2-wire Serial EEPROM AT24C1024. Advance Information
|
|
|
- Jemima Gaines
- 9 years ago
- Views:
Transcription
1 Features Low-voltage Operation 2.7(V CC =2.7Vto5.5V) Internally Organized 3,072 x 8 2-wire Serial Interface Schmitt Triggers, Filtered Inputs for Noise Suppression Bi-directional Data Transfer Protocol 400 khz (2.7V) and MHz (5V) Clock Rate Write Protect Pin for Hardware and Software Data Protection 256-byte Page Write Mode (Partial Page Writes Allowed) Random and Sequential Read Modes Self-timed Write Cycle (5 ms Typical) High Reliability Endurance: 00,000 Write Cycles/Page Data Retention: 40 Years 8-lead PDIP, 8-lead EIAJ SOIC, 8-lead LAP and 8-ball dbga TM Packages 2-wire Serial EEPROM M (3,072 x 8) Description The AT24C024 provides,048,576 bits of serial electrically erasable and programmable read only memory (EEPROM) organized as 3,072 words of 8 bits each. The device s cascadable feature allows up to 2 devices to share a common 2-wire bus. The device is optimized for use in many industrial and commercial applications where lowpower and low-voltage operation are essential. The devices are available in spacesaving 8-lead PDIP, 8-lead EIAJ SOIC, 8-lead Leadless Array (LAP) and 8-ball dbga packages. In addition, the entire family is available in 2.7V (2.7V to 5.5V) versions. AT24C024 Advance Information Pin Configurations Pin Name Function A Address Input SDA Serial Data SCL Serial Clock Input WP Write Protect NC No Connect 8-lead SOIC NC A NC GND 8-lead PDIP VCC WP SCL SDA 8-lead Leadless Array VCC WP SCL SDA Bottom View NC A NC GND NC A NC GND VCC WP SCL SDA VCC WP SCL SDA 8-ball dbga NC A NC GND Bottom View Rev.
2 Absolute Maximum Ratings* Operating Temperature C to+25 C Storage Temperature C to+50 C Voltage on Any Pin with Respect to Ground...-.0V to +7.0V Maximum Operating Voltage V *NOTICE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. DC Output Current ma Block Diagram 2 AT24C024
3 AT24C024 Pin Description Memory Organization SERIAL CLOCK (SCL): The SCL input is used to positive edge clock data into each EEPROM device and negative edge clock data out of each device. SERIAL DATA (SDA): The SDA pin is bi-directional for serial data transfer. This pin is opendrain driven and may be wire-ored with any number of other open-drain or open-collector devices. DEVICE/PAGE ADDRESSES (A): The A pin is a device address input that can be hardwired or left not connected for hardware compatibility with AT24C28/256/52. When the A pin is hardwired, as many as two 024K devices may be addressed on a single bus system (device addressing is discussed in detail under the Device Addressing section). When the pin is not hardwired, the default A is zero. WRITE PROTECT (WP): The hardware Write Protect pin is useful for protecting the entire contents of the memory from inadvertent write operations. The write-protect input, when tied to GND, allows normal write operations. When WP is tied high to V CC, all write operations to the memory are inhibited. If left unconnected, WP is internally pulled down to GND. Switching WP to V CC prior to a write operation creates a software write-protect function. AT24C024, 024K SERIAL EEPROM: The 024K is internally organized as 52 pages of 256 bytes each. Random word addressing requires a 7-bit data word address. 3
4 Pin Capacitance () Applicable over recommended operating range from T A =25 C, f =.0 MHz, V CC =+2.7V. Symbol Test Condition Max Units Conditions C I/O Input/Output Capacitance (SDA) 8 pf V I/O =0V C IN Input Capacitance (A,SCL) 6 pf V IN =0V Note:. This parameter is characterized and is not 00% tested. DC Characteristics Applicable over recommended operating range from: T AI =-40 C to+85 C, V CC = +2.7V to +5.5V, T AC =0 C to+70 C, V CC = +2.7V to +5.5V (unless otherwise noted). Symbol Parameter Test Condition Min Typ Max Units V CC Supply Voltage V I CC Supply Current V CC = 5.0V READ at 400 khz 2.0 ma I CC Supply Current V CC = 5.0V WRITE at 400 khz 5.0 ma I SB Standby Current V CC =2.7V V IN =V CC or V SS 3.0 µa V CC =5.5V 6.0 µa I LI Input Leakage Current V IN =V CC or V SS µa I LO Output Leakage Current V OUT =V CC or V SS µa V IL Input Low Level () -0.6 V CC x0.3 V V IH Input High Level () V CC x0.7 V CC +0.5 V V OL Output Low Level V CC =3.0V I OL =2.mA 0.4 V Note:. V IL min and V IH max are reference only and are not tested. 4 AT24C024
5 AT24C024 AC Characteristics Applicable over recommended operating range from T A =-40 C to+85 C, V CC = +2.7V to +5.5V, C L = 00 pf (unless otherwise noted). Test conditions are listed in Note 2. Symbol Parameter Test Conditions Min Max Units f SCL Clock Frequency, SCL 4.5V V CC 5.5V 2.7V V CC 5.5V khz t LOW Clock Pulse Width Low 4.5V V CC 5.5V 2.7V V CC 5.5V µs t HIGH Clock Pulse Width High 4.5V V CC 5.5V 2.7V V CC 5.5V µs t AA Clock Low to Data Out Valid 4.5V V CC 5.5V 2.7V V CC 5.5V µs t BUF Time the bus must be free before a new 4.5V V CC 5.5V transmission can start () 2.7V V CC 5.5V µs t HD.STA Start Hold Time 4.5V V CC 5.5V 2.7V V CC 5.5V µs t SU.STA Start Setup Time 4.5V V CC 5.5V 2.7V V CC 5.5V µs t HD.DAT Data In Hold Time 0 µs t SU.DAT Data In Setup Time 00 ns t R Inputs Rise Time () 0.3 µs t F Inputs Fall Time () 4.5V V CC 5.5V 2.7V V CC 5.5V ns t SU.STO Stop Setup Time 4.5V V CC 5.5V 2.7V V CC 5.5V µs t DH Data Out Hold Time 50 ns t WR WriteCycleTime 0 ms Endurance () 5.0V, 25 C, Page Mode 00K Write Cycles Notes:. This parameter is characterized and is not 00% tested. 2. AC measurement conditions: R L (connects to V CC ):.3 kω (2.7V, 5V) Input pulse voltages: 0.3 V CC to 0.7 V CC Input rise and fall times: 50 ns Input and output timing reference voltages: 0.5 V CC 5
6 Device Operation CLOCK and DATA TRANSITIONS: TheSDApinisnormallypulledhighwithanexternal device. Data on the SDA pin may change only during SCL low time periods (refer to Data Validity timing diagram). Data changes during SCL high periods will indicate a start or stop condition as defined below. START CONDITION: A high-to-low transition of SDA with SCL high is a start condition which must precede any other command (refer to Start and Stop Definition timing diagram). STOP CONDITION: A low-to-high transition of SDA with SCL high is a stop condition. After a read sequence, the Stop command will place the EEPROM in a standby power mode (refer to Start and Stop Definition timing diagram). ACKNOWLEDGE: All addresses and data words are serially transmitted to and from the EEPROM in 8-bit words. The EEPROM sends a zero during the ninth clock cycle to acknowledge that it has received each word. STANDBY MODE: The AT24C024 features a low-power standby mode which is enabled: a) upon power-up and b) after the receipt of the STOP bit and the completion of any internal operations. MEMORY RESET: After an interruption in protocol, power loss or system reset, any 2-wire part can be reset by following these steps:. Clock up to 9 cycles, 2. Look for SDA high in each cycle while SCL is high. 3. Create a start condition. 6 AT24C024
7 AT24C024 Bus Timing (SCL: Serial Clock, SDA: Serial Data I/O) Write Cycle Timing (SCL: Serial Clock, SDA: Serial Data I/O) () Note:. The write cycle time t WR is the time from a valid stop condition of a write sequence to the end of the internal clear/write cycle. 7
8 Data Validity Start and Stop Definition Output Acknowledge 8 AT24C024
9 AT24C024 Device Addressing Write Operations The 024K EEPROM requires an 8-bit device address word following a start condition to enable the chip for a read or write operation (refer to Figure ). The device address word consists of a mandatory one, zero sequence for the first five most significant bits as shown. This is common to all 2-wire EEPROM devices. The 024K uses the one device address bit, A, to allow up to two devices on the same bus. The A bit must compare to the corresponding hardwired input pin. The A pin uses an internal proprietary circuit that biases it to a logic low condition if the pin is allowed to float. Theseventhbit(P 0 ) of the device address is a memory page address bit. This memory page address bit is the most significant bit of the data word address that follows. The eighth bit of the device address is the read/write operation select bit. A read operation is initiated if this bit is high and a write operation is initiated if this bit is low. Upon a compare of the device address, the EEPROM will output a zero. If a compare is not made, the device will return to a standby state. DATA SECURITY: The AT24C024 has a hardware data protection scheme that allows the user to write-protect the entire memory when the WP pin is at V CC. BYTE WRITE: To select a data word in the 024K memory requires a 7-bit word address. The word address field consists of the P 0 bit of the device address, then the most significant word address followed by the least significant word address (refer to Figure 2) A write operation requires the P 0 bit and two 8-bit data word addresses following the device address word and acknowledgment. Upon receipt of this address, the EEPROM will again respond with a zero and then clock in the first 8-bit data word. Following receipt of the 8-bit data word, the EEPROM will output a zero. The addressing device, such as a microcontroller, then must terminate the write sequence with a stop condition. At this time the EEPROM enters an internally timed write cycle, T WR, to the nonvolatile memory. All inputs are disabled during this write cycle and the EEPROM will not respond until the write is complete (refer to Figure 2). PAGE WRITE: The 024K EEPROM is capable of 256-byte page writes. A page write is initiated the same way as a byte write, but the microcontroller does not send a stop condition after the first data word is clocked in. Instead, after the EEPROM acknowledges receipt of the first data word, the microcontroller can transmit up to 255 more data words. The EEPROM will respond with a zero after each data word received. The microcontroller must terminate the page write sequence with a stop condition (refer to Figure 3). The data word address lower 8 bits are internally incremented following the receipt of each data word. The higher data word address bits are not incremented, retaining the memory page row location. When the word address, internally generated, reaches the page boundary, the following byte is placed at the beginning of the same page. If more than 256 data words are transmitted to the EEPROM, the data word address will roll over and previous data will be overwritten. The address rollover during write is from the last byte of the current page to the first byte of the same page. ACKNOWLEDGE POLLING: Once the internally timed write cycle has started and the EEPROM inputs are disabled, acknowledge polling can be initiated. This involves sending a start condition followed by the device address word. The read/write bit is representative of the operation desired. Only if the internal write cycle has completed will the EEPROM respond with a zero, allowing the read or write sequence to continue. 9
10 Read Operations Read operations are initiated the same way as write operations with the exception that the read/write select bit in the device address word is set to one. There are three read operations: current address read, random address read and sequential read. CURRENT ADDRESS READ: The internal data word address counter maintains the last address accessed during the last read or write operation, incremented by one. This address stays valid between operations as long as the chip power is maintained. The address rollover during read is from the last byte of the last memory page, to the first byte of the first page. Once the device address with the read/write select bit set to one is clocked in and acknowledged by the EEPROM, the current address data word is serially clocked out. The microcontroller does not respond with an input zero but does generate a following stop condition (refer to Figure 4). RANDOM READ: A random read requires a dummy byte write sequence to load in the data word address. Once the device address word and data word address are clocked in and acknowledged by the EEPROM, the microcontroller must generate another start condition. The microcontroller now initiates a current address read by sending a device address with the read/write select bit high. The EEPROM acknowledges the device address and serially clocks out the data word. The microcontroller does not respond with a zero but does generate a following stop condition (refer to Figure 5). SEQUENTIAL READ: Sequential reads are initiated by either a current address read or a random address read. After the microcontroller receives a data word, it responds with an acknowledge. As long as the EEPROM receives an acknowledge, it will continue to increment the data word address and serially clock out sequential data words. When the memory address limit is reached, the data word address will roll over and the sequential read will continue. The sequential read operation is terminated when the microcontroller does not respond with a zero, but does generate a following stop condition (refer to Figure 6). 0 AT24C024
11 AT24C024 Figure. Device Address 0 Figure 2. Byte Write MOST SIGNIFICANT LEAST SIGNIFICANT P 0 Figure 3. Page Write MOST SIGNIFICANT LEAST SIGNIFICANT P 0 Figure 4. Current Address Read
12 Figure 5. Random Read P 0 Figure 6. Sequential Read P 0 2 AT24C024
13 AT24C024 Ordering Information Ordering Code Package Operation Range AT24C024-0CI-2.7 8CN3 AT24C024C-0CI-2.7 8CN Industrial AT24C024-0PI-2.7 8P3 (-40 C to85 C) AT24C024W-0SI-2.7 8S2 AT24C024-0UI-2.7 8U8 Note: For 2.7V devices used in the 4.5V to 5.5V range, please refer to performance values in the AC and DC Characteristics tables. Package Type 8CN3 8CN 8P3 8S2 8U8 8-lead, 0.230" Wide, Leadless Array Package (LAP) 8-lead, 0.300" Wide, Leadless Array Package (LAP) 8-lead, 0.300" Wide, Plastic Dual In-line Package (PDIP) 8-lead, 0.200" Wide, Plastic Gull Wing Small Outline Package (EIAJ SOIC) 8-ball, die Ball Grid Array Package (dbga) Options -2.7 Low Voltage (2.7V to 5.5V) 3
14 Packaging Information 8CN3 LAP Marked Pin Indentifier E D Top View Side View A A 0.0 mm TYP L Pin Corner 8 e 7 2 COMMON DIMENSIONS (Unit of Measure = mm) SYMBOL MIN NOM MAX NOTE 6 3 b A A b D e L E e.27 BSC Bottom View e 0.56 REF L L Note:. Metal Pad Dimensions. /4/0 R 2325 Orchard Parkway San Jose, CA 953 TITLE 8CN3, 8-lead, (6 x 5 x.04 mm Body), Lead Pitch.27 mm, Leadless Array Package (LAP) DRAWING NO. 8CN3 REV. A 4 AT24C024
15 AT24C024 8CN LAP Marked Pin Indentifier E D Top View Side View A A 0.0 mm TYP L Pin Corner 8 e 7 2 COMMON DIMENSIONS (Unit of Measure = mm) SYMBOL MIN NOM MAX NOTE 6 3 b A A b D e L E e.27 BSC Bottom View e 0.60 REF L L Note:. Metal Pad Dimensions. /3/0 R 2325 Orchard Parkway San Jose, CA 953 TITLE 8CN, 8-lead (8 x 5 x.04 mm Body), Lead Pitch.27 mm, Leadless Array Package (LAP) DRAWING NO. 8CN REV. A 5
16 8P3 PDIP E E N Top View c ea End View D D e A2 A COMMON DIMENSIONS (Unit of Measure = inches) SYMBOL MIN NOM MAX NOTE A A b b b c b3 4 PLCS b2 b L D D E E Side View e 0.00 BSC ea BSC 4 L Notes: R. This drawing is for general information only; refer to JEDEC Drawing MS-00, Variation BA for additional information. 2. Dimensions A and L are measured with the package seated in JEDEC seating plane Gauge GS D, D and E dimensions do not include mold Flash or protrusions. Mold Flash or protrusions shall not exceed 0.00 inch. 4. E and ea measured with the leads constrained to be perpendicular to datum. 5. Pointed or rounded lead tips are preferred to ease insertion. 6. b2 and b3 maximum dimensions do not include Dambar protrusions. Dambar protrusions shall not exceed 0.00 (0.25 mm) Orchard Parkway San Jose, CA 953 TITLE 8P3, 8-lead, 0.300" Wide Body, Plastic Dual In-line Package (PDIP) DRAWING NO. 8P3 0/09/02 REV. B 6 AT24C024
17 AT24C024 8S2 EIAJ SOIC H N Top View e b A D Side View COMMON DIMENSIONS (Unit of Measure = mm) SYMBOL MIN NOM MAX NOTE A C A A b L E C D End View E , 3 H L e.27 BSC 4 Notes:. This drawing is for general information only; refer to EIAJ Drawing EDR-7320 for additional information. 2. Mismatch of the upper and lower dies and resin burrs aren't included. 3. It is recommended that upper and lower cavities be equal. If they are different, the larger dimension shall be regarded. 4. Determines the true geometric position. 5. Values b,c apply to pb/sn solder plated terminal. The standard thickness of the solder layer shall be / mm. 5/2/02 R 2325 Orchard Parkway San Jose, CA 953 TITLE 8S2, 8-lead, 0.209" Body, Plastic Small Outline Package (EIAJ) DRAWING NO. 8S2 REV. B 7
18 8U8 dbga E D Pin Mark this corner Top View - Z - d D Øb M Z X Y 8 M Z # # # # COMMON DIMENSIONS (Unit of Measure = mm) SYMBOL MIN NOM MAX NOTE D 3.84 D 0.80 TYP E 2.85 E.05 TYP e 0.75 TYP E Bottom View e A2 A A Side View d 0.75 TYP A 0.90 REF A A Øb Notes:. This drawing is for general information only. No JEDEC Drawing to refer to for additional information. 2. Dimension is measured at the maximum solder ball diameter, parallel to primary datum Z. 0/09/02 R 2325 Orchard Parkway San Jose, CA 953 TITLE 8U8, 8-ball 0.75 pitch, Die Ball Grid Array Package (dbga) AT24C024 (AT35520) DRAWING NO. 8U8 REV. A 8 AT24C024
19 Atmel Headquarters Corporate Headquarters 2325 Orchard Parkway San Jose, CA 953 TEL (408) FAX (408) Europe Atmel Sarl Route des Arsenaux 4 Case Postale 80 CH-705 Fribourg Switzerland TEL (4) FAX (4) Asia Room 29 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong TEL (852) FAX (852) Japan 9F, Tonetsu Shinkawa Bldg Shinkawa Chuo-ku, Tokyo Japan TEL (8) FAX (8) Atmel Operations Memory 2325 Orchard Parkway San Jose, CA 953 TEL (408) FAX (408) Microcontrollers 2325 Orchard Parkway San Jose, CA 953 TEL (408) FAX (408) La Chantrerie BP Nantes Cedex 3, France TEL (33) FAX (33) ASIC/ASSP/Smart Cards Zone Industrielle 306 Rousset Cedex, France TEL (33) FAX (33) East Cheyenne Mtn. Blvd. Colorado Springs, CO TEL (79) FAX (79) Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland TEL (44) FAX (44) RF/Automotive Theresienstrasse 2 Postfach Heilbronn, Germany TEL (49) FAX (49) East Cheyenne Mtn. Blvd. Colorado Springs, CO TEL (79) FAX (79) Biometrics/Imaging/Hi-Rel MPU/ High Speed Converters/RF Datacom Avenue de Rochepleine BP Saint-Egreve Cedex, France TEL (33) FAX (33) [email protected] Web Site Atmel Corporation Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company s standard warranty which is detailed in Atmel s Terms and Conditions located on the Company s web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel s products are not authorized for use as critical components in life support devices or systems. Atmel is the registered trademark of Atmel; dbga is the trademark of Atmel. Other terms and product names may be the trademarks of others. Printed on recycled paper. xm
2-wire Serial EEPROM AT24C512
Features Low-voltage and Standard-voltage Operation 5.0 (V CC = 4.5V to 5.5V). (V CC =.V to 5.5V). (V CC =.V to.v) Internally Organized 5,5 x -wire Serial Interface Schmitt Triggers, Filtered Inputs for
2-Wire Serial EEPROM AT24C32 AT24C64. 2-Wire, 32K Serial E 2 PROM. Features. Description. Pin Configurations. 32K (4096 x 8) 64K (8192 x 8)
Features Low-Voltage and Standard-Voltage Operation 2.7 (V CC = 2.7V to 5.5V) 1.8 (V CC = 1.8V to 5.5V) Low-Power Devices (I SB = 2 µa at 5.5V) Available Internally Organized 4096 x 8, 8192 x 8 2-Wire
Two-wire Automotive Serial EEPROM AT24C01A AT24C02 AT24C04 AT24C08 (1) AT24C16 (2)
Features Medium-voltage and Standard-voltage Operation 5.0 (V CC = 4.5V to 5.5V) 2.7 (V CC = 2.7V to 5.5V) Internally Organized 128 x 8 (1K), 256 x 8 (2K), 512 x 8 (4K), 1024 x 8 (8K) or 2048 x 8 (16K)
Two-wire Serial EEPROM AT24C1024 (1)
Features Low-voltage Operation 2.7 (V CC = 2.7V to 5.5V) Internally Organized 131,072 x 8 Two-wire Serial Interface Schmitt Triggers, Filtered Inputs for Noise Suppression Bidirectional Data Transfer Protocol
DIP Top View VCC A16 A15 A12 A7 A6 A5 A4 A3 A2 A1 A0 I/O0 I/O1 I/O2 GND A17 A14 A13 A8 A9 A11 A10 I/O7 I/O6 I/O5 I/O4 I/O3. PLCC Top View VCC A17
Features Fast Read Access Time 70 ns 5-volt Only Reprogramming Sector Program Operation Single Cycle Reprogram (Erase and Program) 1024 Sectors (256 Bytes/Sector) Internal Address and Data Latches for
Two-wire Serial EEPROM AT24C01B
Features Low-voltage and Standard-voltage Operation 1.8(V CC =1.8Vto5.5V) Internally Organized 128 x 8 (1K) Two-wire Serial Interface Schmitt Trigger, Filtered Inputs for Noise Suppression Bidirectional
8-bit RISC Microcontroller. Application Note. AVR182: Zero Cross Detector
AVR182: Zero Cross Detector Features Interrupt Driven Modular C Source Code Size Efficient Code Accurate and Fast Detection A Minimum of External Components Introduction One of the many issues with developing
Two-wire Serial EEPROM AT24C512B
Features Low-voltage and Standard-voltage Operation 1.8v (V CC =1.8Vto3.6V) 2.5v (V CC =2.5Vto5.5V) Internally Organized 65,536 x 8 Two-wire Serial Interface Schmitt Triggers, Filtered Inputs for Noise
Two-wire Serial EEPROM AT24C02B. Not Recommended for New Design
Features Low-voltage and Standard-voltage Operation 1.8 (V CC = 1.8V to 5.5V) Internally Organized 256 x 8 (2K) Two-wire Serial Interface Schmitt Trigger, Filtered Inputs for Noise Suppression Bidirectional
8-bit Microcontroller. Application Note. AVR222: 8-point Moving Average Filter
AVR222: 8-point Moving Average Filter Features 31-word Subroutine Filters Data Arrays up to 256 Bytes Runable Demo Program Introduction The moving average filter is a simple Low Pass FIR (Finite Impulse
Tag Tuning/RFID. Application Note. Tag Tuning. Introduction. Antenna Equivalent Circuit
Tag Tuning Introduction RFID tags extract all of their power to both operate and communicate from the reader s magnetic field. Coupling between the tag and reader is via the mutual inductance of the two
AT91 ARM Thumb Microcontrollers. Application Note. Interfacing a PC Card to an AT91RM9200-DK. Introduction. Hardware Interface
Interfacing a PC Card to an AT91RM9200-DK Introduction This Application Note describes the implementation of a PCMCIA interface on an AT91RM9200 Development Kit (DK) using the External Bus Interface (EBI).
8-bit Microcontroller. Application Note. AVR415: RC5 IR Remote Control Transmitter. Features. Introduction. Figure 1.
AVR415: RC5 IR Remote Control Transmitter Features Utilizes ATtiny28 Special HW Modulator and High Current Drive Pin Size Efficient Code, Leaves Room for Large User Code Low Power Consumption through Intensive
AVR305: Half Duplex Compact Software UART. 8-bit Microcontrollers. Application Note. Features. 1 Introduction
AVR305: Half Duplex Compact Software UART Features 32 Words of Code, Only Handles Baud Rates of up to 38.4 kbps with a 1 MHz XTAL Runs on Any AVR Device Only Two Port Pins Required Does Not Use Any Timer
8-bit RISC Microcontroller. Application Note. AVR236: CRC Check of Program Memory
AVR236: CRC Check of Program Memory Features CRC Generation and Checking of Program Memory Supports all AVR Controllers with LPM Instruction Compact Code Size, 44 Words (CRC Generation and CRC Checking)
Quick Start Guide. CAN Microcontrollers. ATADAPCAN01 - STK501 CAN Extension. Requirements
ATADAPCAN01 - STK501 CAN Extension The ATADAPCAN01 - STK501 CAN add-on is an extension to the STK500 and STK501 development boards from Atmel Corporation, adding support for the AVR AT90CAN128 device in
256K (32K x 8) OTP EPROM AT27C256R 256K EPROM. Features. Description. Pin Configurations
Features Fast Read Access Time - 45 ns Low-Power CMOS Operation 100 µa max. Standby 20 ma max. Active at 5 MHz JEDEC Standard Packages 28-Lead 600-mil PDIP 32-Lead PLCC 28-Lead TSOP and SOIC 5V ± 10% Supply
64K (8K x 8) Parallel EEPROM with Page Write and Software Data Protection AT28C64B
Features Fast Read Access Time 150 ns Automatic Page Write Operation Internal Address and Data Latches for 64 Bytes Fast Write Cycle Times Page Write Cycle Time: 10 ms Maximum (Standard) 2 ms Maximum (Option
8-bit Microcontroller. Application Note. AVR314: DTMF Generator
AVR314: DTMF Generator Features Generation of Sine Waves Using PWM (Pulse-Width Modulation) Combine Different Sine Waves to DTMF Signal Assembler and C High-level Language Code STK500 Top-Module Design
8-bit Microcontroller. Application Note. AVR400: Low Cost A/D Converter
AVR400: Low Cost A/D Converter Features Interrupt Driven : 23 Words Low Use of External Components Resolution: 6 Bits Measurement Range: 0-2 V Runs on Any AVR Device with 8-bit Timer/Counter and Analog
How to Calculate the Capacitor of the Reset Input of a C51 Microcontroller 80C51. Application Note. Microcontrollers. Introduction
How to Calculate the Capacitor of the Reset Input of a C51 Microcontroller This application note explains how the reset of the 80C51 microcontroller works when the RST pin is a pure input pin and when
256K (32K x 8) Battery-Voltage Parallel EEPROMs AT28BV256
Features Single 2.7V - 3.6V Supply Fast Read Access Time 200 ns Automatic Page Write Operation Internal Address and Data Latches for 64 Bytes Internal Control Timer Fast Write Cycle Times Page Write Cycle
General Porting Considerations. Memory EEPROM XRAM
AVR097: Migration between ATmega128 and ATmega2561 Features General Porting Considerations Memory Clock sources Interrupts Power Management BOD WDT Timers/Counters USART & SPI ADC Analog Comparator ATmega103
AT89C5131A Starter Kit... Software User Guide
AT89C5131A Starter Kit... Software User Guide Table of Contents Section 1 Introduction... 1-1 1.1 Abbreviations...1-1 Section 2 Getting Started... 2-3 2.1 Hardware Requirements...2-3 2.2 Software Requirements...2-3
Application Note. C51 Bootloaders. C51 General Information about Bootloader and In System Programming. Overview. Abreviations
C51 General Information about Bootloader and In System Programming Overview This document describes the Atmel Bootloaders for 8051 family processors. Abreviations ISP: In-System Programming API : Applications
AVR106: C functions for reading and writing to Flash memory. 8-bit Microcontrollers. Application Note. Features. Introduction
AVR106: C functions for reading and writing to Flash memory Features C functions for accessing Flash memory - Byte read - Page read - Byte write - Page write Optional recovery on power failure Functions
AVR317: Using the Master SPI Mode of the USART module. 8-bit Microcontrollers. Application Note. Features. Introduction
AVR317: Using the Master SPI Mode of the USART module Features Enables Two SPI buses in one device Hardware buffered SPI communication Polled communication example Interrupt-controlled communication example
AVR319: Using the USI module for SPI communication. 8-bit Microcontrollers. Application Note. Features. Introduction
AVR319: Using the USI module for SPI communication Features C-code driver for SPI master and slave Uses the USI module Supports SPI Mode 0 and 1 Introduction The Serial Peripheral Interface (SPI) allows
8-bit Microcontroller. Application Note. AVR105: Power Efficient High Endurance Parameter Storage in Flash Memory
AVR105: Power Efficient High Endurance Parameter Storage in Flash Memory Features Fast Storage of Parameters High Endurance Flash Storage 350K Write Cycles Power Efficient Parameter Storage Arbitrary Size
3-output Laser Driver for HD-DVD/ Blu-ray/DVD/ CD-ROM ATR0885. Preliminary. Summary
Features Three Selectable Outputs All Outputs Can Be Used Either for Standard (5V) or High Voltage (9V) Maximum Output Current at All Outputs Up to 150 ma On-chip Low-EMI RF Oscillator With Spread-spectrum
8-bit Microcontroller. Application Note. AVR201: Using the AVR Hardware Multiplier
AVR201: Using the AVR Hardware Multiplier Features 8- and 16-bit Implementations Signed and Unsigned Routines Fractional Signed and Unsigned Multiply Executable Example Programs Introduction The megaavr
USB 2.0 Full-Speed Host/Function Processor AT43USB370. Summary. Features. Overview
Features USB 2.0 Full Speed Host/Function Processor Real-time Host/Function Switching Capability Internal USB and System Interface Controllers 32-bit Generic System Processor Interface with DMA Separate
AVR030: Getting Started with IAR Embedded Workbench for Atmel AVR. 8-bit Microcontrollers. Application Note. Features.
AVR030: Getting Started with IAR Embedded Workbench for Atmel AVR Features How to open a new workspace and project in IAR Embedded Workbench Description and option settings for compiling the c-code Setting
8-bit Microcontroller. Application. Note. AVR204: BCD Arithmetics. Features. Introduction. 16-bit Binary to 5-digit BCD Conversion bin2bcd16
AVR204: BCD Arithmetics Features Conversion 16 Bits 5 Digits, 8 Bits 2 Digits 2-digit Addition and Subtraction Superb Speed and Code Density Runable Example Program Introduction This application note lists
Features. Instruction. Decoder Control Logic, And Clock Generators. Address Compare amd Write Enable. Protect Register V PP.
February 1999 NM9366 (MICROWIRE Bus Interface) 4096-Bit Serial EEPROM General Description The NM9366 devices are 4096 bits of CMOS non-volatile electrically erasable memory divided into 256 16-bit registers.
AVR134: Real Time Clock (RTC) using the Asynchronous Timer. 8-bit Microcontrollers. Application Note. Features. 1 Introduction
AVR134: Real Time Clock (RTC) using the Asynchronous Timer Features Real Time Clock with Very Low Power Consumption (4 μa @ 3.3V) Very Low Cost Solution Adjustable Prescaler to Adjust Precision Counts
DS1307ZN. 64 x 8 Serial Real-Time Clock
DS137 64 x 8 Serial Real-Time Clock www.maxim-ic.com FEATURES Real-time clock (RTC) counts seconds, minutes, hours, date of the month, month, day of the week, and year with leap-year compensation valid
AT91 ARM Thumb Microcontrollers. AT91SAM CAN Bootloader. AT91SAM CAN Bootloader User Notes. 1. Description. 2. Key Features
User Notes 1. Description The CAN bootloader SAM-BA Boot4CAN allows the user to program the different memories and registers of any Atmel AT91SAM product that includes a CAN without removing them from
DS1621 Digital Thermometer and Thermostat
www.maxim-ic.com FEATURES Temperature measurements require no external components Measures temperatures from -55 C to +125 C in 0.5 C increments. Fahrenheit equivalent is -67 F to 257 F in 0.9 F increments
AVR245: Code Lock with 4x4 Keypad and I2C LCD. 8-bit Microcontrollers. Application Note. Features. 1 Introduction
AVR245: Code Lock with 4x4 Keypad and I2C LCD Features Application example for code lock - Ideal for low pin count AVRs Uses I/O pins to read 4x4 keypad Uses Timer/Counter to control piezoelectric buzzer
CAT28C64B F R E E. 64K-Bit CMOS PARALLEL EEPROM L E A D FEATURES DESCRIPTION BLOCK DIAGRAM
64K-Bit CMOS PARALLEL EEPROM FEATURES Fast read access times: 90/120/150ns Low power CMOS dissipation: Active: 25 ma max. Standby: 100 µa max. Simple write operation: On-chip address and data latches Self-timed
DS1621 Digital Thermometer and Thermostat
Digital Thermometer and Thermostat www.dalsemi.com FEATURES Temperature measurements require no external components Measures temperatures from 55 C to +125 C in 0.5 C increments. Fahrenheit equivalent
1Mb (64K x 16) One-time Programmable Read-only Memory
Features Fast read access time 45ns Low-power CMOS operation 100µA max standby 30mA max active at 5MHz JEDEC standard packages 40-lead PDIP 44-lead PLCC Direct upgrade from 512K (Atmel AT27C516) EPROM
AVR120: Characterization and Calibration of the ADC on an AVR. 8-bit Microcontrollers. Application Note. Features. Introduction
AVR120: Characterization and Calibration of the ADC on an AVR Features Understanding Analog to Digital Converter (ADC) characteristics Measuring parameters describing ADC characteristics Temperature, frequency
AVR034: Mixing C and Assembly Code with IAR Embedded Workbench for AVR. 8-bit Microcontroller. Application Note. Features.
AVR034: Mixing C and Assembly Code with IAR Embedded Workbench for AVR Features Passing Variables Between C and Assembly Code Functions Calling Assembly Code Functions from C Calling C Functions from Assembly
Features INSTRUCTION DECODER CONTROL LOGIC AND CLOCK GENERATORS COMPARATOR AND WRITE ENABLE EEPROM ARRAY READ/WRITE AMPS 16
July 2000 FM9346 (MICROWIRE Bus Interface) 1024- Serial EEPROM General Description FM9346 is a 1024-bit CMOS non-volatile EEPROM organized as 64 x 16-bit array. This device features MICROWIRE interface
8-bit RISC Microcontroller. Application Note. AVR155: Accessing an I 2 C LCD Display using the AVR 2-wire Serial Interface
AVR155: Accessing an I 2 C LCD Display using the AVR 2-wire Serial Interface Features Compatible with Philips' I 2 C protocol 2-wire Serial Interface Master Driver for Easy Transmit and Receive Function
SPI Serial EEPROMs 8K (1024 x 8) 16K (2048 x 8) 32K (4096 x 8) 64K (8192 x 8) AT25080A AT25160A AT25320A AT25640A. Not Recommended for New Design
Features Serial Peripheral Interface (SPI) Compatible Supports SPI Modes (,) and 3 (1,1) Datasheet Describes Mode Operation Low-voltage and Standard-voltage Operation.7 (V CC =.7V to.v) 1.8 (V CC = 1.8V
ATF15xx Product Family Conversion. Application Note. ATF15xx Product Family Conversion. Introduction
ATF15xx Product Family Conversion Introduction Table 1. Atmel s ATF15xx Family The ATF15xx Complex Programmable Logic Device (CPLD) product family offers high-density and high-performance devices. Atmel
AVR32100: Using the AVR32 USART. 32-bit Microcontrollers. Application Note. Features. 1 Introduction
AVR32100: Using the AVR32 USART Features Supports character length from 5 to 9 bits Interrupt Generation Parity, Framing and Overrun Error Detection Programmable Baud Rate Generator Line Break Generation
AVR241: Direct driving of LCD display using general IO. 8-bit Microcontrollers. Application Note. Features. Introduction AVR
AVR241: Direct driving of LCD display using general IO Features Software driver for displays with one common line Suitable for parts without on-chip hardware for LCD driving Control up to 15 segments using
AVR32110: Using the AVR32 Timer/Counter. 32-bit Microcontrollers. Application Note. Features. 1 Introduction
AVR32110: Using the AVR32 Timer/Counter Features Three independent 16 bit Timer/Counter Channels Multiple uses: - Waveform generation - Analysis and measurement support: Frequency and interval measurements
AVR442: PC Fan Control using ATtiny13. 8-bit Microcontrollers. Application Note. Features. 1 Introduction
AVR442: PC Fan Control using ATtiny13 Features Variable speed based on: - Temperature sensor (NTC). - External PWM input. Stall detection with alarm output. Implementation in C code to ease modification.
DS1721 2-Wire Digital Thermometer and Thermostat
www.dalsemi.com FEATURES Temperature measurements require no external components with ±1 C accuracy Measures temperatures from -55 C to +125 C; Fahrenheit equivalent is -67 F to +257 F Temperature resolution
256K (32K x 8) Paged Parallel EEPROM AT28C256
Features Fast Read Access Time 150 ns Automatic Page Write Operation Internal Address and Data Latches for 64 Bytes Internal Control Timer Fast Write Cycle Times Page Write Cycle Time: 3 ms or 10 ms Maximum
8-bit Microcontroller. Application Note. AVR461: Quick Start Guide for the Embedded Internet Toolkit. Introduction. System Requirements
AVR461: Quick Start Guide for the Embedded Internet Toolkit Introduction Congratulations with your AVR Embedded Internet Toolkit. This Quick-start Guide gives an introduction to using the AVR Embedded
FM75 Low-Voltage Two-Wire Digital Temperature Sensor with Thermal Alarm
Low-Voltage Two-Wire Digital Temperature Sensor with Thermal Alarm Features User Configurable to 9, 10, 11 or 12-bit Resolution Precision Calibrated to ±1 C, 0 C to 100 C Typical Temperature Range: -40
NM93CS06 CS46 CS56 CS66. 256-1024- 2048-4096-Bit Serial EEPROM with Data Protect and Sequential Read
August 1996 NM93CS06 CS46 CS56 CS66 (MICROWIRE TM Bus Interface) 256-1024- 2048-4096-Bit Serial EEPROM with Data Protect and Sequential Read General Description The NM93CS06 CS46 CS56 CS66 devices are
X9C102/103/104/503. Terminal Voltages ±5V, 100 Taps. Digitally-Controlled (XDCP) Potentiometer
APPLICATION NOTE A V A I L A B L E AN20 AN42 53 AN71 AN73 AN88 AN91 92 AN115 Terminal Voltages ±5V, 100 Taps X9C102/103/104/503 Digitally-Controlled (XDCP) Potentiometer FEATURES Solid-State Potentiometer
NTE2053 Integrated Circuit 8 Bit MPU Compatible A/D Converter
NTE2053 Integrated Circuit 8 Bit MPU Compatible A/D Converter Description: The NTE2053 is a CMOS 8 bit successive approximation Analog to Digital converter in a 20 Lead DIP type package which uses a differential
How To Prevent Power Supply Corruption On An 8Bit Microcontroller From Overheating
AVR180: External Brown-out Protection Features Low-voltage Detector Prevent Register and EEPROM Corruption Two Discrete Solutions Integrated IC Solution Extreme Low-cost Solution Extreme Low-power Solution
Application Note. Migrating from RS-232 to USB Bridge Specification USB Microcontrollers. Doc Control. References. Abbreviations
Migrating from RS-232 to USB Bridge Specification USB Microcontrollers Doc Control Rev Purpose of Modifications Date 0.0 Creation date 24 Nov 2003 Application Note 1.0 updates 22 Dec 2003 References Universal
Application Note. USB Mass Storage Device Implementation. USB Microcontrollers. References. Abbreviations. Supported Controllers
USB Mass Storage Device Implementation References Universal Serial Bus Specification, revision 2.0 Universal Serial Bus Class Definition for Communication Devices, version 1.1 USB Mass Storage Overview,
8-bit Microcontroller. Application Note. AVR134: Real-Time Clock (RTC) using the Asynchronous Timer. Features. Theory of Operation.
AVR134: Real-Time Clock (RTC) using the Asynchronous Timer Features Real-Time Clock with Very Low Power Consumption (4µA @ 3.3V) Very Low Cost Solution Adjustable Prescaler to Adjust Precision Counts Time,
M25P05-A. 512-Kbit, serial flash memory, 50 MHz SPI bus interface. Features
512-Kbit, serial flash memory, 50 MHz SPI bus interface Features 512 Kbits of flash memory Page program (up to 256 bytes) in 1.4 ms (typical) Sector erase (256 Kbits) in 0.65 s (typical) Bulk erase (512
74LS193 Synchronous 4-Bit Binary Counter with Dual Clock
74LS193 Synchronous 4-Bit Binary Counter with Dual Clock General Description The DM74LS193 circuit is a synchronous up/down 4-bit binary counter. Synchronous operation is provided by having all flip-flops
DM74LS193 Synchronous 4-Bit Binary Counter with Dual Clock
September 1986 Revised March 2000 DM74LS193 Synchronous 4-Bit Binary Counter with Dual Clock General Description The DM74LS193 circuit is a synchronous up/down 4-bit binary counter. Synchronous operation
W25Q80, W25Q16, W25Q32 8M-BIT, 16M-BIT AND 32M-BIT SERIAL FLASH MEMORY WITH DUAL AND QUAD SPI
8M-BIT, 16M-BIT AND 32M-BIT SERIAL FLASH MEMORY WITH DUAL AND QUAD SPI - 1 - Preliminary - Revision B Table of Contents 1. GENERAL DESCRIPTION... 5 2. FEATURES... 5 3. PIN CONFIGURATION SOIC 208-MIL...
DM74LS112A Dual Negative-Edge-Triggered Master-Slave J-K Flip-Flop with Preset, Clear, and Complementary Outputs
August 1986 Revised March 2000 DM74LS112A Dual Negative-Edge-Triggered Master-Slave J-K Flip-Flop with Preset, Clear, and Complementary General Description This device contains two independent negative-edge-triggered
MM74HC4538 Dual Retriggerable Monostable Multivibrator
MM74HC4538 Dual Retriggerable Monostable Multivibrator General Description The MM74HC4538 high speed monostable multivibrator (one shots) is implemented in advanced silicon-gate CMOS technology. They feature
Application Note. 8-bit Microcontrollers. AVR091: Replacing AT90S2313 by ATtiny2313. Features. Introduction
AVR091: Replacing AT90S2313 by ATtiny2313 Features AT90S2313 Errata Corrected in ATtiny2313 Changes to Bit and Register Names Changes to Interrupt Vector Oscillators and Selecting Start-up Delays Improvements
AT93C56B and AT93C66B
AT93C56B and AT93C66B 3-wire Serial EEPROM 2K (256 x 8 or 128 x 16) and 4K (512 x 8 or 256 x 16) DATASHEET Features Low-voltage Operation V CC = 1.7V to 5.5V User-selectable Internal Organization 2K: 256
DM74LS191 Synchronous 4-Bit Up/Down Counter with Mode Control
August 1986 Revised February 1999 DM74LS191 Synchronous 4-Bit Up/Down Counter with Mode Control General Description The DM74LS191 circuit is a synchronous, reversible, up/ down counter. Synchronous operation
AT24C01D and AT24C02D
AT24C01D and AT24C02D I 2 C-Compatible (2-wire) Serial EEPROM 1-Kbit (128 x 8) or 2-Kbit (256 x 8) DATASHEET Features Low Voltage Operation 1.7V (V CC = 1.7V to 3.6V) Internally Organized 128 x 8 (1K)
DM7474 Dual Positive-Edge-Triggered D-Type Flip-Flops with Preset, Clear and Complementary Outputs
DM7474 Dual Positive-Edge-Triggered D-Type Flip-Flops with Preset, Clear and Complementary Outputs General Description This device contains two independent positive-edge-triggered D-type flip-flops with
DM74LS169A Synchronous 4-Bit Up/Down Binary Counter
Synchronous 4-Bit Up/Down Binary Counter General Description This synchronous presettable counter features an internal carry look-ahead for cascading in high-speed counting applications. Synchronous operation
USB Test Environment ATUSBTEST- SS7400. Summary
Features Simple Command-driven Host Model Comprehensive Reports by Monitor Protocol Validation by Monitor Comprehensive Test Suite Fully Compliant with USB Forum Checklist Generates and Monitors Packets
AVR1309: Using the XMEGA SPI. 8-bit Microcontrollers. Application Note. Features. 1 Introduction SCK MOSI MISO SS
AVR1309: Using the XMEGA SPI Features Introduction to SPI and the XMEGA SPI module Setup and use of the XMEGA SPI module Implementation of module drivers Polled master Interrupt controlled master Polled
CD4013BC Dual D-Type Flip-Flop
CD4013BC Dual D-Type Flip-Flop General Description The CD4013B dual D-type flip-flop is a monolithic complementary MOS (CMOS) integrated circuit constructed with N- and P-channel enhancement mode transistors.
ICS514 LOCO PLL CLOCK GENERATOR. Description. Features. Block Diagram DATASHEET
DATASHEET ICS514 Description The ICS514 LOCO TM is the most cost effective way to generate a high-quality, high-frequency clock output from a 14.31818 MHz crystal or clock input. The name LOCO stands for
ST24C16, ST25C16 ST24W16, ST25W16
ST24C6, ST25C6 ST24W6, ST25W6 SERIAL 6K (2K x 8) EEPROM MILLION ERASE/WRITE CYCLES, with 40 YEARS DATA RETENTION SINGLE SUPPLY VOLTAGE: 4.5V to 5.5V for ST24x6 versions 2.5V to 5.5V for ST25x6 versions
DM74LS05 Hex Inverters with Open-Collector Outputs
Hex Inverters with Open-Collector Outputs General Description This device contains six independent gates each of which performs the logic INVERT function. The open-collector outputs require external pull-up
3-output Laser Driver for HD-DVD/ Blu-ray/DVD/ CD-ROM ATR0885. Preliminary. Summary. Features. Applications. 1. Description
Features Three Selectable Outputs All Outputs Can Be Used Either for Standard (5V) or High Voltage (9V) Maximum Output Current at All Outputs Up to 150 ma On-chip Low-EMI RF Oscillator With Spread-spectrum
7 OUT1 8 OUT2 9 OUT3 10 OUT4 11 OUT5 12 OUT6 13 OUT7 14 OUT8 15 OUT9 16 OUT10 17 OUT11 18 OUT12 19 OUT13 20 OUT14 21 OUT15 22 OUT16 OUT17 23 OUT18
18 CHANNELS LED DRIVER GENERAL DESCRIPTION IS31FL3218 is comprised of 18 constant current channels each with independent PWM control, designed for driving LEDs. The output current of each channel can be
CD4027BC Dual J-K Master/Slave Flip-Flop with Set and Reset
October 1987 Revised March 2002 CD4027BC Dual J-K Master/Slave Flip-Flop with Set and Reset General Description The CD4027BC dual J-K flip-flops are monolithic complementary MOS (CMOS) integrated circuits
Allows the user to protect against inadvertent write operations. Device select and address bytes are Acknowledged Data Bytes are not Acknowledged
Write Protect CAT24WCxxx I 2 C Serial EEPROMs. Allows the user to protect against inadvertent write operations. WP = V CC : Write Protected Device select and address bytes are Acknowledged Data Bytes are
DS1220Y 16k Nonvolatile SRAM
19-5579; Rev 10/10 NOT RECOENDED FOR NEW DESIGNS 16k Nonvolatile SRAM www.maxim-ic.com FEATURES 10 years minimum data retention in the absence of external power Data is automatically protected during power
DS1225Y 64k Nonvolatile SRAM
DS1225Y 64k Nonvolatile SRAM www.maxim-ic.com FEATURES years minimum data retention in the absence of external power Data is automatically protected during power loss Directly replaces 2k x 8 volatile
MM74HC174 Hex D-Type Flip-Flops with Clear
Hex D-Type Flip-Flops with Clear General Description The MM74HC174 edge triggered flip-flops utilize advanced silicon-gate CMOS technology to implement D-type flipflops. They possess high noise immunity,
5495A DM7495 4-Bit Parallel Access Shift Registers
5495A DM7495 4-Bit Parallel Access Shift Registers General Description These 4-bit registers feature parallel and serial inputs parallel outputs mode control and two clock inputs The registers have three
MM74HC273 Octal D-Type Flip-Flops with Clear
MM74HC273 Octal D-Type Flip-Flops with Clear General Description The MM74HC273 edge triggered flip-flops utilize advanced silicon-gate CMOS technology to implement D-type flipflops. They possess high noise
HCC/HCF4032B HCC/HCF4038B
HCC/HCF4032B HCC/HCF4038B TRIPLE SERIAL ADDERS INERT INPUTS ON ALL ADDERS FOR SUM COMPLEMENTING APPLICATIONS FULLY STATIC OPERATION...DC TO 10MHz (typ.) @ DD = 10 BUFFERED INPUTS AND OUTPUTS SINGLE-PHASE
PACKAGE OUTLINE DALLAS DS2434 DS2434 GND. PR 35 PACKAGE See Mech. Drawings Section
PRELIMINARY DS2434 Battery Identification Chip FEATURES Provides unique ID number to battery packs PACKAGE OUTLINE Eliminates thermistors by sensing battery temperature on chip DALLAS DS2434 1 2 3 256
M25P40 3V 4Mb Serial Flash Embedded Memory
Features M25P40 3V 4Mb Serial Flash Embedded Memory Features SPI bus-compatible serial interface 4Mb Flash memory 75 MHz clock frequency (maximum) 2.3V to 3.6V single supply voltage Page program (up to
Table of Contents. Section 1 Introduction... 1-1. Section 2 Getting Started... 2-1. Section 3 Hardware Description... 3-1
ISP... User Guide Table of Contents Table of Contents Section 1 Introduction... 1-1 1.1 Features...1-1 1.2 Device Support...1-2 Section 2 Getting Started... 2-1 2.1 Unpacking the System...2-1 2.2 System
ABRIDGED DATA SHEET EVALUATION KIT AVAILABLE
EVALUATION KIT AVAILABLE General Description DeepCoverM embedded security solutions cloak sensitive data under multiple layers of advanced physical security to provide the most secure key storage possible.
74AC191 Up/Down Counter with Preset and Ripple Clock
74AC191 Up/Down Counter with Preset and Ripple Clock General Description The AC191 is a reversible modulo 16 binary counter. It features synchronous counting and asynchronous presetting. The preset feature
CD40174BC CD40175BC Hex D-Type Flip-Flop Quad D-Type Flip-Flop
Hex D-Type Flip-Flop Quad D-Type Flip-Flop General Description The CD40174BC consists of six positive-edge triggered D- type flip-flops; the true outputs from each flip-flop are externally available. The
DM74LS00 Quad 2-Input NAND Gate
DM74LS00 Quad 2-Input NAND Gate General Description This device contains four independent gates each of which performs the logic NAND function. Ordering Code: August 1986 Revised March 2000 Order Number
Description. Features. Applications
Description The PT2249A / PT2250A Series are infra-red remote control receivers utilizing CMOS Technology. Remote Control System can be constructed together with the PT2248 remote control encoder. The
