (33) Fax: (33) ASIC/ASSP/Smart Cards Zone Industrielle Rousset Cedex, France Tel: (33) Fax: (33) East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA Tel: 1(719) Fax: 1(719) Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland Tel: (44) Fax: (44) RF/Automotive Theresienstrasse 2 Postfach Heilbronn, Germany Tel: (49) Fax: (49) East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA Tel: 1(719) Fax: 1(719) Biometrics/Imaging/Hi-Rel MPU/ High Speed Converters/RF Datacom Avenue de Rochepleine BP Saint-Egreve Cedex, France Tel: (33) Fax: (33) Literature Requests Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON- INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Atmel s products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life. Atmel Corporation All rights reserved. Atmel, logo and combinations thereof, AVR, and AVR Studio are registered trademarks, and Everywhere You Are are the trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.
AVR317: Using the Master SPI Mode of the USART module. 8-bit Microcontrollers. Application Note. Features. Introduction
AVR317: Using the Master SPI Mode of the USART module Features Enables Two SPI buses in one device Hardware buffered SPI communication Polled communication example Interrupt-controlled communication example
AVR319: Using the USI module for SPI communication. 8-bit Microcontrollers. Application Note. Features. Introduction
AVR319: Using the USI module for SPI communication Features C-code driver for SPI master and slave Uses the USI module Supports SPI Mode 0 and 1 Introduction The Serial Peripheral Interface (SPI) allows
AVR305: Half Duplex Compact Software UART. 8-bit Microcontrollers. Application Note. Features. 1 Introduction
AVR305: Half Duplex Compact Software UART Features 32 Words of Code, Only Handles Baud Rates of up to 38.4 kbps with a 1 MHz XTAL Runs on Any AVR Device Only Two Port Pins Required Does Not Use Any Timer
AVR134: Real Time Clock (RTC) using the Asynchronous Timer. 8-bit Microcontrollers. Application Note. Features. 1 Introduction
AVR134: Real Time Clock (RTC) using the Asynchronous Timer Features Real Time Clock with Very Low Power Consumption (4 μa @ 3.3V) Very Low Cost Solution Adjustable Prescaler to Adjust Precision Counts
8-bit Microcontroller. Application Note. AVR400: Low Cost A/D Converter
AVR400: Low Cost A/D Converter Features Interrupt Driven : 23 Words Low Use of External Components Resolution: 6 Bits Measurement Range: 0-2 V Runs on Any AVR Device with 8-bit Timer/Counter and Analog
AVR106: C functions for reading and writing to Flash memory. 8-bit Microcontrollers. Application Note. Features. Introduction
AVR106: C functions for reading and writing to Flash memory Features C functions for accessing Flash memory - Byte read - Page read - Byte write - Page write Optional recovery on power failure Functions
8-bit Microcontroller. Application Note. AVR105: Power Efficient High Endurance Parameter Storage in Flash Memory
AVR105: Power Efficient High Endurance Parameter Storage in Flash Memory Features Fast Storage of Parameters High Endurance Flash Storage 350K Write Cycles Power Efficient Parameter Storage Arbitrary Size
8-bit Microcontroller. Application Note. AVR222: 8-point Moving Average Filter
AVR222: 8-point Moving Average Filter Features 31-word Subroutine Filters Data Arrays up to 256 Bytes Runable Demo Program Introduction The moving average filter is a simple Low Pass FIR (Finite Impulse
8-bit RISC Microcontroller. Application Note. AVR182: Zero Cross Detector
AVR182: Zero Cross Detector Features Interrupt Driven Modular C Source Code Size Efficient Code Accurate and Fast Detection A Minimum of External Components Introduction One of the many issues with developing
AT89C5131A Starter Kit... Software User Guide
AT89C5131A Starter Kit... Software User Guide Table of Contents Section 1 Introduction... 1-1 1.1 Abbreviations...1-1 Section 2 Getting Started... 2-3 2.1 Hardware Requirements...2-3 2.2 Software Requirements...2-3
Application Note. C51 Bootloaders. C51 General Information about Bootloader and In System Programming. Overview. Abreviations
C51 General Information about Bootloader and In System Programming Overview This document describes the Atmel Bootloaders for 8051 family processors. Abreviations ISP: In-System Programming API : Applications
AVR030: Getting Started with IAR Embedded Workbench for Atmel AVR. 8-bit Microcontrollers. Application Note. Features.
AVR030: Getting Started with IAR Embedded Workbench for Atmel AVR Features How to open a new workspace and project in IAR Embedded Workbench Description and option settings for compiling the c-code Setting
AVR245: Code Lock with 4x4 Keypad and I2C LCD. 8-bit Microcontrollers. Application Note. Features. 1 Introduction
AVR245: Code Lock with 4x4 Keypad and I2C LCD Features Application example for code lock - Ideal for low pin count AVRs Uses I/O pins to read 4x4 keypad Uses Timer/Counter to control piezoelectric buzzer
How to Calculate the Capacitor of the Reset Input of a C51 Microcontroller 80C51. Application Note. Microcontrollers. Introduction
How to Calculate the Capacitor of the Reset Input of a C51 Microcontroller This application note explains how the reset of the 80C51 microcontroller works when the RST pin is a pure input pin and when
8-bit RISC Microcontroller. Application Note. AVR236: CRC Check of Program Memory
AVR236: CRC Check of Program Memory Features CRC Generation and Checking of Program Memory Supports all AVR Controllers with LPM Instruction Compact Code Size, 44 Words (CRC Generation and CRC Checking)
AT91 ARM Thumb Microcontrollers. Application Note. Interfacing a PC Card to an AT91RM9200-DK. Introduction. Hardware Interface
Interfacing a PC Card to an AT91RM9200-DK Introduction This Application Note describes the implementation of a PCMCIA interface on an AT91RM9200 Development Kit (DK) using the External Bus Interface (EBI).
Application Note. 8-bit Microcontrollers. AVR091: Replacing AT90S2313 by ATtiny2313. Features. Introduction
AVR091: Replacing AT90S2313 by ATtiny2313 Features AT90S2313 Errata Corrected in ATtiny2313 Changes to Bit and Register Names Changes to Interrupt Vector Oscillators and Selecting Start-up Delays Improvements
8-bit Microcontroller. Application Note. AVR415: RC5 IR Remote Control Transmitter. Features. Introduction. Figure 1.
AVR415: RC5 IR Remote Control Transmitter Features Utilizes ATtiny28 Special HW Modulator and High Current Drive Pin Size Efficient Code, Leaves Room for Large User Code Low Power Consumption through Intensive
AT91 ARM Thumb Microcontrollers. AT91SAM CAN Bootloader. AT91SAM CAN Bootloader User Notes. 1. Description. 2. Key Features
User Notes 1. Description The CAN bootloader SAM-BA Boot4CAN allows the user to program the different memories and registers of any Atmel AT91SAM product that includes a CAN without removing them from
8-bit Microcontroller. Application Note. AVR314: DTMF Generator
AVR314: DTMF Generator Features Generation of Sine Waves Using PWM (Pulse-Width Modulation) Combine Different Sine Waves to DTMF Signal Assembler and C High-level Language Code STK500 Top-Module Design
AVR32110: Using the AVR32 Timer/Counter. 32-bit Microcontrollers. Application Note. Features. 1 Introduction
AVR32110: Using the AVR32 Timer/Counter Features Three independent 16 bit Timer/Counter Channels Multiple uses: - Waveform generation - Analysis and measurement support: Frequency and interval measurements
Quick Start Guide. CAN Microcontrollers. ATADAPCAN01 - STK501 CAN Extension. Requirements
ATADAPCAN01 - STK501 CAN Extension The ATADAPCAN01 - STK501 CAN add-on is an extension to the STK500 and STK501 development boards from Atmel Corporation, adding support for the AVR AT90CAN128 device in
Tag Tuning/RFID. Application Note. Tag Tuning. Introduction. Antenna Equivalent Circuit
Tag Tuning Introduction RFID tags extract all of their power to both operate and communicate from the reader s magnetic field. Coupling between the tag and reader is via the mutual inductance of the two
3-output Laser Driver for HD-DVD/ Blu-ray/DVD/ CD-ROM ATR0885. Preliminary. Summary
Features Three Selectable Outputs All Outputs Can Be Used Either for Standard (5V) or High Voltage (9V) Maximum Output Current at All Outputs Up to 150 ma On-chip Low-EMI RF Oscillator With Spread-spectrum
8-bit Microcontroller. Application Note. AVR201: Using the AVR Hardware Multiplier
AVR201: Using the AVR Hardware Multiplier Features 8- and 16-bit Implementations Signed and Unsigned Routines Fractional Signed and Unsigned Multiply Executable Example Programs Introduction The megaavr
8-bit Microcontroller. Application Note. AVR134: Real-Time Clock (RTC) using the Asynchronous Timer. Features. Theory of Operation.
AVR134: Real-Time Clock (RTC) using the Asynchronous Timer Features Real-Time Clock with Very Low Power Consumption (4µA @ 3.3V) Very Low Cost Solution Adjustable Prescaler to Adjust Precision Counts Time,
AVR033: Getting Started with the CodeVisionAVR C Compiler. 8-bit Microcontrollers. Application Note. Features. 1 Introduction
AVR033: Getting Started with the CodeVisionAVR C Compiler Features Installing and Configuring CodeVisionAVR to Work with the Atmel STK 500 Starter Kit and AVR Studio Debugger Creating a New Project Using
AVR120: Characterization and Calibration of the ADC on an AVR. 8-bit Microcontrollers. Application Note. Features. Introduction
AVR120: Characterization and Calibration of the ADC on an AVR Features Understanding Analog to Digital Converter (ADC) characteristics Measuring parameters describing ADC characteristics Temperature, frequency
AVR32701: AVR32AP7 USB Performance. 32-bit Microcontrollers. Application Note. Features. 1 Introduction
AVR32701: AVR32AP7 USB Performance Features Linux USB bulk transfer performance ATSTK1000 (32-bit SDRAM bus width) ATNGW100 (16-bit SDRAM bus width) GadgetFS driver and gadgetfs-test application USB performance
APPLICATION NOTE. Atmel AVR134: Real Time Clock (RTC) Using the Asynchronous Timer. Atmel AVR 8-bit Microcontroller. Introduction.
APPLICATION NOTE Atmel AVR134: Real Time Clock (RTC) Using the Asynchronous Timer Introduction Atmel AVR 8-bit Microcontroller This application note describes how to implement a real time counter (RTC)
AVR353: Voltage Reference Calibration and Voltage ADC Usage. 8-bit Microcontrollers. Application Note. Features. 1 Introduction
AVR353: Voltage Reference Calibration and Voltage ADC Usage Features Voltage reference calibration. - 1.100V +/-1mV (typical) and < 90ppm/ C drift from 10 C to +70 C. Interrupt controlled voltage ADC sampling.
8-bit. Application Note. Microcontrollers. AVR282: USB Firmware Upgrade for AT90USB
AVR282: USB Firmware Upgrade for AT90USB Features Supported by Atmel FLIP program on all Microsoft O/S from Windows 98SE and later FLIP 3.2.1 or greater supports Linux Default on chip USB bootloader In-System
AVR442: PC Fan Control using ATtiny13. 8-bit Microcontrollers. Application Note. Features. 1 Introduction
AVR442: PC Fan Control using ATtiny13 Features Variable speed based on: - Temperature sensor (NTC). - External PWM input. Stall detection with alarm output. Implementation in C code to ease modification.
8-bit Microcontroller. Application. Note. AVR204: BCD Arithmetics. Features. Introduction. 16-bit Binary to 5-digit BCD Conversion bin2bcd16
AVR204: BCD Arithmetics Features Conversion 16 Bits 5 Digits, 8 Bits 2 Digits 2-digit Addition and Subtraction Superb Speed and Code Density Runable Example Program Introduction This application note lists
AVR034: Mixing C and Assembly Code with IAR Embedded Workbench for AVR. 8-bit Microcontroller. Application Note. Features.
AVR034: Mixing C and Assembly Code with IAR Embedded Workbench for AVR Features Passing Variables Between C and Assembly Code Functions Calling Assembly Code Functions from C Calling C Functions from Assembly
AVR241: Direct driving of LCD display using general IO. 8-bit Microcontrollers. Application Note. Features. Introduction AVR
AVR241: Direct driving of LCD display using general IO Features Software driver for displays with one common line Suitable for parts without on-chip hardware for LCD driving Control up to 15 segments using
AVR32100: Using the AVR32 USART. 32-bit Microcontrollers. Application Note. Features. 1 Introduction
AVR32100: Using the AVR32 USART Features Supports character length from 5 to 9 bits Interrupt Generation Parity, Framing and Overrun Error Detection Programmable Baud Rate Generator Line Break Generation
AVR1900: Getting started with ATxmega128A1 on STK600. 8-bit Microcontrollers. Application Note. 1 Introduction
AVR1900: Getting started with ATxmega128A1 on STK600 1 Introduction This document contains information about how to get started with the ATxmega128A1 on STK 600. The first three sections contain information
8-bit RISC Microcontroller. Application Note. AVR155: Accessing an I 2 C LCD Display using the AVR 2-wire Serial Interface
AVR155: Accessing an I 2 C LCD Display using the AVR 2-wire Serial Interface Features Compatible with Philips' I 2 C protocol 2-wire Serial Interface Master Driver for Easy Transmit and Receive Function
AVR32138: How to optimize the ADC usage on AT32UC3A0/1, AT32UC3A3 and AT32UC3B0/1 series. 32-bit Microcontrollers. Application Note.
AVR32138: How to optimize the ADC usage on AT32UC3A0/1, AT32UC3A3 and AT32UC3B0/1 series 1 Introduction This application note outlines the steps necessary to optimize analog to digital conversions on AT32UC3A0/1,
AVR1301: Using the XMEGA DAC. 8-bit Microcontrollers. Application Note. Features. 1 Introduction
AVR1301: Using the XMEGA DAC Features 12 bit resolution Up to 1 M conversions per second Continuous drive or sample-and-hold output Built-in offset and gain calibration High drive capabilities Driver source
AVR1309: Using the XMEGA SPI. 8-bit Microcontrollers. Application Note. Features. 1 Introduction SCK MOSI MISO SS
AVR1309: Using the XMEGA SPI Features Introduction to SPI and the XMEGA SPI module Setup and use of the XMEGA SPI module Implementation of module drivers Polled master Interrupt controlled master Polled
AVR1318: Using the XMEGA built-in AES accelerator. 8-bit Microcontrollers. Application Note. Features. 1 Introduction
AVR1318: Using the XMEGA built-in AES accelerator Features Full compliance with AES (FIPS Publication 197, 2002) - Both encryption and decryption procedures 128-bit Key and State memory XOR load option
8-bit Microcontroller. Application Note. AVR461: Quick Start Guide for the Embedded Internet Toolkit. Introduction. System Requirements
AVR461: Quick Start Guide for the Embedded Internet Toolkit Introduction Congratulations with your AVR Embedded Internet Toolkit. This Quick-start Guide gives an introduction to using the AVR Embedded
Application Note. USB Mass Storage Device Implementation. USB Microcontrollers. References. Abbreviations. Supported Controllers
USB Mass Storage Device Implementation References Universal Serial Bus Specification, revision 2.0 Universal Serial Bus Class Definition for Communication Devices, version 1.1 USB Mass Storage Overview,
Using CryptoMemory in Full I 2 C Compliant Mode. Using CryptoMemory in Full I 2 C Compliant Mode AT88SC0104CA AT88SC0204CA AT88SC0404CA AT88SC0808CA
Using CryptoMemory in Full I 2 C Compliant Mode 1. Introduction This application note describes how to communicate with CryptoMemory devices in full I 2 C compliant mode. Full I 2 C compliance permits
Application Note. 8-bit Microcontrollers. AVR270: USB Mouse Demonstration
AVR270: USB Mouse Demonstration Features Runs with AT90USB Microcontrollers at 8MHz USB Low Power Bus Powered Device (less then 100mA) Supported by any PC running Windows (98SE or later), Linux or Mac
AVR055: Using a 32kHz XTAL for run-time calibration of the internal RC. 8-bit Microcontrollers. Application Note. Features.
AVR055: Using a 32kHz XTAL for run-time calibration of the internal RC Features Calibration using a 32 khz external crystal Adjustable RC frequency with maximum +/-2% accuracy Tune RC oscillator at any
Application Note. 8-bit Microcontrollers. AVR280: USB Host CDC Demonstration. 1. Introduction
AVR280: USB Host CDC Demonstration 1. Introduction The RS232 interface has disappeared from the new generation of PCs replaced by the USB interface. To follow this change, applications based on UART interface
AT86RF230 (2450 MHz band) Radio Transceiver... User Guide
ATAVRRZ200 Demonstration Kit AT86RF230 (2450 MHz band) Radio Transceiver... User Guide Section 1 1.1 Organization...1-1 1.2 General Description...1-1 1.3 Demonstration kit features...1-2 1.4 Included
AVR1600: Using the XMEGA Quadrature Decoder. 8-bit Microcontrollers. Application Note. Features. 1 Introduction. Sensors
AVR1600: Using the XMEGA Quadrature Decoder Features Quadrature Decoders 16-bit angular resolution Rotation speed and acceleration 1 Introduction Quadrature encoders are used to determine the position
AVR115: Data Logging with Atmel File System on ATmega32U4. Microcontrollers. Application Note. 1 Introduction. Atmel
AVR115: Data Logging with Atmel File System on ATmega32U4 Microcontrollers 01101010 11010101 01010111 10010101 Application Note 1 Introduction Atmel provides a File System management for AT90USBx and ATmegaxxUx
Table of Contents. Section 1 Introduction... 1-1. Section 2 Getting Started... 2-1. Section 3 Hardware Description... 3-1
ISP... User Guide Table of Contents Table of Contents Section 1 Introduction... 1-1 1.1 Features...1-1 1.2 Device Support...1-2 Section 2 Getting Started... 2-1 2.1 Unpacking the System...2-1 2.2 System
Atmel AVR4921: ASF - USB Device Stack Differences between ASF V1 and V2. 8-bit Atmel Microcontrollers. Application Note. Features.
Atmel AVR4921: ASF - USB Device Stack Differences between ASF V1 and V2 Features Advantages Implementation differences Integration Migration from stack V1 to stack V2 8-bit Atmel Microcontrollers Application
USB Test Environment ATUSBTEST- SS7400. Summary
Features Simple Command-driven Host Model Comprehensive Reports by Monitor Protocol Validation by Monitor Comprehensive Test Suite Fully Compliant with USB Forum Checklist Generates and Monitors Packets
AVR1510: Xplain training - XMEGA USART. 8-bit Microcontrollers. Application Note. Prerequisites. 1 Introduction
AVR1510: Xplain training - XMEGA USART Prerequisites Required knowledge AVR1500: Xplain training XMEGA Basics AVR1502: Xplain training XMEGA Direct Memory Access Controller Software prerequisites Atmel
How To Prevent Power Supply Corruption On An 8Bit Microcontroller From Overheating
AVR180: External Brown-out Protection Features Low-voltage Detector Prevent Register and EEPROM Corruption Two Discrete Solutions Integrated IC Solution Extreme Low-cost Solution Extreme Low-power Solution
AVR125: ADC of tinyavr in Single Ended Mode. 8-bit Microcontrollers. Application Note. Features. 1 Introduction
AVR125: ADC of tinyavr in Single Ended Mode Features Up to 10bit resolution Up to 15kSPS Auto triggered and single conversion mode Optional left adjustment for ADC result readout Driver source code included
AVR1321: Using the Atmel AVR XMEGA 32-bit Real Time Counter and Battery Backup System. 8-bit Microcontrollers. Application Note.
AVR1321: Using the Atmel AVR XMEGA 32-bit Real Time Counter and Battery Backup System Features 32-bit Real Time Counter (RTC) - 32-bit counter - Selectable clock source 1.024kHz 1Hz - Long overflow time
AVR1922: Xplain Board Controller Firmware. 8-bit Microcontrollers. Application Note. Features. 1 Introduction
AVR1922: Xplain Board Controller Firmware Features USB interface - Mass-storage to on-board DataFlash memory Atmel AVR XMEGA TM reset control 1 Introduction The Xplain board controller, an AT90USB1287,
AVR2006: Design and characterization of the Radio Controller Board's 2.4GHz PCB Antenna. Application Note. Features.
AVR26: Design and characterization of the Radio Controller Board's 2.4GHz PCB Antenna Features Radiation pattern Impedance measurements WIPL design files NEC model Application Note 1 Introduction This
DIP Top View VCC A16 A15 A12 A7 A6 A5 A4 A3 A2 A1 A0 I/O0 I/O1 I/O2 GND A17 A14 A13 A8 A9 A11 A10 I/O7 I/O6 I/O5 I/O4 I/O3. PLCC Top View VCC A17
Features Fast Read Access Time 70 ns 5-volt Only Reprogramming Sector Program Operation Single Cycle Reprogram (Erase and Program) 1024 Sectors (256 Bytes/Sector) Internal Address and Data Latches for
Two-wire Automotive Serial EEPROM AT24C01A AT24C02 AT24C04 AT24C08 (1) AT24C16 (2)
Features Medium-voltage and Standard-voltage Operation 5.0 (V CC = 4.5V to 5.5V) 2.7 (V CC = 2.7V to 5.5V) Internally Organized 128 x 8 (1K), 256 x 8 (2K), 512 x 8 (4K), 1024 x 8 (8K) or 2048 x 8 (16K)
AVR287: USB Host HID and Mass Storage Demonstration. 8-bit Microcontrollers. Application Note. Features. 1 Introduction
AVR287: USB Host HID and Mass Storage Demonstration Features Based on AVR USB OTG Reduced Host Runs on AT90USB647/1287 Support bootable/non-bootable standard USB mouse Support USB Hub feature (Mass Storage
3-output Laser Driver for HD-DVD/ Blu-ray/DVD/ CD-ROM ATR0885. Preliminary. Summary. Features. Applications. 1. Description
Features Three Selectable Outputs All Outputs Can Be Used Either for Standard (5V) or High Voltage (9V) Maximum Output Current at All Outputs Up to 150 ma On-chip Low-EMI RF Oscillator With Spread-spectrum
USB 2.0 Full-Speed Host/Function Processor AT43USB370. Summary. Features. Overview
Features USB 2.0 Full Speed Host/Function Processor Real-time Host/Function Switching Capability Internal USB and System Interface Controllers 32-bit Generic System Processor Interface with DMA Separate
32-bit AVR UC3 Microcontrollers. 32-bit AtmelAVR Application Note. AVR32769: How to Compile the standalone AVR32 Software Framework in AVR32 Studio V2
AVR32769: How to Compile the standalone AVR32 Software Framework in AVR32 Studio V2 1. Introduction The purpose of this application note is to show how to compile any of the application and driver examples
Application Note. Migrating from RS-232 to USB Bridge Specification USB Microcontrollers. Doc Control. References. Abbreviations
Migrating from RS-232 to USB Bridge Specification USB Microcontrollers Doc Control Rev Purpose of Modifications Date 0.0 Creation date 24 Nov 2003 Application Note 1.0 updates 22 Dec 2003 References Universal
Atmel AVR4903: ASF - USB Device HID Mouse Application. Atmel Microcontrollers. Application Note. Features. 1 Introduction
Atmel AVR4903: ASF - USB Device HID Mouse Application Features USB 2.0 compliance - Chapter 9 compliance - HID compliance - Low-speed (1.5Mb/s) and full-speed (12Mb/s) data rates Standard USB HID mouse
AVR444: Sensorless control of 3-phase brushless DC motors. 8-bit Microcontrollers. Application Note. Features. 1 Introduction
AVR444: Sensorless control of 3-phase brushless DC motors Features Robust sensorless commutation control. External speed reference. Overcurrent detection/protection. Basic speed controller included. Full
AVR068: STK500 Communication Protocol. 8-bit Microcontrollers. Application Note. Features. 1 Introduction
AVR068: STK500 Communication Protocol Features Interfaces both STK500 and AVRISP Supports STK500 FW 2.XX 1 Introduction This document describes the 2.0 version of the communication protocol between the
AVR32788: AVR 32 How to use the SSC in I2S mode. 32-bit Microcontrollers. Application Note. Features. 1 Introduction
AVR32788: AVR 32 How to use the SSC in I2S mode Features I²S protocol overview I²S on the AVR32 I²S sample rate configurations Example of use with AT32UC3A on EVK1105 board 32-bit Microcontrollers Application
How To Use An Atmel Atmel Avr32848 Demo For Android (32Bit) With A Microcontroller (32B) And An Android Accessory (32D) On A Microcontroller (32Gb) On An Android Phone Or
APPLICATION NOTE Atmel AVR32848: Android Accessory Demo 32-bit Atmel Microcontrollers Features Control an accessory from an Android device Send data to and from an Android device to an accessory Supported
Atmel AVR4920: ASF - USB Device Stack - Compliance and Performance Figures. Atmel Microcontrollers. Application Note. Features.
Atmel AVR4920: ASF - USB Device Stack - Compliance and Performance Figures Features Compliance to USB 2.0 - Chapters 8 and 9 - Classes: HID, MSC, CDC, PHDC Interoperability: OS, classes, self- and bus-powered
Application Note. 8-bit Microcontrollers. AVR272: USB CDC Demonstration UART to USB Bridge
AVR272: USB CDC Demonstration UART to USB Bridge Features Supported by Windows 2000 or later No driver installation Virtual COM Port Enumeration USB to RS232 Bridge with dynamic baudrate Bus powered 8-bit
8-bit RISC Microcontroller. Application Note. AVR910: In-System Programming
AVR910: In-System Programming Features Complete In-System Programming Solution for AVR Microcontrollers Covers All AVR Microcontrollers with In-System Programming Support Reprogram Both Data Flash and
APPLICATION NOTE. Atmel AT04389: Connecting SAMD20E to the AT86RF233 Transceiver. Atmel SAMD20. Description. Features
APPLICATION NOTE Atmel AT04389: Connecting SAMD20E to the AT86RF233 Transceiver Description Atmel SAMD20 This application note describes a method to connect an Atmel ATSAMD20E microcontroller to an Atmel
Step Motor Controller. Application Note. AVR360: Step Motor Controller. Theory of Operation. Features. Introduction
AVR360: Step Motor Controller Features High-Speed Step Motor Controller Interrupt Driven Compact Code (Only 10 Bytes Interrupt Routine) Very High Speed Low Computing Requirement Supports all AVR Devices
ATF15xx Product Family Conversion. Application Note. ATF15xx Product Family Conversion. Introduction
ATF15xx Product Family Conversion Introduction Table 1. Atmel s ATF15xx Family The ATF15xx Complex Programmable Logic Device (CPLD) product family offers high-density and high-performance devices. Atmel
2-wire Serial EEPROM AT24C1024. Advance Information
Features Low-voltage Operation 2.7(V CC =2.7Vto5.5V) Internally Organized 3,072 x 8 2-wire Serial Interface Schmitt Triggers, Filtered Inputs for Noise Suppression Bi-directional Data Transfer Protocol
STK 500, AVRISP, AVRISP
AVR053: Calibration of the internal RC oscillator Features Calibration using STK 500, AVRISP, AVRISP mkii, JTAGICE or JTAGICE mkii Calibration using 3 rd party programmers Adjustable RC frequency with
Two-wire Serial EEPROM AT24C1024 (1)
Features Low-voltage Operation 2.7 (V CC = 2.7V to 5.5V) Internally Organized 131,072 x 8 Two-wire Serial Interface Schmitt Triggers, Filtered Inputs for Noise Suppression Bidirectional Data Transfer Protocol
8-bit Microcontroller. Application Note. AVR410: RC5 IR Remote Control Receiver
AVR410: RC5 IR Remote Control Receiver Features Low-cost Compact Design, Only One External Component Requires Only One Controller Pin, Any AVR Device Can be Used Size-efficient Code Introduction Most audio
APPLICATION NOTE Atmel AT02509: In House Unit with Bluetooth Low Energy Module Hardware User Guide 8-bit Atmel Microcontroller Features Description
APPLICATION NOTE Atmel AT259: In House Unit with Bluetooth Low Energy Module Hardware User Guide Features 8-bit Atmel Microcontroller Low power consumption Interface with BLE with UART Bi-direction wake
2-Wire Serial EEPROM AT24C32 AT24C64. 2-Wire, 32K Serial E 2 PROM. Features. Description. Pin Configurations. 32K (4096 x 8) 64K (8192 x 8)
Features Low-Voltage and Standard-Voltage Operation 2.7 (V CC = 2.7V to 5.5V) 1.8 (V CC = 1.8V to 5.5V) Low-Power Devices (I SB = 2 µa at 5.5V) Available Internally Organized 4096 x 8, 8192 x 8 2-Wire
Application Note. Atmel ATSHA204 Authentication Modes. Prerequisites. Overview. Introduction
Application Note Atmel Authentication Modes Prerequisites Hardware Atmel AT88CK454BLACK Evaluation Board Atmel AT88CK109STK8 Kit Software Atmel Crypto Evaluation Studio (ACES) Overview Understand which
AT91 ARM Thumb Microcontrollers. Application Note. GNU-Based Software Development on AT91SAM Microcontrollers. 1. Introduction. 2.
GNU-Based Software Development on AT91SAM Microcontrollers 1. Introduction Most development solutions used today in the ARM world are commercial packages, such as IAR EWARM or ARM RealView. Indeed, they
AT88CK490 Evaluation Kit
AT88CK490 Evaluation Kit CryptoAuthentication USB Dongle HARDWARE USER GUIDE Atmel AT88CK490 CryptoAuthentication Evaluation Kit Introduction The Atmel AT88CK490 CryptoAuthentication Evaluation Kit is
Application Note. 8-bit Microcontrollers. AVR307: Half Duplex UART Using the USI Module
AVR307: Half Duplex UART Using the USI Module Features Half Duplex UART Communication Communication Speed Up To 230.4 kbps at 14.75MHz Interrupt Controlled Communication Eight Bit Data, One Stop-bit, No
AT15007: Differences between ATmega328/P and ATmega328PB. Introduction. Features. Atmel AVR 8-bit Microcontrollers APPLICATION NOTE
Atmel AVR 8-bit Microcontrollers AT15007: Differences between ATmega328/P and ATmega328PB APPLICATION NOTE Introduction This application note assists the users of Atmel ATmega328 variants to understand
AT91SAM ARM-based Flash MCU. Application Note
Modbus Slave Stack for the Atmel Family of SAM3 Microcontrollers (Free Modbus Stack from Embedded Solutions) 1. Scope This application note provides directions and instructions to application engineers
USER GUIDE EDBG. Description
USER GUIDE EDBG Description The Atmel Embedded Debugger (EDBG) is an onboard debugger for integration into development kits with Atmel MCUs. In addition to programming and debugging support through Atmel
AVR151: Setup and Use of the SPI. Introduction. Features. Atmel AVR 8-bit Microcontroller APPLICATION NOTE
Atmel AVR 8-bit Microcontroller AVR151: Setup and Use of the SPI APPLICATION NOTE Introduction This application note describes how to set up and use the on-chip Serial Peripheral Interface (SPI) of the
Application Note. 8-bit Microcontrollers. AVR293: USB Composite Device
AVR293: USB Composite Device Features Combining several USB applications using ONE DEVICE No HUB needed Bus powered 1. Introduction Adding to the flexibility given to the user with the Hot Plug & Play,
AVR131: Using the AVR s High-speed PWM. Introduction. Features. AVR 8-bit Microcontrollers APPLICATION NOTE
AVR 8-bit Microcontrollers AVR131: Using the AVR s High-speed PWM APPLICATION NOTE Introduction This application note is an introduction to the use of the high-speed Pulse Width Modulator (PWM) available
AVR064: A Temperature Monitoring System with LCD Output. 8-bit Microcontrollers. Application Note. Features. 1 Introduction
AVR064: A Temperature Monitoring System with LCD Output Features Presenting data on an LCD-display Temperature measurement Real Time Clock (RTC) UART communication with a PC PWM implementation 8-bit Microcontrollers
APPLICATION NOTE. Secure Personalization with Transport Key Authentication. ATSHA204A, ATECC108A, and ATECC508A. Introduction.
APPLICATION NOTE Secure Personalization with Transport Key Authentication ATSHA204A, ATECC108A, and ATECC508A Introduction The Atmel CryptoAuthentication ATSHA204A, ATECC108A, and ATECC508A devices (crypto
AVR2004: LC-Balun for AT86RF230. Application Note. Features. 1 Introduction
AVR2004: LC-Balun for AT86RF230 Features Balun for AT86RF230 with lumped elements Simulation results S-Parameter file 1 Introduction In some cases the used balun on the ATAVR RZ502 Radio Boards must be
Atmel AVR4027: Tips and Tricks to Optimize Your C Code for 8-bit AVR Microcontrollers. 8-bit Atmel Microcontrollers. Application Note.
Atmel AVR4027: Tips and Tricks to Optimize Your C Code for 8-bit AVR Microcontrollers Features Atmel AVR core and Atmel AVR GCC introduction Tips and tricks to reduce code size Tips and tricks to reduce
