AVR1600: Using the XMEGA Quadrature Decoder. 8-bit Microcontrollers. Application Note. Features. 1 Introduction. Sensors
|
|
|
- Gladys White
- 9 years ago
- Views:
Transcription
1 AVR1600: Using the XMEGA Quadrature Decoder Features Quadrature Decoders 16-bit angular resolution Rotation speed and acceleration 1 Introduction Quadrature encoders are used to determine the position and speed of a rotary device, such as servo-motors, volume control wheels, PC mice etc. The decoded quadrature signals are used as a sensory input to a system to determine the absolute or relative position of the rotary device, which again can be used e.g. in a control loop (for e.g. the servo-motor). The AVR XMEGA TM includes hardware support for reading position from Quadrature Encoders. A combination of peripheral modules is used to decode the Quadrature Encoder signals: IO pins are used as input to the Event System s Quadrature Decoder (QDEC), which connects to a Timer/Counter. The XMEGA hardware supports incremental encoders (Quadrature Encoders). The Quadrature Encoder also supports encoders with index signal for absolute positioning. This application note describes the basic functionality of the XMEGA QDECs with code example. 8-bit Microcontrollers Application Note Figure 1-1. Example system. (QDPH0) PINx+0 (QDPH90) PINx+1 (QDINDX) PINx+2 Sensors LED Rotation Rev.
2 2 Quadrature Encoders A quadrature encoder uses two signals to encode rotation and direction. The two quadrature encoder signal (QDPH0 and QDPH90) are characterized by having two square waves phase shifted 90 degrees relative to each other. This can be implemented using a quadrature encoder disk shown in 1Figure 2-1 or with a rate encoder disk (shown in 2Figure 2-2) with the sensors logical 90 degrees out of phase. Figure 2-1. Quadrature Encoder disk. Figure Degree Rate Encoder disk. Rotational movement can be measured by counting the edges of the two waveforms. The phase relationship between the two square waves determines the direction of rotation. 3Figure 2-3 shows typical quadrature signals from a rotary encoder. The signals named QDPH0 and QDPH90 are the two quadrature signals. The figure shows how the phase relationship determines the direction of rotation. When QDPH0 leads QDPH90, the rotation is defined as positive or forward. When QDPH90 leads QDPH0, the rotation is defined as negative or reverse. The concatenation of the two phase signals is called the quadrature state or the phase state. 2 AVR1600
3 AVR1600 The index signal shown in the figure as QDINDX, used for absolute positioning, can be high for a maximum of four states. If the index is high for four states as shown in 4Figure 2-3, any of the states can be chosen to be the index recognition state. Quadrature encoders are commonly used as position sensors in motor applications, but are also found in other rotary sensors, such as the ball tracker in computer mice. Figure 2-3. Quadrature signals from a rotary encoder. 1 cycle / 4 states Forward Direction QDPH0 QDPH90 QDINDX Backward Direction QDPH0 QDPH90 QDINDX Quadrature encoder output signals Quadrature encoders have two or three output lines: Two-output encoders can provide information about the relative position for a rotary device. These two outputs have four (quad) states from which it has its name. Unless the initial rotary displacement is known, a two-output encoder can only be used to calculate relative movement, speed and position. The absolute rotary displacement will not be known. Having a third signal, referred to as an index signal, generating a pulse once per revolution, can resolve this. 3 Quadrature decoding The event system has extensions that make it possible to decode a quadrature signal and use this as a source for a Timer/Counter. The rotary displacement using a two-output encoder is shown in 5Figure 3-2. Using a three-output encoder the absolute position will be known, as shown in 6Figure 3-1. When the QDINDX signal occurs the Timer/Counter value will be reset if not equal to BOTTOM, and an error bit will be set (ERRIF in INTFLAGS-interrupt flag register to the Timer/Counter). This enables the system to detect skip/error in the system or reset the counter for first pass. The speed and acceleration can be calculated by timing the rate of change in the Timer/Counter register (shown in 7Figure 3-3). 3
4 Figure 3-1. Timer/Counter value with index/reset signal. TOP Index error Index ok BOTTOM QDPH0 QDPH90 QDINDX Figure 3-2. Timer/Counter value without index/reset signal. Figure 3-3. Timer/Counter value with decreasing speed (backwards rotation) 4 AVR1600
5 AVR The XMEGA quadrature decoder The XMEGA quadrature decoder supports automatic decoding of a quadrature signal, with optional reset by an index signal. To utilize the quadrature decoder, three modules are used: I/O port pins quadrature signal input The Event System quadrature decoding A Timer/Counter keeping track of the current position Index signal and error states The XMEGA Timer/Counter modules are able to use the quadrature events to count up/down when the event action is set to quadrature encoding. As a result, the current position of the rotary device is tracked by the Timer/Counter, and can be directly read from the Timer/Counter CNT[H:L] register. The Timer/Counter works normally and interrupts/events can be used. E.g. an event can be sent to another Timer/Counter counting revolution. Interrupts can be given at relative/absolute positions. An extra Timer/Counter can be used to calculate rotation speed and acceleration. The index signal can be used to reset the Timer/Counter: When the index signal is high and the quadrature state match that selected by the QDIRM bits (shown in 8Table 3-1) the Timer/Counter is reset. The QDIRM[1:0] bits are located in the event channel control register - CHnCTRL. When using an encoder with index output, the Timer/Counter period (PER[H:L]) register should be set to match the number of pulses per revolution from the encoder wheel: When the period register corresponds to the number of quadrature pulses per revolution, the index should occur and the position counter should be equal to BOTTOM. If the position counter is different from BOTTOM when the index is recognized, the Timer/Counter ERRIF bit is set in the INTFLAGS Interrupt Flag Register. Similarly the ERRIF is set if the position counter passes BOTTOM without recognition of the index. The index signal can be implemented differently from different manufacturers. The index can be high one state and the corresponding state must be chosen in the QDIRM bit settings for the index recognition state (shown in 9Table 3-1). The index can be high for a maximum of 4 states and then any one of the index recognition states can be chosen. A detailed example of how to use the XMEGA quadrature decoder can be found in section Table 3-1. QDIRM Bit Settings. QDIRM[1:0] Index Recognition State 0 0 {QDPH0, QDPH90} = 0b {QDPH0, QDPH90} = 0b {QDPH0, QDPH90} = 0b {QDPH0, QDPH90} = 0b11 5
6 3.2 Quadrature Decoding In this example, TCC0 will be used as a quadrature counter, using Event Channel 0 for quadrature decoding and Event Channel 1 for the index signal. PORTD will be used for input of the three quadrature signals: QDPH0 on PD0, QDPH90 on PD1 and QDIND on PD2. 1. Configure PD0 and PD1 as inputs. 2. Configure PD0 and PD1 input sense control register to level sensing (transparent for events). 3. Select PD0 as multiplexer input for event channel Optional for index: a. Configure PD2 as input. b. Configure PD2 input sense control register to sense both edges. c. Select PD2 as multiplexer input for event channel 1. d. Set the Quadrature Index Enable bit in event channel 0. e. Select the Index Recognition mode for channel Enable quadrature decoding and digital filtering in event channel Set Quadrature decoding as event action for TCC0. 7. Select event channel 0 as event source for TCC0. 8. Set the period register of TCC0 to (n * 4 1), where n is the line count of the quadrature encoder. 9. Enable TCC0 by setting CLKSEL to a CLKSEL_DIV1. The angle of a quadrature encoder attached to QDPH0, QDPH90 (and QINDX) can now be read directly from the Timer/Counter Count register. If the Count register is different from BOTTOM when the index is recognized, the Timer/Counter error flag is set. Similarly the error flag is set if the position counter passes BOTTOM without the recognition of the index. A code example using the Quadrature decoder is included in the source code for this application note. This implementation uses the index signal for absolute position. 4 Driver/Example Implementation The included driver has functions that can be used to configure the Quadrature Decoder. The driver is written in ANSI C, and should compile on all compilers with XMEGA support. Note that this driver is not written with high performance in mind. It is designed as a library to get started with the XMEGA Quadrature Decoder and an easy-to-use framework for rapid prototyping. For time and code space critical application development, consider replacing function calls with macros or direct access to registers. 6 AVR1600
7 AVR Files The source code package consists of the following files: qdec_driver.c Quadrature decoder driver source file qdec_driver.h Quadrature decoder driver header file qdec_example.c Example of using the quadrature decoder 4.2 Doxygen Documentation All source code is prepared for automatic documentation generation using Doxygen. Doxygen is a tool for generating documentation from source code by analyzing the source code and using special keywords. For more details about Doxygen please visit 0Uhttp:// Precompiled Doxygen documentation is also supplied with the source code accompanying this application note, available from the readme.html file in the source code folder. 7
8 Disclaimer Headquarters International Atmel Corporation 2325 Orchard Parkway San Jose, CA USA Tel: 1(408) Fax: 1(408) Atmel Asia Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong Tel: (852) Fax: (852) Atmel Europe Le Krebs 8, Rue Jean-Pierre Timbaud BP Saint-Quentin-en- Yvelines Cedex France Tel: (33) Fax: (33) Atmel Japan 9F, Tonetsu Shinkawa Bldg Shinkawa Chuo-ku, Tokyo Japan Tel: (81) Fax: (81) Product Contact Web Site Technical Support Sales Contact Literature Request Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel s products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life Atmel Corporation. All rights reserved. Atmel, logo and combinations thereof, AVR and others, are the registered trademarks or trademarks, XMEGA TM and others are trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.
AVR1309: Using the XMEGA SPI. 8-bit Microcontrollers. Application Note. Features. 1 Introduction SCK MOSI MISO SS
AVR1309: Using the XMEGA SPI Features Introduction to SPI and the XMEGA SPI module Setup and use of the XMEGA SPI module Implementation of module drivers Polled master Interrupt controlled master Polled
AVR1318: Using the XMEGA built-in AES accelerator. 8-bit Microcontrollers. Application Note. Features. 1 Introduction
AVR1318: Using the XMEGA built-in AES accelerator Features Full compliance with AES (FIPS Publication 197, 2002) - Both encryption and decryption procedures 128-bit Key and State memory XOR load option
AVR1900: Getting started with ATxmega128A1 on STK600. 8-bit Microcontrollers. Application Note. 1 Introduction
AVR1900: Getting started with ATxmega128A1 on STK600 1 Introduction This document contains information about how to get started with the ATxmega128A1 on STK 600. The first three sections contain information
AVR32701: AVR32AP7 USB Performance. 32-bit Microcontrollers. Application Note. Features. 1 Introduction
AVR32701: AVR32AP7 USB Performance Features Linux USB bulk transfer performance ATSTK1000 (32-bit SDRAM bus width) ATNGW100 (16-bit SDRAM bus width) GadgetFS driver and gadgetfs-test application USB performance
AVR1922: Xplain Board Controller Firmware. 8-bit Microcontrollers. Application Note. Features. 1 Introduction
AVR1922: Xplain Board Controller Firmware Features USB interface - Mass-storage to on-board DataFlash memory Atmel AVR XMEGA TM reset control 1 Introduction The Xplain board controller, an AT90USB1287,
AVR1301: Using the XMEGA DAC. 8-bit Microcontrollers. Application Note. Features. 1 Introduction
AVR1301: Using the XMEGA DAC Features 12 bit resolution Up to 1 M conversions per second Continuous drive or sample-and-hold output Built-in offset and gain calibration High drive capabilities Driver source
Using CryptoMemory in Full I 2 C Compliant Mode. Using CryptoMemory in Full I 2 C Compliant Mode AT88SC0104CA AT88SC0204CA AT88SC0404CA AT88SC0808CA
Using CryptoMemory in Full I 2 C Compliant Mode 1. Introduction This application note describes how to communicate with CryptoMemory devices in full I 2 C compliant mode. Full I 2 C compliance permits
AVR32138: How to optimize the ADC usage on AT32UC3A0/1, AT32UC3A3 and AT32UC3B0/1 series. 32-bit Microcontrollers. Application Note.
AVR32138: How to optimize the ADC usage on AT32UC3A0/1, AT32UC3A3 and AT32UC3B0/1 series 1 Introduction This application note outlines the steps necessary to optimize analog to digital conversions on AT32UC3A0/1,
AVR353: Voltage Reference Calibration and Voltage ADC Usage. 8-bit Microcontrollers. Application Note. Features. 1 Introduction
AVR353: Voltage Reference Calibration and Voltage ADC Usage Features Voltage reference calibration. - 1.100V +/-1mV (typical) and < 90ppm/ C drift from 10 C to +70 C. Interrupt controlled voltage ADC sampling.
8-bit. Application Note. Microcontrollers. AVR282: USB Firmware Upgrade for AT90USB
AVR282: USB Firmware Upgrade for AT90USB Features Supported by Atmel FLIP program on all Microsoft O/S from Windows 98SE and later FLIP 3.2.1 or greater supports Linux Default on chip USB bootloader In-System
AVR2006: Design and characterization of the Radio Controller Board's 2.4GHz PCB Antenna. Application Note. Features.
AVR26: Design and characterization of the Radio Controller Board's 2.4GHz PCB Antenna Features Radiation pattern Impedance measurements WIPL design files NEC model Application Note 1 Introduction This
AVR033: Getting Started with the CodeVisionAVR C Compiler. 8-bit Microcontrollers. Application Note. Features. 1 Introduction
AVR033: Getting Started with the CodeVisionAVR C Compiler Features Installing and Configuring CodeVisionAVR to Work with the Atmel STK 500 Starter Kit and AVR Studio Debugger Creating a New Project Using
AVR1510: Xplain training - XMEGA USART. 8-bit Microcontrollers. Application Note. Prerequisites. 1 Introduction
AVR1510: Xplain training - XMEGA USART Prerequisites Required knowledge AVR1500: Xplain training XMEGA Basics AVR1502: Xplain training XMEGA Direct Memory Access Controller Software prerequisites Atmel
Application Note. 8-bit Microcontrollers. AVR270: USB Mouse Demonstration
AVR270: USB Mouse Demonstration Features Runs with AT90USB Microcontrollers at 8MHz USB Low Power Bus Powered Device (less then 100mA) Supported by any PC running Windows (98SE or later), Linux or Mac
Application Note. 8-bit Microcontrollers. AVR272: USB CDC Demonstration UART to USB Bridge
AVR272: USB CDC Demonstration UART to USB Bridge Features Supported by Windows 2000 or later No driver installation Virtual COM Port Enumeration USB to RS232 Bridge with dynamic baudrate Bus powered 8-bit
AVR32788: AVR 32 How to use the SSC in I2S mode. 32-bit Microcontrollers. Application Note. Features. 1 Introduction
AVR32788: AVR 32 How to use the SSC in I2S mode Features I²S protocol overview I²S on the AVR32 I²S sample rate configurations Example of use with AT32UC3A on EVK1105 board 32-bit Microcontrollers Application
AVR115: Data Logging with Atmel File System on ATmega32U4. Microcontrollers. Application Note. 1 Introduction. Atmel
AVR115: Data Logging with Atmel File System on ATmega32U4 Microcontrollers 01101010 11010101 01010111 10010101 Application Note 1 Introduction Atmel provides a File System management for AT90USBx and ATmegaxxUx
AVR305: Half Duplex Compact Software UART. 8-bit Microcontrollers. Application Note. Features. 1 Introduction
AVR305: Half Duplex Compact Software UART Features 32 Words of Code, Only Handles Baud Rates of up to 38.4 kbps with a 1 MHz XTAL Runs on Any AVR Device Only Two Port Pins Required Does Not Use Any Timer
AVR287: USB Host HID and Mass Storage Demonstration. 8-bit Microcontrollers. Application Note. Features. 1 Introduction
AVR287: USB Host HID and Mass Storage Demonstration Features Based on AVR USB OTG Reduced Host Runs on AT90USB647/1287 Support bootable/non-bootable standard USB mouse Support USB Hub feature (Mass Storage
AVR319: Using the USI module for SPI communication. 8-bit Microcontrollers. Application Note. Features. Introduction
AVR319: Using the USI module for SPI communication Features C-code driver for SPI master and slave Uses the USI module Supports SPI Mode 0 and 1 Introduction The Serial Peripheral Interface (SPI) allows
AVR317: Using the Master SPI Mode of the USART module. 8-bit Microcontrollers. Application Note. Features. Introduction
AVR317: Using the Master SPI Mode of the USART module Features Enables Two SPI buses in one device Hardware buffered SPI communication Polled communication example Interrupt-controlled communication example
Application Note. 8-bit Microcontrollers. AVR293: USB Composite Device
AVR293: USB Composite Device Features Combining several USB applications using ONE DEVICE No HUB needed Bus powered 1. Introduction Adding to the flexibility given to the user with the Hot Plug & Play,
3-output Laser Driver for HD-DVD/ Blu-ray/DVD/ CD-ROM ATR0885. Preliminary. Summary. Features. Applications. 1. Description
Features Three Selectable Outputs All Outputs Can Be Used Either for Standard (5V) or High Voltage (9V) Maximum Output Current at All Outputs Up to 150 ma On-chip Low-EMI RF Oscillator With Spread-spectrum
Atmel AVR4921: ASF - USB Device Stack Differences between ASF V1 and V2. 8-bit Atmel Microcontrollers. Application Note. Features.
Atmel AVR4921: ASF - USB Device Stack Differences between ASF V1 and V2 Features Advantages Implementation differences Integration Migration from stack V1 to stack V2 8-bit Atmel Microcontrollers Application
AVR055: Using a 32kHz XTAL for run-time calibration of the internal RC. 8-bit Microcontrollers. Application Note. Features.
AVR055: Using a 32kHz XTAL for run-time calibration of the internal RC Features Calibration using a 32 khz external crystal Adjustable RC frequency with maximum +/-2% accuracy Tune RC oscillator at any
AVR245: Code Lock with 4x4 Keypad and I2C LCD. 8-bit Microcontrollers. Application Note. Features. 1 Introduction
AVR245: Code Lock with 4x4 Keypad and I2C LCD Features Application example for code lock - Ideal for low pin count AVRs Uses I/O pins to read 4x4 keypad Uses Timer/Counter to control piezoelectric buzzer
AVR2004: LC-Balun for AT86RF230. Application Note. Features. 1 Introduction
AVR2004: LC-Balun for AT86RF230 Features Balun for AT86RF230 with lumped elements Simulation results S-Parameter file 1 Introduction In some cases the used balun on the ATAVR RZ502 Radio Boards must be
General Porting Considerations. Memory EEPROM XRAM
AVR097: Migration between ATmega128 and ATmega2561 Features General Porting Considerations Memory Clock sources Interrupts Power Management BOD WDT Timers/Counters USART & SPI ADC Analog Comparator ATmega103
AVR32110: Using the AVR32 Timer/Counter. 32-bit Microcontrollers. Application Note. Features. 1 Introduction
AVR32110: Using the AVR32 Timer/Counter Features Three independent 16 bit Timer/Counter Channels Multiple uses: - Waveform generation - Analysis and measurement support: Frequency and interval measurements
AVR1003: Using the XMEGA Clock System. 8-bit Microcontrollers. Application Note. Features. 1 Introduction
AVR1003: Using the XMEGA Clock System Features Internal 32 khz, 2 MHz, and 32 MHz oscillators External crystal oscillator or clock input Internal PLL with multiplication factor 1x to 31x Safe clock source
Atmel AVR4903: ASF - USB Device HID Mouse Application. Atmel Microcontrollers. Application Note. Features. 1 Introduction
Atmel AVR4903: ASF - USB Device HID Mouse Application Features USB 2.0 compliance - Chapter 9 compliance - HID compliance - Low-speed (1.5Mb/s) and full-speed (12Mb/s) data rates Standard USB HID mouse
APPLICATION NOTE. Atmel AVR134: Real Time Clock (RTC) Using the Asynchronous Timer. Atmel AVR 8-bit Microcontroller. Introduction.
APPLICATION NOTE Atmel AVR134: Real Time Clock (RTC) Using the Asynchronous Timer Introduction Atmel AVR 8-bit Microcontroller This application note describes how to implement a real time counter (RTC)
APPLICATION NOTE. Atmel AVR443: Sensor-based Control of Three Phase Brushless DC Motor. Atmel AVR 8-bit Microcontrollers. Features.
APPLICATION NOTE Features Atmel AVR443: Sensor-based Control of Three Phase Brushless DC Motor Less than 5µs response time on Hall sensor output change Theoretical maximum of 1600k RPM Over-current sensing
32-bit AVR UC3 Microcontrollers. 32-bit AtmelAVR Application Note. AVR32769: How to Compile the standalone AVR32 Software Framework in AVR32 Studio V2
AVR32769: How to Compile the standalone AVR32 Software Framework in AVR32 Studio V2 1. Introduction The purpose of this application note is to show how to compile any of the application and driver examples
Atmel AVR4920: ASF - USB Device Stack - Compliance and Performance Figures. Atmel Microcontrollers. Application Note. Features.
Atmel AVR4920: ASF - USB Device Stack - Compliance and Performance Figures Features Compliance to USB 2.0 - Chapters 8 and 9 - Classes: HID, MSC, CDC, PHDC Interoperability: OS, classes, self- and bus-powered
AVR030: Getting Started with IAR Embedded Workbench for Atmel AVR. 8-bit Microcontrollers. Application Note. Features.
AVR030: Getting Started with IAR Embedded Workbench for Atmel AVR Features How to open a new workspace and project in IAR Embedded Workbench Description and option settings for compiling the c-code Setting
8-bit RISC Microcontroller. Application Note. AVR182: Zero Cross Detector
AVR182: Zero Cross Detector Features Interrupt Driven Modular C Source Code Size Efficient Code Accurate and Fast Detection A Minimum of External Components Introduction One of the many issues with developing
How To Use An Atmel Atmel Avr32848 Demo For Android (32Bit) With A Microcontroller (32B) And An Android Accessory (32D) On A Microcontroller (32Gb) On An Android Phone Or
APPLICATION NOTE Atmel AVR32848: Android Accessory Demo 32-bit Atmel Microcontrollers Features Control an accessory from an Android device Send data to and from an Android device to an accessory Supported
Application Note. C51 Bootloaders. C51 General Information about Bootloader and In System Programming. Overview. Abreviations
C51 General Information about Bootloader and In System Programming Overview This document describes the Atmel Bootloaders for 8051 family processors. Abreviations ISP: In-System Programming API : Applications
AVR134: Real Time Clock (RTC) using the Asynchronous Timer. 8-bit Microcontrollers. Application Note. Features. 1 Introduction
AVR134: Real Time Clock (RTC) using the Asynchronous Timer Features Real Time Clock with Very Low Power Consumption (4 μa @ 3.3V) Very Low Cost Solution Adjustable Prescaler to Adjust Precision Counts
AVR1321: Using the Atmel AVR XMEGA 32-bit Real Time Counter and Battery Backup System. 8-bit Microcontrollers. Application Note.
AVR1321: Using the Atmel AVR XMEGA 32-bit Real Time Counter and Battery Backup System Features 32-bit Real Time Counter (RTC) - 32-bit counter - Selectable clock source 1.024kHz 1Hz - Long overflow time
AT91SAM ARM-based Flash MCU. Application Note
Modbus Slave Stack for the Atmel Family of SAM3 Microcontrollers (Free Modbus Stack from Embedded Solutions) 1. Scope This application note provides directions and instructions to application engineers
AVR151: Setup and Use of the SPI. Introduction. Features. Atmel AVR 8-bit Microcontroller APPLICATION NOTE
Atmel AVR 8-bit Microcontroller AVR151: Setup and Use of the SPI APPLICATION NOTE Introduction This application note describes how to set up and use the on-chip Serial Peripheral Interface (SPI) of the
8-bit Microcontroller. Application Note. AVR415: RC5 IR Remote Control Transmitter. Features. Introduction. Figure 1.
AVR415: RC5 IR Remote Control Transmitter Features Utilizes ATtiny28 Special HW Modulator and High Current Drive Pin Size Efficient Code, Leaves Room for Large User Code Low Power Consumption through Intensive
AVR1306: Using the XMEGA Timer/Counter. 8-bit Microcontrollers. Application Note. Features. 1 Introduction
AVR1306: Using the XMEGA Timer/Counter Features True 16 bit operation Double buffered timer period setting 4 (2) compare or capture channels per timer - 4 channels on each Timer 0-2 channels on each Timer
8051 Flash Microcontroller. Application Note. A Digital Thermometer Using the Atmel AT89LP2052 Microcontroller
A Digital Thermometer Using the Atmel AT89LP2052 Microcontroller Features Temperature range -55 C to +125 C in.5 C increments LCD Display RS485 Interface Applicable to any AT89LP Microcontroller C and
AT91 ARM Thumb Microcontrollers. Application Note. Interfacing a PC Card to an AT91RM9200-DK. Introduction. Hardware Interface
Interfacing a PC Card to an AT91RM9200-DK Introduction This Application Note describes the implementation of a PCMCIA interface on an AT91RM9200 Development Kit (DK) using the External Bus Interface (EBI).
8-bit Microcontroller. Application Note. AVR400: Low Cost A/D Converter
AVR400: Low Cost A/D Converter Features Interrupt Driven : 23 Words Low Use of External Components Resolution: 6 Bits Measurement Range: 0-2 V Runs on Any AVR Device with 8-bit Timer/Counter and Analog
8-bit Microcontroller. Application Note. AVR222: 8-point Moving Average Filter
AVR222: 8-point Moving Average Filter Features 31-word Subroutine Filters Data Arrays up to 256 Bytes Runable Demo Program Introduction The moving average filter is a simple Low Pass FIR (Finite Impulse
APPLICATION NOTE. Atmel AT04389: Connecting SAMD20E to the AT86RF233 Transceiver. Atmel SAMD20. Description. Features
APPLICATION NOTE Atmel AT04389: Connecting SAMD20E to the AT86RF233 Transceiver Description Atmel SAMD20 This application note describes a method to connect an Atmel ATSAMD20E microcontroller to an Atmel
AVR125: ADC of tinyavr in Single Ended Mode. 8-bit Microcontrollers. Application Note. Features. 1 Introduction
AVR125: ADC of tinyavr in Single Ended Mode Features Up to 10bit resolution Up to 15kSPS Auto triggered and single conversion mode Optional left adjustment for ADC result readout Driver source code included
AVR ONE!... Quick-start Guide. EVK1101 + Windows 32104B AVR ONE! 02/10
AVR ONE!... Quick-start Guide EVK1101 + Windows Table of Contents (Continued) Section 1 Introduction...1-1 1.1 General... 1-1 1.2 Requirements... 1-1 Section 2 Quick-start guide (short version)...2-1 2.1
Application Note. Atmel ATSHA204 Authentication Modes. Prerequisites. Overview. Introduction
Application Note Atmel Authentication Modes Prerequisites Hardware Atmel AT88CK454BLACK Evaluation Board Atmel AT88CK109STK8 Kit Software Atmel Crypto Evaluation Studio (ACES) Overview Understand which
8-bit RISC Microcontroller. Application Note. AVR910: In-System Programming
AVR910: In-System Programming Features Complete In-System Programming Solution for AVR Microcontrollers Covers All AVR Microcontrollers with In-System Programming Support Reprogram Both Data Flash and
Atmel AVR1017: XMEGA - USB Hardware Design Recommendations. 8-bit Atmel Microcontrollers. Application Note. Features.
Atmel AVR1017: XMEGA - USB Hardware Design Recommendations Features USB 2.0 compliance - Signal integrity - Power consumption - Back driver voltage - Inrush current EMC/EMI considerations Layout considerations
USER GUIDE EDBG. Description
USER GUIDE EDBG Description The Atmel Embedded Debugger (EDBG) is an onboard debugger for integration into development kits with Atmel MCUs. In addition to programming and debugging support through Atmel
AVR442: PC Fan Control using ATtiny13. 8-bit Microcontrollers. Application Note. Features. 1 Introduction
AVR442: PC Fan Control using ATtiny13 Features Variable speed based on: - Temperature sensor (NTC). - External PWM input. Stall detection with alarm output. Implementation in C code to ease modification.
AT89C5131A Starter Kit... Software User Guide
AT89C5131A Starter Kit... Software User Guide Table of Contents Section 1 Introduction... 1-1 1.1 Abbreviations...1-1 Section 2 Getting Started... 2-3 2.1 Hardware Requirements...2-3 2.2 Software Requirements...2-3
AVR32100: Using the AVR32 USART. 32-bit Microcontrollers. Application Note. Features. 1 Introduction
AVR32100: Using the AVR32 USART Features Supports character length from 5 to 9 bits Interrupt Generation Parity, Framing and Overrun Error Detection Programmable Baud Rate Generator Line Break Generation
AT91 ARM Thumb Microcontrollers. AT91SAM CAN Bootloader. AT91SAM CAN Bootloader User Notes. 1. Description. 2. Key Features
User Notes 1. Description The CAN bootloader SAM-BA Boot4CAN allows the user to program the different memories and registers of any Atmel AT91SAM product that includes a CAN without removing them from
8-bit RISC Microcontroller. Application Note. AVR236: CRC Check of Program Memory
AVR236: CRC Check of Program Memory Features CRC Generation and Checking of Program Memory Supports all AVR Controllers with LPM Instruction Compact Code Size, 44 Words (CRC Generation and CRC Checking)
8-bit Microcontroller. Application Note. AVR134: Real-Time Clock (RTC) using the Asynchronous Timer. Features. Theory of Operation.
AVR134: Real-Time Clock (RTC) using the Asynchronous Timer Features Real-Time Clock with Very Low Power Consumption (4µA @ 3.3V) Very Low Cost Solution Adjustable Prescaler to Adjust Precision Counts Time,
3-output Laser Driver for HD-DVD/ Blu-ray/DVD/ CD-ROM ATR0885. Preliminary. Summary
Features Three Selectable Outputs All Outputs Can Be Used Either for Standard (5V) or High Voltage (9V) Maximum Output Current at All Outputs Up to 150 ma On-chip Low-EMI RF Oscillator With Spread-spectrum
APPLICATION NOTE Atmel AT02509: In House Unit with Bluetooth Low Energy Module Hardware User Guide 8-bit Atmel Microcontroller Features Description
APPLICATION NOTE Atmel AT259: In House Unit with Bluetooth Low Energy Module Hardware User Guide Features 8-bit Atmel Microcontroller Low power consumption Interface with BLE with UART Bi-direction wake
APPLICATION NOTE. Atmel LF-RFID Kits Overview. Atmel LF-RFID Kit. LF-RFID Kit Introduction
APPLICATION NOTE Atmel LF-RFID Kits Overview Atmel LF-RFID Kit LF-RFID Kit Introduction Atmel offers several design and evaluation kits for a fast and easy way to test the LF-RFID technology but also developing
256K (32K x 8) Battery-Voltage Parallel EEPROMs AT28BV256
Features Single 2.7V - 3.6V Supply Fast Read Access Time 200 ns Automatic Page Write Operation Internal Address and Data Latches for 64 Bytes Internal Control Timer Fast Write Cycle Times Page Write Cycle
USER GUIDE. ZigBit USB Stick User Guide. Introduction
USER GUIDE ZigBit USB Stick User Guide Introduction This user guide describes how to get started with the Atmel ZigBit USB sticks. The ZigBit USB sticks is targeted for evaluating the USB features of the
Introducing a platform to facilitate reliable and highly productive embedded developments
Beyond the IDE Introducing a platform to facilitate reliable and highly productive embedded developments Author: Joerg Bertholdt, Director of Marketing, MCU Tools and Software, Atmel Corporation Beyond
8-bit RISC Microcontroller. Application Note. AVR155: Accessing an I 2 C LCD Display using the AVR 2-wire Serial Interface
AVR155: Accessing an I 2 C LCD Display using the AVR 2-wire Serial Interface Features Compatible with Philips' I 2 C protocol 2-wire Serial Interface Master Driver for Easy Transmit and Receive Function
SMARTCARD XPRO. Preface. SMART ARM-based Microcontrollers USER GUIDE
SMART ARM-based Microcontrollers SMARTCARD XPRO USER GUIDE Preface Atmel SMARTCARD Xplained Pro is an extension board to the Atmel Xplained Pro evaluation platform. Atmel SMARTCARD Xplained Pro is designed
Application Note. USB Microcontrollers. USB PC Drivers Based on Generic HID Class. 1. Introduction
USB PC Drivers Based on Generic HID Class Supported by Windows 98 SE or later Full Duplex Communication Send Commands Through the EP 0 Dynamic Link Library Supported by any Compiler: VC++, JAVA, VB...
Quick Start Guide. CAN Microcontrollers. ATADAPCAN01 - STK501 CAN Extension. Requirements
ATADAPCAN01 - STK501 CAN Extension The ATADAPCAN01 - STK501 CAN add-on is an extension to the STK500 and STK501 development boards from Atmel Corporation, adding support for the AVR AT90CAN128 device in
APPLICATION NOTE. Secure Personalization with Transport Key Authentication. ATSHA204A, ATECC108A, and ATECC508A. Introduction.
APPLICATION NOTE Secure Personalization with Transport Key Authentication ATSHA204A, ATECC108A, and ATECC508A Introduction The Atmel CryptoAuthentication ATSHA204A, ATECC108A, and ATECC508A devices (crypto
How to Calculate the Capacitor of the Reset Input of a C51 Microcontroller 80C51. Application Note. Microcontrollers. Introduction
How to Calculate the Capacitor of the Reset Input of a C51 Microcontroller This application note explains how the reset of the 80C51 microcontroller works when the RST pin is a pure input pin and when
AVR106: C functions for reading and writing to Flash memory. 8-bit Microcontrollers. Application Note. Features. Introduction
AVR106: C functions for reading and writing to Flash memory Features C functions for accessing Flash memory - Byte read - Page read - Byte write - Page write Optional recovery on power failure Functions
AT88CK490 Evaluation Kit
AT88CK490 Evaluation Kit CryptoAuthentication USB Dongle HARDWARE USER GUIDE Atmel AT88CK490 CryptoAuthentication Evaluation Kit Introduction The Atmel AT88CK490 CryptoAuthentication Evaluation Kit is
AVR223: Digital Filters with AVR. 8-bit Microcontrollers. Application Note. Features. 1 Introduction
AVR223: Digital Filters with AVR Features Implementation of Digital Filters Coefficient and Data scaling Fast Implementation of 4 th Order FIR Filter Fast Implementation of 2 nd Order IIR Filter Methods
APPLICATION NOTE. Authentication Counting. Atmel CryptoAuthentication. Features. Introduction
APPLICATION NOTE Authentication Counting Atmel CryptoAuthentication Features How to achieve high endurance counters in excess of 800,000 counts. How to disable the Atmel CryptoAuthentication ATSHA204A
AVR241: Direct driving of LCD display using general IO. 8-bit Microcontrollers. Application Note. Features. Introduction AVR
AVR241: Direct driving of LCD display using general IO Features Software driver for displays with one common line Suitable for parts without on-chip hardware for LCD driving Control up to 15 segments using
Application Note. Atmel CryptoAuthentication Product Uses. Atmel ATSHA204. Abstract. Overview
Application Note Atmel CryptoAuthentication Product Uses Atmel Abstract Companies are continuously searching for ways to protect property using various security implementations; however, the cost of security
AT15007: Differences between ATmega328/P and ATmega328PB. Introduction. Features. Atmel AVR 8-bit Microcontrollers APPLICATION NOTE
Atmel AVR 8-bit Microcontrollers AT15007: Differences between ATmega328/P and ATmega328PB APPLICATION NOTE Introduction This application note assists the users of Atmel ATmega328 variants to understand
AT11805: Capacitive Touch Long Slider Design with PTC. Introduction. Features. Touch Solutions APPLICATION NOTE
Touch Solutions AT11805: Capacitive Touch Long Slider Design with PTC APPLICATION NOTE Introduction Slider is a one-dimensional sensor that detects the linear movement of a finger during touch. Sliders
APPLICATION NOTE. AT07175: SAM-BA Bootloader for SAM D21. Atmel SAM D21. Introduction. Features
APPLICATION NOTE AT07175: SAM-BA Bootloader for SAM D21 Atmel SAM D21 Introduction Atmel SAM Boot Assistant (Atmel SAM-BA ) allows In-System Programming (ISP) from USB or UART host without any external
Step Motor Controller. Application Note. AVR360: Step Motor Controller. Theory of Operation. Features. Introduction
AVR360: Step Motor Controller Features High-Speed Step Motor Controller Interrupt Driven Compact Code (Only 10 Bytes Interrupt Routine) Very High Speed Low Computing Requirement Supports all AVR Devices
How To Design An Ism Band Antenna For 915Mhz/2.4Ghz Ism Bands On A Pbbb (Bcm) Board
APPLICATION NOTE Features AT09567: ISM Band PCB Antenna Reference Design Atmel Wireless Compact PCB antennas for 915MHz and 2.4GHz ISM bands Easy to integrate Altium design files and gerber files Return
AVR131: Using the AVR s High-speed PWM. Introduction. Features. AVR 8-bit Microcontrollers APPLICATION NOTE
AVR 8-bit Microcontrollers AVR131: Using the AVR s High-speed PWM APPLICATION NOTE Introduction This application note is an introduction to the use of the high-speed Pulse Width Modulator (PWM) available
AVR449: Sinusoidal driving of 3-phase permanent magnet motor using ATtiny261/461/861. 8-bit Microcontrollers. Application Note.
Features AVR449: Sinusoidal driving of 3-phase permanent magnet motor using ATtiny261/461/861 Three-phase sine waves - 192 steps per electrical revolution - 10-bit amplitude resolution Hardware dead-time
APPLICATION NOTE. Atmel AT01095: Joystick Game Controller Reference Design. 8-/16-bit Atmel Microcontrollers. Features.
APPLICATION NOTE Features Atmel AT01095: Joystick Game Controller Reference Design 8-/16-bit Atmel Microcontrollers Joystick Game Controller Atmel ATxmega32A4U microcontroller In System Programming (ISP)
AVR034: Mixing C and Assembly Code with IAR Embedded Workbench for AVR. 8-bit Microcontroller. Application Note. Features.
AVR034: Mixing C and Assembly Code with IAR Embedded Workbench for AVR Features Passing Variables Between C and Assembly Code Functions Calling Assembly Code Functions from C Calling C Functions from Assembly
8-bit Microcontroller. Application Note. AVR314: DTMF Generator
AVR314: DTMF Generator Features Generation of Sine Waves Using PWM (Pulse-Width Modulation) Combine Different Sine Waves to DTMF Signal Assembler and C High-level Language Code STK500 Top-Module Design
8-bit Microcontroller. Application Note. AVR105: Power Efficient High Endurance Parameter Storage in Flash Memory
AVR105: Power Efficient High Endurance Parameter Storage in Flash Memory Features Fast Storage of Parameters High Endurance Flash Storage 350K Write Cycles Power Efficient Parameter Storage Arbitrary Size
Designing Feature-Rich User Interfaces for Home and Industrial Controllers
Designing Feature-Rich User Interfaces for Home and Industrial Controllers Author: Frédéric Gaillard, Product Marketing Manager, Atmel We have all become familiar with intuitive user interfaces on our
8-bit Microcontroller. Application Note. AVR201: Using the AVR Hardware Multiplier
AVR201: Using the AVR Hardware Multiplier Features 8- and 16-bit Implementations Signed and Unsigned Routines Fractional Signed and Unsigned Multiply Executable Example Programs Introduction The megaavr
Capacitive Touch Technology Opens the Door to a New Generation of Automotive User Interfaces
Capacitive Touch Technology Opens the Door to a New Generation of Automotive User Interfaces Stephan Thaler, Thomas Wenzel When designing a modern car, the spotlight is on the driving experience, from
Atmel AVR4027: Tips and Tricks to Optimize Your C Code for 8-bit AVR Microcontrollers. 8-bit Atmel Microcontrollers. Application Note.
Atmel AVR4027: Tips and Tricks to Optimize Your C Code for 8-bit AVR Microcontrollers Features Atmel AVR core and Atmel AVR GCC introduction Tips and tricks to reduce code size Tips and tricks to reduce
APPLICATION NOTE. Atmel AT02985: User s Guide for USB-CAN Demo on SAM4E-EK. Atmel AVR 32-bit Microcontroller. Features. Description.
APPLICATION NOTE Atmel AT02985: User s Guide for USB-CAN Demo on SAM4E-EK Atmel AVR 32-bit Microcontroller Features USB-CAN gateway USB CDC class (virtual serial port) provides low level data stream Customized
64K (8K x 8) Parallel EEPROM with Page Write and Software Data Protection AT28C64B
Features Fast Read Access Time 150 ns Automatic Page Write Operation Internal Address and Data Latches for 64 Bytes Fast Write Cycle Times Page Write Cycle Time: 10 ms Maximum (Standard) 2 ms Maximum (Option
AN3332 Application note
Application note Generating PWM signals using STM8S-DISCOVERY Application overview This application user manual provides a short description of how to use the Timer 2 peripheral (TIM2) to generate three
8-bit Microcontroller. Application Note. AVR286: LIN Firmware Base for LIN/UART Controller. LIN Features. 1. Atmel LIN/UART Controller
AVR286: LIN Firmware Base for LIN/UART Controller LIN Features The LIN (Local Interconnect Network) is a serial communications protocol which efficiently supports the control of mechatronics nodes in distributed
Dell Spotlight on Active Directory 6.8.3. Server Health Wizard Configuration Guide
Dell Spotlight on Active Directory 6.8.3 Server Health Wizard Configuration Guide 2013 Dell Software Inc. ALL RIGHTS RESERVED. This guide contains proprietary information protected by copyright. The software
