8-bit Microcontroller. Application Note. AVR410: RC5 IR Remote Control Receiver
|
|
|
- Gwen Farmer
- 9 years ago
- Views:
Transcription
1 AVR410: RC5 IR Remote Control Receiver Features Low-cost Compact Design, Only One External Component Requires Only One Controller Pin, Any AVR Device Can be Used Size-efficient Code Introduction Most audio and video systems are equipped with an infrared remote control. This application note describes a receiver for the frequently used Philips/Sony RC5 coding scheme. 8-bit Microcontroller Application Note Figure 1. RC5 Receiver DATA The RC5 code is a 14-bit word bi-phase coded signal (See Figure 2). The two first bits are start bits, always having the value one. The next bit is a control bit or toggle bit, which is inverted every time a button is pressed on the remote control transmitter. Five system bits hold the system address so that only the right system responds to the code. Usually, TV sets have the system address 0, VCRs the address 5 and so on. The command sequence is six bits long, allowing up to 64 different commands per address. The bits are transmitted in bi-phase code (also known as Manchester code) as shown in Figure 3. An example where the command 0x35 is sent to system 5 is shown in Figure 4. Rev. 1
2 Figure 2. RC5 Frame Format Figure 3. Bi-phase Coding Figure 4. Example of Transmission Timing The Software The Detect Subroutine The bit length is approximately 1.8 ms. The code is repeated every 114 ms. To improve noise rejection, the pulses are modulated at 36 khz. The easiest way to receive these pulses is to use an integrated IR-receiver/demodulator like the Siemens SFH This is a 3-pin device that receives the infra-red burst and gives out the demodulated bit stream at the output pin. Note that the data is inverted compared to the transmitted data (i.e., the data is idle high). The assembly code found in AVR410.ASM contains the RC5 decode routine. In addition, it contains an example program which initializes the resources, decodes the RC5 data and outputs the received command on port B. When the detect subroutine is called, it first waits for the data line to be idle high for more than 3.5 ms. Then, a start bit can be detected. The length of the low part of the first start bit is measured. If no start bit is detected within 131 ms, or if the low pulse is longer than 1.1 ms, the routine returns indicating no command received. Figure 5. Synchronizing and Sampling of the Data The measurement of the start bit is used to calculate two reference times, ref1 and ref2, which are used when sampling the data line. The program uses the edge in the middle of every bit to synchronize the timing. 3/4 bit length after this edge, the line is sampled. This is in the middle of the first half of the next bit (see Figure 5). The state is stored and the routine waits for the middle edge. Then, the timer is synchronized again and everything is repeated for the following bits. If the synchronizing edge is not detected within 5/4 bit times from the previous synchronizing edge, this is detected as a fault and the routine terminates. When all the bits are received, the command and system address are stored in the command and system registers. The control bit is stored in bit 6 of command. 2 AVR410
3 AVR410 Table 1. Decode Subroutine Performance Figures Parameter Code Size Execution Cycles Value 72 words Register Usage Low Registers Used: 3 High Registers Used: 6 Global Registers: 6 Pointers Used: None Table 2. Detect Register Usage Register Internal Output R1 R2 R3 R16 R17 R18 R19 R20 R21 inttemp Used by TIM0_OVF ref1 Holds Timing Information ref2 Holds Timing Information temp Temporary Register timerl Timing Register timerh Timing Register bitcnt Counts the Bits Received system The System Address command The Received Command Timer/Counter0 Overflow Interrupt Handler The function of the timer interrupt is to generate a clock base for the timing required. The routine increments the timerl Register every 64 µs, and the timerh every 16,384 ms. Table 3. TIM0_OVF Interrupt Handler Performance Figures Parameter Code Size Execution Cycles Value 7 words 6 + reti Register Usage Low Registers Used: 2 High Registers Used: 2 Global Registers: 0 Pointers Used: None Table 4. TIM0_OVF Register Usage Register Internal Output R0 S Temporary Storage of Sreg R1 inttemp Used by TIM0_OVF R17 timerl Incremented every 64 µs R18 timerh Incremented every 16,384 ms 3
4 Example Program The example program initializes the ports, sets up the timer and enables interrupts. Then, the program enters an eternal loop, calling the detect routine. If the system address is correct, the command is output on port B. Table 5. Overall Performance Figures Parameter Code Size Value Register Usage Low Registers: 4 High Registers: 6 Pointers: None Interrupt Usage Peripheral Usage 79 words detect and TIM0_OVF 96 words Complete Application Note Timer/Counter 0 Interrupt Timer/Counter Port D, pin 2 Port B (example program only) 4 AVR410
5 AVR410 ************************************************************************** A P P L I C A T I O N N O T E F O R T H E A V R F A M I L Y Number : AVR410 File Name :"rc5.asm" Title :RC5 IR Remote Control Decoder Date : Version :1.0 Support telephone : (ATMEL Norway) Support fax : (ATMEL Norway) Target MCU :AT90S1200 DESCRIPTION This Application note describes how to decode the frequently used RC5 IR remote control protocol. The timing is adapted for 4 MHz crystal **************************************************************************.include "1200def.inc".device AT90S1200.equ INPUT =2 ;PD2.equ SYS_ADDR =0 ;The system address.def S =R0 ; Storage for the Status Register.def inttemp =R1 ; Temporary variable for ISR.def ref1 =R2.def ref2 =R3 ; Reference for timing.def temp =R16 ; Temporary variable.def timerl =R17 ; Timing variable updated every 14 us.def timerh =R18 ; Timing variable updated every 16 ms.def system =R19 ; Address data received.def command =R20 ; Command received.def bitcnt =R21 ; Counter.cseg.org 0 rjmp reset ******************************************************************* "TIM0_OVF" Timer/counter overflow interrupt handler The overflow interrupt increments the "timerl" and "timerh" every 64us and 16,384us. 5
6 Crystal Frequency is 4 MHz Number of words:7 Number of cycles:6 + reti Low registers used:1 High registers used: 3 Pointers used:0 *******************************************************************.org OVF0addr TIM0_OVF: in S,sreg ; Store SREG inc timerl ; Updated every 64us inc inttemp brne TIM0_OVF_exit inc timerh ; if 256th int inc timer TIM0_OVF_exit: out sreg,s ; Restore SREG reti ******************************************************************* Example program Initializes timer, ports and interrupts. Calls "detect" in an endless loop and puts the result out on port B. Number of words: 16 Low registers used: 0 High registers used: 3 Pointers used: 0 ******************************************************************* reset: ;ldi temp,low(ramend);initialize stackpointer for parts with SW stack ;out SPL,temp ;ldi temp,high(ramend) ; Commented out since 1200 does not have SRAM ;out SPH,temp ldi temp,1 ;Timer/Counter 0 clocked at CK out TCCR0,temp ldi temp,1<<toie0 ;Enable Timer0 overflow interrupt out TIMSK,temp ser temp ;PORTB as output out DDRB,temp 6 AVR410
7 AVR410 sei ;Enable global interrupt main: rcall detect ;Call RC5 detect routine cpi system,sys_addr ;Responds only at the specified address brne release andi command,0x3f ;Remove control bit out PORTB,command rjmp main release: clr command ;Clear PORTB out PORTB,command rjmp main ******************************************************************* "detect" RC5 decode routine This subroutine decodes the RC5 bit stream applied on PORTD pin "INPUT". If success: The command and system address are returned in "command" and "system". Bit 6 of "command" holds the toggle bit. If failed: $FF in both "system" and "command" Crystal frequency is 4MHz Number of words:72 Low registers used: 3 High registers used: 6 Pointers used: 0 ******************************************************************* detect: clr inttemp ; Init Counters clr timerh detect1: clr timerl detect2: cpi timerh,8 ;If line not idle within 131ms brlo dl1 rjmp fault ;then exit dl1: cpi timerl,55 ;If line low for 3.5ms 7
8 brge start1 ;then wait for start bit sbis PIND,INPUT ;If line is rjmp detect1 ;low jump to detect1 rjmp detect2 ;high jump to detect2 start1: cpi timerh,8 ;If no start bit detected brge fault ;within 130ms then exit sbic PIND,INPUT ;Wait for start bit rjmp start1 clr timerl ;Measure length of start bit start2: cpi timerl,17 ;If startbit longer than 1.1ms, brge fault ;exit sbis PIND,INPUT rjmp start2 ;Positive edge of 1st start bit mov temp,timerl ;timer is 1/2 bit time clr timerl mov ref1,temp lsr ref1 mov ref2,ref1 add ref1,temp ;ref1 = 3/4 bit time lsl temp add ref2,temp ;ref2 = 5/4 bit time start3: cp timerl,ref1 ;If high period St2 > 3/4 bit time brge fault ;exit sbic PIND,INPUT ;Wait for falling edge start bit 2 rjmp start3 clr timerl ldi bitcnt,12 ;Receive 12 bits clr command clr system sample: cp timerl,ref1 ;Sample INPUT at 1/4 bit time brlo sample sbic PIND,INPUT rjmp bit_is_a_1 ;Jump if line high bit_is_a_0: clc ;Store a '0' 8 AVR410
9 AVR410 rol rol command system ;Synchronize timing bit_is_a_0a: cp timerl,ref2 ;If no edge within 3/4 bit time brge fault ;exit sbis PIND,INPUT ;Wait for rising edge rjmp bit_is_a_0a ;in the middle of the bit clr rjmp timerl nextbit bit_is_a_1: sec ;Store a 1 rol command rol system ;Synchronize timing bit_is_a_1a: cp timerl,ref2 ;If no edge within 3/4 bit time brge fault ;exit sbic PIND,INPUT ;Wait for falling edge rjmp bit_is_a_1a ;in the middle of the bit clr timerl nextbit: dec bitcnt ;If bitcnt > 0 brne sample ;get next bit ;All bits sucessfully received! mov temp,command ;Place system bits in "system" rol temp rol system rol temp rol system bst system,5 ;Move toggle bit bld command,6 ;to "command" andi andi ;Clear remaining bits command,0b system,0x1f ret fault: ser command ;Both "command" and "system" ser system ;0xFF indicates failure ret 9
10 Atmel Headquarters Corporate Headquarters 2325 Orchard Parkway San Jose, CA TEL 1(408) FAX 1(408) Europe Atmel Sarl Route des Arsenaux 41 Case Postale 80 CH-1705 Fribourg Switzerland TEL (41) FAX (41) Asia Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimhatsui East Kowloon Hong Kong TEL (852) FAX (852) Japan 9F, Tonetsu Shinkawa Bldg Shinkawa Chuo-ku, Tokyo Japan TEL (81) FAX (81) Atmel Operations Memory 2325 Orchard Parkway San Jose, CA TEL 1(408) FAX 1(408) Microcontrollers 2325 Orchard Parkway San Jose, CA TEL 1(408) FAX 1(408) La Chantrerie BP Nantes Cedex 3, France TEL (33) FAX (33) ASIC/ASSP/Smart Cards Zone Industrielle Rousset Cedex, France TEL (33) FAX (33) East Cheyenne Mtn. Blvd. Colorado Springs, CO TEL 1(719) FAX 1(719) Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland TEL (44) FAX (44) RF/Automotive Theresienstrasse 2 Postfach Heilbronn, Germany TEL (49) FAX (49) East Cheyenne Mtn. Blvd. Colorado Springs, CO TEL 1(719) FAX 1(719) Biometrics/Imaging/Hi-Rel MPU/ High Speed Converters/RF Datacom Avenue de Rochepleine BP Saint-Egreve Cedex, France TEL (33) FAX (33) [email protected] Web Site Atmel Corporation Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company s standard warranty which is detailed in Atmel s Terms and Conditions located on the Company s web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel s products are not authorized for use as critical components in life support devices or systems. ATMEL and AVR are the registered trademarks of Atmel. Other terms and product names may be the trademarks of others. Printed on recycled paper. 0M
8-bit Microcontroller. Application Note. AVR415: RC5 IR Remote Control Transmitter. Features. Introduction. Figure 1.
AVR415: RC5 IR Remote Control Transmitter Features Utilizes ATtiny28 Special HW Modulator and High Current Drive Pin Size Efficient Code, Leaves Room for Large User Code Low Power Consumption through Intensive
8-bit Microcontroller. Application Note. AVR222: 8-point Moving Average Filter
AVR222: 8-point Moving Average Filter Features 31-word Subroutine Filters Data Arrays up to 256 Bytes Runable Demo Program Introduction The moving average filter is a simple Low Pass FIR (Finite Impulse
AVR305: Half Duplex Compact Software UART. 8-bit Microcontrollers. Application Note. Features. 1 Introduction
AVR305: Half Duplex Compact Software UART Features 32 Words of Code, Only Handles Baud Rates of up to 38.4 kbps with a 1 MHz XTAL Runs on Any AVR Device Only Two Port Pins Required Does Not Use Any Timer
8-bit RISC Microcontroller. Application Note. AVR236: CRC Check of Program Memory
AVR236: CRC Check of Program Memory Features CRC Generation and Checking of Program Memory Supports all AVR Controllers with LPM Instruction Compact Code Size, 44 Words (CRC Generation and CRC Checking)
8-bit Microcontroller. Application Note. AVR400: Low Cost A/D Converter
AVR400: Low Cost A/D Converter Features Interrupt Driven : 23 Words Low Use of External Components Resolution: 6 Bits Measurement Range: 0-2 V Runs on Any AVR Device with 8-bit Timer/Counter and Analog
8-bit RISC Microcontroller. Application Note. AVR182: Zero Cross Detector
AVR182: Zero Cross Detector Features Interrupt Driven Modular C Source Code Size Efficient Code Accurate and Fast Detection A Minimum of External Components Introduction One of the many issues with developing
8-bit Microcontroller. Application Note. AVR314: DTMF Generator
AVR314: DTMF Generator Features Generation of Sine Waves Using PWM (Pulse-Width Modulation) Combine Different Sine Waves to DTMF Signal Assembler and C High-level Language Code STK500 Top-Module Design
AVR034: Mixing C and Assembly Code with IAR Embedded Workbench for AVR. 8-bit Microcontroller. Application Note. Features.
AVR034: Mixing C and Assembly Code with IAR Embedded Workbench for AVR Features Passing Variables Between C and Assembly Code Functions Calling Assembly Code Functions from C Calling C Functions from Assembly
8-bit Microcontroller. Application Note. AVR201: Using the AVR Hardware Multiplier
AVR201: Using the AVR Hardware Multiplier Features 8- and 16-bit Implementations Signed and Unsigned Routines Fractional Signed and Unsigned Multiply Executable Example Programs Introduction The megaavr
Tag Tuning/RFID. Application Note. Tag Tuning. Introduction. Antenna Equivalent Circuit
Tag Tuning Introduction RFID tags extract all of their power to both operate and communicate from the reader s magnetic field. Coupling between the tag and reader is via the mutual inductance of the two
AVR319: Using the USI module for SPI communication. 8-bit Microcontrollers. Application Note. Features. Introduction
AVR319: Using the USI module for SPI communication Features C-code driver for SPI master and slave Uses the USI module Supports SPI Mode 0 and 1 Introduction The Serial Peripheral Interface (SPI) allows
AVR134: Real Time Clock (RTC) using the Asynchronous Timer. 8-bit Microcontrollers. Application Note. Features. 1 Introduction
AVR134: Real Time Clock (RTC) using the Asynchronous Timer Features Real Time Clock with Very Low Power Consumption (4 μa @ 3.3V) Very Low Cost Solution Adjustable Prescaler to Adjust Precision Counts
8-bit Microcontroller. Application. Note. AVR204: BCD Arithmetics. Features. Introduction. 16-bit Binary to 5-digit BCD Conversion bin2bcd16
AVR204: BCD Arithmetics Features Conversion 16 Bits 5 Digits, 8 Bits 2 Digits 2-digit Addition and Subtraction Superb Speed and Code Density Runable Example Program Introduction This application note lists
AVR317: Using the Master SPI Mode of the USART module. 8-bit Microcontrollers. Application Note. Features. Introduction
AVR317: Using the Master SPI Mode of the USART module Features Enables Two SPI buses in one device Hardware buffered SPI communication Polled communication example Interrupt-controlled communication example
How to Calculate the Capacitor of the Reset Input of a C51 Microcontroller 80C51. Application Note. Microcontrollers. Introduction
How to Calculate the Capacitor of the Reset Input of a C51 Microcontroller This application note explains how the reset of the 80C51 microcontroller works when the RST pin is a pure input pin and when
Quick Start Guide. CAN Microcontrollers. ATADAPCAN01 - STK501 CAN Extension. Requirements
ATADAPCAN01 - STK501 CAN Extension The ATADAPCAN01 - STK501 CAN add-on is an extension to the STK500 and STK501 development boards from Atmel Corporation, adding support for the AVR AT90CAN128 device in
AT91 ARM Thumb Microcontrollers. Application Note. Interfacing a PC Card to an AT91RM9200-DK. Introduction. Hardware Interface
Interfacing a PC Card to an AT91RM9200-DK Introduction This Application Note describes the implementation of a PCMCIA interface on an AT91RM9200 Development Kit (DK) using the External Bus Interface (EBI).
AT89C5131A Starter Kit... Software User Guide
AT89C5131A Starter Kit... Software User Guide Table of Contents Section 1 Introduction... 1-1 1.1 Abbreviations...1-1 Section 2 Getting Started... 2-3 2.1 Hardware Requirements...2-3 2.2 Software Requirements...2-3
AVR106: C functions for reading and writing to Flash memory. 8-bit Microcontrollers. Application Note. Features. Introduction
AVR106: C functions for reading and writing to Flash memory Features C functions for accessing Flash memory - Byte read - Page read - Byte write - Page write Optional recovery on power failure Functions
General Porting Considerations. Memory EEPROM XRAM
AVR097: Migration between ATmega128 and ATmega2561 Features General Porting Considerations Memory Clock sources Interrupts Power Management BOD WDT Timers/Counters USART & SPI ADC Analog Comparator ATmega103
Application Note. C51 Bootloaders. C51 General Information about Bootloader and In System Programming. Overview. Abreviations
C51 General Information about Bootloader and In System Programming Overview This document describes the Atmel Bootloaders for 8051 family processors. Abreviations ISP: In-System Programming API : Applications
Step Motor Controller. Application Note. AVR360: Step Motor Controller. Theory of Operation. Features. Introduction
AVR360: Step Motor Controller Features High-Speed Step Motor Controller Interrupt Driven Compact Code (Only 10 Bytes Interrupt Routine) Very High Speed Low Computing Requirement Supports all AVR Devices
8-bit Microcontroller. Application Note. AVR105: Power Efficient High Endurance Parameter Storage in Flash Memory
AVR105: Power Efficient High Endurance Parameter Storage in Flash Memory Features Fast Storage of Parameters High Endurance Flash Storage 350K Write Cycles Power Efficient Parameter Storage Arbitrary Size
AVR241: Direct driving of LCD display using general IO. 8-bit Microcontrollers. Application Note. Features. Introduction AVR
AVR241: Direct driving of LCD display using general IO Features Software driver for displays with one common line Suitable for parts without on-chip hardware for LCD driving Control up to 15 segments using
AVR32110: Using the AVR32 Timer/Counter. 32-bit Microcontrollers. Application Note. Features. 1 Introduction
AVR32110: Using the AVR32 Timer/Counter Features Three independent 16 bit Timer/Counter Channels Multiple uses: - Waveform generation - Analysis and measurement support: Frequency and interval measurements
AVR030: Getting Started with IAR Embedded Workbench for Atmel AVR. 8-bit Microcontrollers. Application Note. Features.
AVR030: Getting Started with IAR Embedded Workbench for Atmel AVR Features How to open a new workspace and project in IAR Embedded Workbench Description and option settings for compiling the c-code Setting
AVR245: Code Lock with 4x4 Keypad and I2C LCD. 8-bit Microcontrollers. Application Note. Features. 1 Introduction
AVR245: Code Lock with 4x4 Keypad and I2C LCD Features Application example for code lock - Ideal for low pin count AVRs Uses I/O pins to read 4x4 keypad Uses Timer/Counter to control piezoelectric buzzer
AT91 ARM Thumb Microcontrollers. AT91SAM CAN Bootloader. AT91SAM CAN Bootloader User Notes. 1. Description. 2. Key Features
User Notes 1. Description The CAN bootloader SAM-BA Boot4CAN allows the user to program the different memories and registers of any Atmel AT91SAM product that includes a CAN without removing them from
8-bit Microcontroller. Application Note. AVR134: Real-Time Clock (RTC) using the Asynchronous Timer. Features. Theory of Operation.
AVR134: Real-Time Clock (RTC) using the Asynchronous Timer Features Real-Time Clock with Very Low Power Consumption (4µA @ 3.3V) Very Low Cost Solution Adjustable Prescaler to Adjust Precision Counts Time,
AVR32100: Using the AVR32 USART. 32-bit Microcontrollers. Application Note. Features. 1 Introduction
AVR32100: Using the AVR32 USART Features Supports character length from 5 to 9 bits Interrupt Generation Parity, Framing and Overrun Error Detection Programmable Baud Rate Generator Line Break Generation
AVR442: PC Fan Control using ATtiny13. 8-bit Microcontrollers. Application Note. Features. 1 Introduction
AVR442: PC Fan Control using ATtiny13 Features Variable speed based on: - Temperature sensor (NTC). - External PWM input. Stall detection with alarm output. Implementation in C code to ease modification.
3-output Laser Driver for HD-DVD/ Blu-ray/DVD/ CD-ROM ATR0885. Preliminary. Summary
Features Three Selectable Outputs All Outputs Can Be Used Either for Standard (5V) or High Voltage (9V) Maximum Output Current at All Outputs Up to 150 ma On-chip Low-EMI RF Oscillator With Spread-spectrum
8-bit RISC Microcontroller. Application Note. AVR155: Accessing an I 2 C LCD Display using the AVR 2-wire Serial Interface
AVR155: Accessing an I 2 C LCD Display using the AVR 2-wire Serial Interface Features Compatible with Philips' I 2 C protocol 2-wire Serial Interface Master Driver for Easy Transmit and Receive Function
8-bit Microcontroller. Application Note. AVR461: Quick Start Guide for the Embedded Internet Toolkit. Introduction. System Requirements
AVR461: Quick Start Guide for the Embedded Internet Toolkit Introduction Congratulations with your AVR Embedded Internet Toolkit. This Quick-start Guide gives an introduction to using the AVR Embedded
AVR120: Characterization and Calibration of the ADC on an AVR. 8-bit Microcontrollers. Application Note. Features. Introduction
AVR120: Characterization and Calibration of the ADC on an AVR Features Understanding Analog to Digital Converter (ADC) characteristics Measuring parameters describing ADC characteristics Temperature, frequency
USB 2.0 Full-Speed Host/Function Processor AT43USB370. Summary. Features. Overview
Features USB 2.0 Full Speed Host/Function Processor Real-time Host/Function Switching Capability Internal USB and System Interface Controllers 32-bit Generic System Processor Interface with DMA Separate
Application Note. 8-bit Microcontrollers. AVR091: Replacing AT90S2313 by ATtiny2313. Features. Introduction
AVR091: Replacing AT90S2313 by ATtiny2313 Features AT90S2313 Errata Corrected in ATtiny2313 Changes to Bit and Register Names Changes to Interrupt Vector Oscillators and Selecting Start-up Delays Improvements
Application Note. Migrating from RS-232 to USB Bridge Specification USB Microcontrollers. Doc Control. References. Abbreviations
Migrating from RS-232 to USB Bridge Specification USB Microcontrollers Doc Control Rev Purpose of Modifications Date 0.0 Creation date 24 Nov 2003 Application Note 1.0 updates 22 Dec 2003 References Universal
USB Test Environment ATUSBTEST- SS7400. Summary
Features Simple Command-driven Host Model Comprehensive Reports by Monitor Protocol Validation by Monitor Comprehensive Test Suite Fully Compliant with USB Forum Checklist Generates and Monitors Packets
Application Note. 8-bit Microcontrollers. AVR307: Half Duplex UART Using the USI Module
AVR307: Half Duplex UART Using the USI Module Features Half Duplex UART Communication Communication Speed Up To 230.4 kbps at 14.75MHz Interrupt Controlled Communication Eight Bit Data, One Stop-bit, No
2-wire Serial EEPROM AT24C1024. Advance Information
Features Low-voltage Operation 2.7(V CC =2.7Vto5.5V) Internally Organized 3,072 x 8 2-wire Serial Interface Schmitt Triggers, Filtered Inputs for Noise Suppression Bi-directional Data Transfer Protocol
AVR444: Sensorless control of 3-phase brushless DC motors. 8-bit Microcontrollers. Application Note. Features. 1 Introduction
AVR444: Sensorless control of 3-phase brushless DC motors Features Robust sensorless commutation control. External speed reference. Overcurrent detection/protection. Basic speed controller included. Full
Two-wire Automotive Serial EEPROM AT24C01A AT24C02 AT24C04 AT24C08 (1) AT24C16 (2)
Features Medium-voltage and Standard-voltage Operation 5.0 (V CC = 4.5V to 5.5V) 2.7 (V CC = 2.7V to 5.5V) Internally Organized 128 x 8 (1K), 256 x 8 (2K), 512 x 8 (4K), 1024 x 8 (8K) or 2048 x 8 (16K)
2-Wire Serial EEPROM AT24C32 AT24C64. 2-Wire, 32K Serial E 2 PROM. Features. Description. Pin Configurations. 32K (4096 x 8) 64K (8192 x 8)
Features Low-Voltage and Standard-Voltage Operation 2.7 (V CC = 2.7V to 5.5V) 1.8 (V CC = 1.8V to 5.5V) Low-Power Devices (I SB = 2 µa at 5.5V) Available Internally Organized 4096 x 8, 8192 x 8 2-Wire
How To Prevent Power Supply Corruption On An 8Bit Microcontroller From Overheating
AVR180: External Brown-out Protection Features Low-voltage Detector Prevent Register and EEPROM Corruption Two Discrete Solutions Integrated IC Solution Extreme Low-cost Solution Extreme Low-power Solution
Application Note. USB Mass Storage Device Implementation. USB Microcontrollers. References. Abbreviations. Supported Controllers
USB Mass Storage Device Implementation References Universal Serial Bus Specification, revision 2.0 Universal Serial Bus Class Definition for Communication Devices, version 1.1 USB Mass Storage Overview,
AVR033: Getting Started with the CodeVisionAVR C Compiler. 8-bit Microcontrollers. Application Note. Features. 1 Introduction
AVR033: Getting Started with the CodeVisionAVR C Compiler Features Installing and Configuring CodeVisionAVR to Work with the Atmel STK 500 Starter Kit and AVR Studio Debugger Creating a New Project Using
Building A RISC Microcontroller in an FPGA
Building A RISC Microcontroller in an FPGA Name : Yap Zi He Course : 4 SEL Supervisor : PM Muhammad Mun im Ahmad Zabidi Introduction Reduce Instruction Set Computer (RISC) is a new trend on computer design.
Application Note. 8-bit Microcontrollers. AVR280: USB Host CDC Demonstration. 1. Introduction
AVR280: USB Host CDC Demonstration 1. Introduction The RS232 interface has disappeared from the new generation of PCs replaced by the USB interface. To follow this change, applications based on UART interface
APPLICATION NOTE. Atmel AVR134: Real Time Clock (RTC) Using the Asynchronous Timer. Atmel AVR 8-bit Microcontroller. Introduction.
APPLICATION NOTE Atmel AVR134: Real Time Clock (RTC) Using the Asynchronous Timer Introduction Atmel AVR 8-bit Microcontroller This application note describes how to implement a real time counter (RTC)
ATF15xx Product Family Conversion. Application Note. ATF15xx Product Family Conversion. Introduction
ATF15xx Product Family Conversion Introduction Table 1. Atmel s ATF15xx Family The ATF15xx Complex Programmable Logic Device (CPLD) product family offers high-density and high-performance devices. Atmel
DIP Top View VCC A16 A15 A12 A7 A6 A5 A4 A3 A2 A1 A0 I/O0 I/O1 I/O2 GND A17 A14 A13 A8 A9 A11 A10 I/O7 I/O6 I/O5 I/O4 I/O3. PLCC Top View VCC A17
Features Fast Read Access Time 70 ns 5-volt Only Reprogramming Sector Program Operation Single Cycle Reprogram (Erase and Program) 1024 Sectors (256 Bytes/Sector) Internal Address and Data Latches for
AVR1309: Using the XMEGA SPI. 8-bit Microcontrollers. Application Note. Features. 1 Introduction SCK MOSI MISO SS
AVR1309: Using the XMEGA SPI Features Introduction to SPI and the XMEGA SPI module Setup and use of the XMEGA SPI module Implementation of module drivers Polled master Interrupt controlled master Polled
Two-wire Serial EEPROM AT24C1024 (1)
Features Low-voltage Operation 2.7 (V CC = 2.7V to 5.5V) Internally Organized 131,072 x 8 Two-wire Serial Interface Schmitt Triggers, Filtered Inputs for Noise Suppression Bidirectional Data Transfer Protocol
AVR1600: Using the XMEGA Quadrature Decoder. 8-bit Microcontrollers. Application Note. Features. 1 Introduction. Sensors
AVR1600: Using the XMEGA Quadrature Decoder Features Quadrature Decoders 16-bit angular resolution Rotation speed and acceleration 1 Introduction Quadrature encoders are used to determine the position
STK 500, AVRISP, AVRISP
AVR053: Calibration of the internal RC oscillator Features Calibration using STK 500, AVRISP, AVRISP mkii, JTAGICE or JTAGICE mkii Calibration using 3 rd party programmers Adjustable RC frequency with
AVR1318: Using the XMEGA built-in AES accelerator. 8-bit Microcontrollers. Application Note. Features. 1 Introduction
AVR1318: Using the XMEGA built-in AES accelerator Features Full compliance with AES (FIPS Publication 197, 2002) - Both encryption and decryption procedures 128-bit Key and State memory XOR load option
Using CryptoMemory in Full I 2 C Compliant Mode. Using CryptoMemory in Full I 2 C Compliant Mode AT88SC0104CA AT88SC0204CA AT88SC0404CA AT88SC0808CA
Using CryptoMemory in Full I 2 C Compliant Mode 1. Introduction This application note describes how to communicate with CryptoMemory devices in full I 2 C compliant mode. Full I 2 C compliance permits
8-bit RISC Microcontroller. Application Note. AVR335: Digital Sound Recorder with AVR and DataFlash
AVR5: Digital Sound Recorder with AVR and DataFlash Features Digital Voice Recorder 8-bit Sound Recording 8 khz Sampling Rate Sound Frequency up to 4000 Hz Maximum Recording Time 4 /4 Minutes Very Small
AVR318: Dallas 1-Wire master. 8-bit Microcontrollers. Application Note. Features. Introduction
AVR318: Dallas 1-Wire master Features Supports standard speed Dallas 1-Wire protocol. Compatible with all AVRs. Polled or interrupt-driven implementation. Polled implementation requires no external hardware.
AVR32788: AVR 32 How to use the SSC in I2S mode. 32-bit Microcontrollers. Application Note. Features. 1 Introduction
AVR32788: AVR 32 How to use the SSC in I2S mode Features I²S protocol overview I²S on the AVR32 I²S sample rate configurations Example of use with AT32UC3A on EVK1105 board 32-bit Microcontrollers Application
AT86RF230 (2450 MHz band) Radio Transceiver... User Guide
ATAVRRZ200 Demonstration Kit AT86RF230 (2450 MHz band) Radio Transceiver... User Guide Section 1 1.1 Organization...1-1 1.2 General Description...1-1 1.3 Demonstration kit features...1-2 1.4 Included
Table of Contents. Section 1 Introduction... 1-1. Section 2 Getting Started... 2-1. Section 3 Hardware Description... 3-1
ISP... User Guide Table of Contents Table of Contents Section 1 Introduction... 1-1 1.1 Features...1-1 1.2 Device Support...1-2 Section 2 Getting Started... 2-1 2.1 Unpacking the System...2-1 2.2 System
AVR1510: Xplain training - XMEGA USART. 8-bit Microcontrollers. Application Note. Prerequisites. 1 Introduction
AVR1510: Xplain training - XMEGA USART Prerequisites Required knowledge AVR1500: Xplain training XMEGA Basics AVR1502: Xplain training XMEGA Direct Memory Access Controller Software prerequisites Atmel
2-wire Serial EEPROM AT24C512
Features Low-voltage and Standard-voltage Operation 5.0 (V CC = 4.5V to 5.5V). (V CC =.V to 5.5V). (V CC =.V to.v) Internally Organized 5,5 x -wire Serial Interface Schmitt Triggers, Filtered Inputs for
AVR1321: Using the Atmel AVR XMEGA 32-bit Real Time Counter and Battery Backup System. 8-bit Microcontrollers. Application Note.
AVR1321: Using the Atmel AVR XMEGA 32-bit Real Time Counter and Battery Backup System Features 32-bit Real Time Counter (RTC) - 32-bit counter - Selectable clock source 1.024kHz 1Hz - Long overflow time
AVR32701: AVR32AP7 USB Performance. 32-bit Microcontrollers. Application Note. Features. 1 Introduction
AVR32701: AVR32AP7 USB Performance Features Linux USB bulk transfer performance ATSTK1000 (32-bit SDRAM bus width) ATNGW100 (16-bit SDRAM bus width) GadgetFS driver and gadgetfs-test application USB performance
AVR068: STK500 Communication Protocol. 8-bit Microcontrollers. Application Note. Features. 1 Introduction
AVR068: STK500 Communication Protocol Features Interfaces both STK500 and AVRISP Supports STK500 FW 2.XX 1 Introduction This document describes the 2.0 version of the communication protocol between the
AVR353: Voltage Reference Calibration and Voltage ADC Usage. 8-bit Microcontrollers. Application Note. Features. 1 Introduction
AVR353: Voltage Reference Calibration and Voltage ADC Usage Features Voltage reference calibration. - 1.100V +/-1mV (typical) and < 90ppm/ C drift from 10 C to +70 C. Interrupt controlled voltage ADC sampling.
AVR1900: Getting started with ATxmega128A1 on STK600. 8-bit Microcontrollers. Application Note. 1 Introduction
AVR1900: Getting started with ATxmega128A1 on STK600 1 Introduction This document contains information about how to get started with the ATxmega128A1 on STK 600. The first three sections contain information
8-bit. Application Note. Microcontrollers. AVR282: USB Firmware Upgrade for AT90USB
AVR282: USB Firmware Upgrade for AT90USB Features Supported by Atmel FLIP program on all Microsoft O/S from Windows 98SE and later FLIP 3.2.1 or greater supports Linux Default on chip USB bootloader In-System
Application Note. 8-bit Microcontrollers. AVR270: USB Mouse Demonstration
AVR270: USB Mouse Demonstration Features Runs with AT90USB Microcontrollers at 8MHz USB Low Power Bus Powered Device (less then 100mA) Supported by any PC running Windows (98SE or later), Linux or Mac
8-bit Microcontroller. Application Note. AVR313: Interfacing the PC AT Keyboard
AVR313: Interfacing the PC AT Keyboard Features Interfacing Standard PC AT Keyboards Requires Only Two I/O Pins. One of them must be an External Interrupt Pin No Extra Hardware Required Complete Example
AVR1301: Using the XMEGA DAC. 8-bit Microcontrollers. Application Note. Features. 1 Introduction
AVR1301: Using the XMEGA DAC Features 12 bit resolution Up to 1 M conversions per second Continuous drive or sample-and-hold output Built-in offset and gain calibration High drive capabilities Driver source
All-band AM/FM Receiver and Audio Amplifier IC U2510B
Features Superior Strong Signal Behavior by Using an RF AGC Soft Mute and HCC for Decreasing Interstation Noise in Mode Level Indicator (LED Drive) for and DC Mode Control:, and Tape Wide Supply-voltage
AVR115: Data Logging with Atmel File System on ATmega32U4. Microcontrollers. Application Note. 1 Introduction. Atmel
AVR115: Data Logging with Atmel File System on ATmega32U4 Microcontrollers 01101010 11010101 01010111 10010101 Application Note 1 Introduction Atmel provides a File System management for AT90USBx and ATmegaxxUx
AVR32138: How to optimize the ADC usage on AT32UC3A0/1, AT32UC3A3 and AT32UC3B0/1 series. 32-bit Microcontrollers. Application Note.
AVR32138: How to optimize the ADC usage on AT32UC3A0/1, AT32UC3A3 and AT32UC3B0/1 series 1 Introduction This application note outlines the steps necessary to optimize analog to digital conversions on AT32UC3A0/1,
AVR055: Using a 32kHz XTAL for run-time calibration of the internal RC. 8-bit Microcontrollers. Application Note. Features.
AVR055: Using a 32kHz XTAL for run-time calibration of the internal RC Features Calibration using a 32 khz external crystal Adjustable RC frequency with maximum +/-2% accuracy Tune RC oscillator at any
AVR064: A Temperature Monitoring System with LCD Output. 8-bit Microcontrollers. Application Note. Features. 1 Introduction
AVR064: A Temperature Monitoring System with LCD Output Features Presenting data on an LCD-display Temperature measurement Real Time Clock (RTC) UART communication with a PC PWM implementation 8-bit Microcontrollers
8-bit RISC Microcontroller. Application Note. AVR910: In-System Programming
AVR910: In-System Programming Features Complete In-System Programming Solution for AVR Microcontrollers Covers All AVR Microcontrollers with In-System Programming Support Reprogram Both Data Flash and
Atmel AVR4920: ASF - USB Device Stack - Compliance and Performance Figures. Atmel Microcontrollers. Application Note. Features.
Atmel AVR4920: ASF - USB Device Stack - Compliance and Performance Figures Features Compliance to USB 2.0 - Chapters 8 and 9 - Classes: HID, MSC, CDC, PHDC Interoperability: OS, classes, self- and bus-powered
AVR1922: Xplain Board Controller Firmware. 8-bit Microcontrollers. Application Note. Features. 1 Introduction
AVR1922: Xplain Board Controller Firmware Features USB interface - Mass-storage to on-board DataFlash memory Atmel AVR XMEGA TM reset control 1 Introduction The Xplain board controller, an AT90USB1287,
AVR441: Intelligent BLDC Fan Controller with Temperature Sensor and Serial Interface. 8-bit Microcontrollers. Application Note.
AVR441: Intelligent BLDC Fan Controller with Temperature Sensor and Serial Interface Features Application Example for Controlling Brushless DC Motors - Ideal for Use as an Integrated Fan Controller Automatically
Voltage boost and buck circuits using Atmel AVR Tiny13V for driving a white LED.
Voltage boost and buck circuits using Atmel AVR Tiny13V for driving a white LED. By Steven Weber, KD1JV 1/26/09 The PWM feature of the Tiny13 processor can be used to make a simple voltage boost or buck
AT91 ARM Thumb Microcontrollers. Application Note. GNU-Based Software Development on AT91SAM Microcontrollers. 1. Introduction. 2.
GNU-Based Software Development on AT91SAM Microcontrollers 1. Introduction Most development solutions used today in the ARM world are commercial packages, such as IAR EWARM or ARM RealView. Indeed, they
Application Note. 8-bit Microcontrollers. AVR435: BLDC/BLAC Motor Control Using a Sinus Modulated PWM Algorithm. 1. Features. 2.
AVR45: BLDC/BLAC Motor Control Using a Sinus Modulated PWM Algorithm 1. Features Cost-effective and energy efficient BLDC/BLAC motor drive Implemented on an AT9PWM AVR low cost microcontroller Low memory
Manchester Coding Basics. Application Note. Manchester Coding Basics. 1. Modulation
Manchester Coding Basics When beginning to work with communication systems, it is important to first understand a few basic terms that are used, Modulation and Coding. These are often used interchangeably
Atmel AVR4903: ASF - USB Device HID Mouse Application. Atmel Microcontrollers. Application Note. Features. 1 Introduction
Atmel AVR4903: ASF - USB Device HID Mouse Application Features USB 2.0 compliance - Chapter 9 compliance - HID compliance - Low-speed (1.5Mb/s) and full-speed (12Mb/s) data rates Standard USB HID mouse
AVR2006: Design and characterization of the Radio Controller Board's 2.4GHz PCB Antenna. Application Note. Features.
AVR26: Design and characterization of the Radio Controller Board's 2.4GHz PCB Antenna Features Radiation pattern Impedance measurements WIPL design files NEC model Application Note 1 Introduction This
Application Note. 8051 Microcontrollers. Guidelines to Keep ADC Resolution within Specification. Introduction. ADC Resolution
Guidelines to Keep ADC Resolution within Specification Introduction This application note describes how to optimize the ADC hardware environment in order not to alter the intrinsic ADC resolution and to
256K (32K x 8) OTP EPROM AT27C256R 256K EPROM. Features. Description. Pin Configurations
Features Fast Read Access Time - 45 ns Low-Power CMOS Operation 100 µa max. Standby 20 ma max. Active at 5 MHz JEDEC Standard Packages 28-Lead 600-mil PDIP 32-Lead PLCC 28-Lead TSOP and SOIC 5V ± 10% Supply
8-bit. Application Note. Microcontrollers. AVR273: USB Mass Storage Implementation. Features. 1. Introduction
: USB Mass Storage Implementation Features Bulk-Only Transport Protocol Supported by all Microsoft O/S from Windows 98SE and later Supported by Linux Kernel 2.4 or later and Mac OS 9/x or later. Complete
AVR131: Using the AVR s High-speed PWM. Introduction. Features. AVR 8-bit Microcontrollers APPLICATION NOTE
AVR 8-bit Microcontrollers AVR131: Using the AVR s High-speed PWM APPLICATION NOTE Introduction This application note is an introduction to the use of the high-speed Pulse Width Modulator (PWM) available
Basic Interrupts and I/O
Basic Interrupts and I/O an introduction to interrupts and I/O with the AVR Eivind, AVRfreaksnet, By Eivind Sivertsen, AVRFreaks Oct2002 This article is a small project for you people who are just getting
JTAG ICE.... User Guide
JTAG ICE... User Guide Table of Contents Table of Contents Section 1 Introduction... 1-1 1.1 Features...1-1 1.2 JTAG ICE and the OCD Concept...1-2 1.2.4.1 Software Breakpoints...1-3 1.2.4.2 Hardware Breakpoints...1-3
AVR447: Sinusoidal driving of three-phase permanent magnet motor using ATmega48/88/168. 8-bit Microcontrollers. Application Note.
AVR447: Sinusoidal driving of three-phase permanent magnet motor using ATmega48/88/168 Features Three-phase sine waves - 192 steps per electrical revolution - 8-bit amplitude resolution Software dead-time
8051 Flash Microcontroller. Application Note. A Digital Thermometer Using the Atmel AT89LP2052 Microcontroller
A Digital Thermometer Using the Atmel AT89LP2052 Microcontroller Features Temperature range -55 C to +125 C in.5 C increments LCD Display RS485 Interface Applicable to any AT89LP Microcontroller C and
Atmel AVR4921: ASF - USB Device Stack Differences between ASF V1 and V2. 8-bit Atmel Microcontrollers. Application Note. Features.
Atmel AVR4921: ASF - USB Device Stack Differences between ASF V1 and V2 Features Advantages Implementation differences Integration Migration from stack V1 to stack V2 8-bit Atmel Microcontrollers Application
80C51 MCU s. Application Note. Analyzing the Behavior of an Oscillator and Ensuring Good Start-up. Oscillator Fundamentals
Analyzing the Behavior o an Oscillator and Ensuring Good Start-up This application note explains how an oscillator unctions and which methods can be used to check i the oscillation conditions are met in
