Quick Start Guide. CAN Microcontrollers. ATADAPCAN01 - STK501 CAN Extension. Requirements
|
|
|
- Georgina Gregory
- 9 years ago
- Views:
Transcription
1 ATADAPCAN01 - STK501 CAN Extension The ATADAPCAN01 - STK501 CAN add-on is an extension to the STK500 and STK501 development boards from Atmel Corporation, adding support for the AVR AT90CAN128 device in a single development environment. The AVR AT90CAN128 includes a built-in Controller Area Network (CAN) controller with all the features required to implement the CAN serial communication protocol in accordance with the BOSCH GmbH CAN specification. The add-on board provides CAN transceivers, termination options and other features necessary to seamlessly connect the STK500 development environment to a CAN bus for application development and debugging. CAN Microcontrollers Quick Start Guide Requirements STK500 starter kit, serial cable and power supply STK501 topmodule to STK500 AVR AT90CAN128 in 64-pin TQFP package Rev. 4330B-CAN 03/04 1
2 Connections to STK500 / STK501 The ATADAPCAN01 module is intended for use with the STK500 and STK501 starter kits. The STK501 holds the 64-pin TQFP ZIF socket for the AT90CAN128 part, and is a top-module board for the AVR starter-kit STK500. The ATADAPCAN01 requires connections to the CANTx and CANRx signals on the AVR device, as well as Vcc and GND connections. The ATADAPCAN01 board can be connected to the starter-kits in one of three possible ways: Individual signal wiring to PORTD. Using three 2-wire cables provided with the STK500 kit, make the following connections: STK500 PD5 (pin6) to ATADAPCAN01 PORTD pin 6 (CANTx) STK500 PD6 (pin7) to ATADAPCAN01 PORTD pin 7 (CANRx) STK500 GND & VTG to ATADAPCAN01 PORTD pins 9 & 10 Flat-cable connection to PORTD. Using a 10-wire flat-cable provided with the STK500 kit, connect the PORTD header of the STK500 to the PORTD header of the ATADAPCAN01, as shown in figure 1. Care should be taken to use the correct pin orientation. Figure 1. Connecting to the STK500 through a 10-wire flat-cable ATADAPCAN01 STK-500 Direct mounting onto PORTD. A second PORTD header is routed (but not mounted) on the ATADAPCAN01 (J8). By attaching a matching 10 pin socket to the underside of the board, it can be mounted directly onto the STK500 PORTD header. The top-side PORTD header on the ATADAPCAN01 board can then be used to access other PORTD pins. 2 AT90CAN128
3 CAN Bus Interface BUS Connectors Several options are available to physically connect the ATADAPCAN01 to a CAN bus. The D-SUB-9 MALE connector is the primary connection point to a CAN bus. Alternatively, the 10-pin header labelled "CAN BUS flat-cable" can be used, or both connectors can be used if the CAN bus topology requires it. Both connectors are wired according to CiA Draft Standard 102 version 2.0 as shown in table 1. Table 1. CAN Bus Connector Wiring Signal Description D-SUB-9 pin Flat-cable Pin Reserved 1 1 CAN_L 2 3 CAN_GND 3 5 Reserved 4 7 CAN_SHLD* 5 (1) 9 (1) CAN_GND 6 2 CAN_H 7 4 Reserved 8 6 CAN_V+ 9 8 (not used) 10 Note: 1. CAN_SHLD pins are not connected together internally CAN BUS Grounding and Shielding CAN BUS Termination CAN Transceiver Options The "CAN_SHLD" signal in each of the two CAN bus connectors can be optionally connected to ground by mounting 0 ohm or small value resistors in positions R2 (for D-SUB- 9) and R3 (for flat-cable). The landing pads of both R2 and R3 are 1206 standard size. By default, the "CAN_GND" signals in both connectors are wired to the STK500 ground through 0 ohm resistor R1. Removing R1 will isolate the "CAN_GND" ground signals on the CAN bus from the STK500 / ATADAPCAN01 ground. To function correctly, a CAN bus requires 120 ohm termination on both ends. The ATADAPCAN01 can become a terminated node on the CAN bus simply by setting the jumper labelled "TERM". This terminates the CAN bus with two series-connected 62 ohm resistors. Setting the jumper labelled "SPLIT" connects the centre-tap between these two resistors to ground through 10nF capacitor C1. This reduces common-mode noise on the bus line. This centre tap can also be stabilised as described later in the Split voltage section (if supported by the CAN transceiver mounted in "CAN1"). The ATADAPCAN01 board has two CAN transceiver footprints. This is to facilitate easy evaluation of alternate CAN devices as well as to provide access to various extra features of some of these parts. Refer to the schematic diagram in Figure 2 (below) while considering these options. Both "CAN1" and "CAN2" footprints use standard CAN device pinouts for pins 1, 2, 3, 4, 6 and 7. By default, "CAN1" is mounted on the board (Atmel ATA6660). To use a device in "CAN2", solder the device to the board, and remove the 0 ohm resistors labelled R8, R9 R10 from the "CAN1" section, and mount them into the "CAN2" section in positions R11, R12, R13. Although it is acceptable that idle CAN transceivers remain attached to the CAN bus, only one CAN device should be connected to the AVR device at any time. 3 AT90CAN128
4 Figure 2. Component Placement Utilising CAN- Transceiver Extrafeatures Slope Control (pin 8, "CAN1" and "CAN2") Standby Function (pin 8, "CAN1" and "CAN2") Shutdown Function (pin 5, "CAN2") Split Voltage (pin 5, "CAN1") Many CAN transceiver devices available have various extra functions accessible through pins 5 and 8. The ATADAPCAN01 allows you to take advantage of some of these features. Pin 8 on both "CAN1" and "CAN2" footprints are connected centre pin of the "SLOPE CTRL" connector. Pin 5 of "CAN1" is connected to the centre-tap of the termination network, and pin 5 of "CAN2" is connected to R6 and C2 as shown in Figure 2. CAN transceivers supporting slope or slew-rate control allow a resistor to be connected between the RS pin (pin 8) and ground to limit the slope of the bus-driving signal. This reduced EMI emmissions while restricting the maximum transmission rate. Pin 8 on both "CAN1" and "CAN2" devices are connected to the centre pin of the "SLOPE CTRL" jumper. Setting the jumper to the ON position, connects the centre pin to ground through resistor R7, while setting it to the OFF position connects the centre pin directly to ground (for no slope control, or high-speed mode). Refer to the CAN transceiver device documentation for information on selecting the value of R7 (24k by default). On some CAN transceivers, pin 8 can be driven by a logic level to switch the transceiver into standby mode. The centre pin of the "SLOPE CTRL" header (with the jumper removed) can be connected to an I/O pin on the AVR device for this purpose. Your AVR code should drive this signal as specified in the CAN transceiver documentation. Some CAN transceivers have a SHUTDOWN function which is configured by an R-C connection on pin 5. Pin 5 of the "CAN2" footprint is connected to resistor R6 to Vcc and capacitor C2 to ground, as shown in the schematic diagram. By default R6 is a 0 ohm connection to Vcc and C2 is not mounted. Both parts are 0603 size. Consult the CAN transceiver documentation for further information. The centre-point of the CAN bus termination (if enabled) can be stabilised by connecting it to pin 5 of certain CAN transceivers. If the CAN transceiver supports this feature, a 0 ohm 0603 resistor can be mounted in R14, with the "SPLIT" and "TERM" jumpers set accordingly (see Section CAN bus termination ). 4 AT90CAN128
5 AT90CAN128 Figure 3. Schematic Layout 5
6 Atmel Headquarters Corporate Headquarters 2325 Orchard Parkway San Jose, CA TEL 1(408) FAX 1(408) Europe Atmel Sarl Route des Arsenaux 41 Case Postale 80 CH-1705 Fribourg Switzerland TEL (41) FAX (41) Asia Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimhatsui East Kowloon Hong Kong TEL (852) FAX (852) Japan 9F, Tonetsu Shinkawa Bldg Shinkawa Chuo-ku, Tokyo Japan TEL (81) FAX (81) Atmel Operations Memory 2325 Orchard Parkway San Jose, CA TEL 1(408) FAX 1(408) Microcontrollers 2325 Orchard Parkway San Jose, CA TEL 1(408) FAX 1(408) La Chantrerie BP Nantes Cedex 3, France TEL (33) FAX (33) ASIC/ASSP/Smart Cards Zone Industrielle Rousset Cedex, France TEL (33) FAX (33) East Cheyenne Mtn. Blvd. Colorado Springs, CO TEL 1(719) FAX 1(719) Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland TEL (44) FAX (44) RF/Automotive Theresienstrasse 2 Postfach Heilbronn, Germany TEL (49) FAX (49) East Cheyenne Mtn. Blvd. Colorado Springs, CO TEL 1(719) FAX 1(719) Biometrics/Imaging/Hi-Rel MPU/ High Speed Converters/RF Datacom Avenue de Rochepleine BP Saint-Egreve Cedex, France TEL (33) FAX (33) [email protected] Web Site Disclaimer: Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company s standard warranty which is detailed in Atmel s Terms and Conditions located on the Company s web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel s products are not authorized for use as critical components in life support devices or systems. Atmel Corporation All rights reserved. Atmel and combinations thereof are the registered trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be the trademarks of others. Printed on recycled paper. /xm
8-bit RISC Microcontroller. Application Note. AVR182: Zero Cross Detector
AVR182: Zero Cross Detector Features Interrupt Driven Modular C Source Code Size Efficient Code Accurate and Fast Detection A Minimum of External Components Introduction One of the many issues with developing
8-bit Microcontroller. Application Note. AVR222: 8-point Moving Average Filter
AVR222: 8-point Moving Average Filter Features 31-word Subroutine Filters Data Arrays up to 256 Bytes Runable Demo Program Introduction The moving average filter is a simple Low Pass FIR (Finite Impulse
8-bit Microcontroller. Application Note. AVR400: Low Cost A/D Converter
AVR400: Low Cost A/D Converter Features Interrupt Driven : 23 Words Low Use of External Components Resolution: 6 Bits Measurement Range: 0-2 V Runs on Any AVR Device with 8-bit Timer/Counter and Analog
8-bit Microcontroller. Application Note. AVR415: RC5 IR Remote Control Transmitter. Features. Introduction. Figure 1.
AVR415: RC5 IR Remote Control Transmitter Features Utilizes ATtiny28 Special HW Modulator and High Current Drive Pin Size Efficient Code, Leaves Room for Large User Code Low Power Consumption through Intensive
Tag Tuning/RFID. Application Note. Tag Tuning. Introduction. Antenna Equivalent Circuit
Tag Tuning Introduction RFID tags extract all of their power to both operate and communicate from the reader s magnetic field. Coupling between the tag and reader is via the mutual inductance of the two
8-bit Microcontroller. Application Note. AVR314: DTMF Generator
AVR314: DTMF Generator Features Generation of Sine Waves Using PWM (Pulse-Width Modulation) Combine Different Sine Waves to DTMF Signal Assembler and C High-level Language Code STK500 Top-Module Design
How to Calculate the Capacitor of the Reset Input of a C51 Microcontroller 80C51. Application Note. Microcontrollers. Introduction
How to Calculate the Capacitor of the Reset Input of a C51 Microcontroller This application note explains how the reset of the 80C51 microcontroller works when the RST pin is a pure input pin and when
8-bit RISC Microcontroller. Application Note. AVR236: CRC Check of Program Memory
AVR236: CRC Check of Program Memory Features CRC Generation and Checking of Program Memory Supports all AVR Controllers with LPM Instruction Compact Code Size, 44 Words (CRC Generation and CRC Checking)
AT91 ARM Thumb Microcontrollers. Application Note. Interfacing a PC Card to an AT91RM9200-DK. Introduction. Hardware Interface
Interfacing a PC Card to an AT91RM9200-DK Introduction This Application Note describes the implementation of a PCMCIA interface on an AT91RM9200 Development Kit (DK) using the External Bus Interface (EBI).
AVR305: Half Duplex Compact Software UART. 8-bit Microcontrollers. Application Note. Features. 1 Introduction
AVR305: Half Duplex Compact Software UART Features 32 Words of Code, Only Handles Baud Rates of up to 38.4 kbps with a 1 MHz XTAL Runs on Any AVR Device Only Two Port Pins Required Does Not Use Any Timer
AVR030: Getting Started with IAR Embedded Workbench for Atmel AVR. 8-bit Microcontrollers. Application Note. Features.
AVR030: Getting Started with IAR Embedded Workbench for Atmel AVR Features How to open a new workspace and project in IAR Embedded Workbench Description and option settings for compiling the c-code Setting
AT89C5131A Starter Kit... Software User Guide
AT89C5131A Starter Kit... Software User Guide Table of Contents Section 1 Introduction... 1-1 1.1 Abbreviations...1-1 Section 2 Getting Started... 2-3 2.1 Hardware Requirements...2-3 2.2 Software Requirements...2-3
AVR317: Using the Master SPI Mode of the USART module. 8-bit Microcontrollers. Application Note. Features. Introduction
AVR317: Using the Master SPI Mode of the USART module Features Enables Two SPI buses in one device Hardware buffered SPI communication Polled communication example Interrupt-controlled communication example
8-bit Microcontroller. Application Note. AVR201: Using the AVR Hardware Multiplier
AVR201: Using the AVR Hardware Multiplier Features 8- and 16-bit Implementations Signed and Unsigned Routines Fractional Signed and Unsigned Multiply Executable Example Programs Introduction The megaavr
AVR245: Code Lock with 4x4 Keypad and I2C LCD. 8-bit Microcontrollers. Application Note. Features. 1 Introduction
AVR245: Code Lock with 4x4 Keypad and I2C LCD Features Application example for code lock - Ideal for low pin count AVRs Uses I/O pins to read 4x4 keypad Uses Timer/Counter to control piezoelectric buzzer
AVR106: C functions for reading and writing to Flash memory. 8-bit Microcontrollers. Application Note. Features. Introduction
AVR106: C functions for reading and writing to Flash memory Features C functions for accessing Flash memory - Byte read - Page read - Byte write - Page write Optional recovery on power failure Functions
Application Note. C51 Bootloaders. C51 General Information about Bootloader and In System Programming. Overview. Abreviations
C51 General Information about Bootloader and In System Programming Overview This document describes the Atmel Bootloaders for 8051 family processors. Abreviations ISP: In-System Programming API : Applications
General Porting Considerations. Memory EEPROM XRAM
AVR097: Migration between ATmega128 and ATmega2561 Features General Porting Considerations Memory Clock sources Interrupts Power Management BOD WDT Timers/Counters USART & SPI ADC Analog Comparator ATmega103
AVR319: Using the USI module for SPI communication. 8-bit Microcontrollers. Application Note. Features. Introduction
AVR319: Using the USI module for SPI communication Features C-code driver for SPI master and slave Uses the USI module Supports SPI Mode 0 and 1 Introduction The Serial Peripheral Interface (SPI) allows
8-bit Microcontroller. Application. Note. AVR204: BCD Arithmetics. Features. Introduction. 16-bit Binary to 5-digit BCD Conversion bin2bcd16
AVR204: BCD Arithmetics Features Conversion 16 Bits 5 Digits, 8 Bits 2 Digits 2-digit Addition and Subtraction Superb Speed and Code Density Runable Example Program Introduction This application note lists
AVR034: Mixing C and Assembly Code with IAR Embedded Workbench for AVR. 8-bit Microcontroller. Application Note. Features.
AVR034: Mixing C and Assembly Code with IAR Embedded Workbench for AVR Features Passing Variables Between C and Assembly Code Functions Calling Assembly Code Functions from C Calling C Functions from Assembly
8-bit Microcontroller. Application Note. AVR105: Power Efficient High Endurance Parameter Storage in Flash Memory
AVR105: Power Efficient High Endurance Parameter Storage in Flash Memory Features Fast Storage of Parameters High Endurance Flash Storage 350K Write Cycles Power Efficient Parameter Storage Arbitrary Size
AVR241: Direct driving of LCD display using general IO. 8-bit Microcontrollers. Application Note. Features. Introduction AVR
AVR241: Direct driving of LCD display using general IO Features Software driver for displays with one common line Suitable for parts without on-chip hardware for LCD driving Control up to 15 segments using
3-output Laser Driver for HD-DVD/ Blu-ray/DVD/ CD-ROM ATR0885. Preliminary. Summary
Features Three Selectable Outputs All Outputs Can Be Used Either for Standard (5V) or High Voltage (9V) Maximum Output Current at All Outputs Up to 150 ma On-chip Low-EMI RF Oscillator With Spread-spectrum
AT91 ARM Thumb Microcontrollers. AT91SAM CAN Bootloader. AT91SAM CAN Bootloader User Notes. 1. Description. 2. Key Features
User Notes 1. Description The CAN bootloader SAM-BA Boot4CAN allows the user to program the different memories and registers of any Atmel AT91SAM product that includes a CAN without removing them from
8-bit Microcontroller. Application Note. AVR461: Quick Start Guide for the Embedded Internet Toolkit. Introduction. System Requirements
AVR461: Quick Start Guide for the Embedded Internet Toolkit Introduction Congratulations with your AVR Embedded Internet Toolkit. This Quick-start Guide gives an introduction to using the AVR Embedded
AVR134: Real Time Clock (RTC) using the Asynchronous Timer. 8-bit Microcontrollers. Application Note. Features. 1 Introduction
AVR134: Real Time Clock (RTC) using the Asynchronous Timer Features Real Time Clock with Very Low Power Consumption (4 μa @ 3.3V) Very Low Cost Solution Adjustable Prescaler to Adjust Precision Counts
AVR32100: Using the AVR32 USART. 32-bit Microcontrollers. Application Note. Features. 1 Introduction
AVR32100: Using the AVR32 USART Features Supports character length from 5 to 9 bits Interrupt Generation Parity, Framing and Overrun Error Detection Programmable Baud Rate Generator Line Break Generation
USB 2.0 Full-Speed Host/Function Processor AT43USB370. Summary. Features. Overview
Features USB 2.0 Full Speed Host/Function Processor Real-time Host/Function Switching Capability Internal USB and System Interface Controllers 32-bit Generic System Processor Interface with DMA Separate
8-bit RISC Microcontroller. Application Note. AVR155: Accessing an I 2 C LCD Display using the AVR 2-wire Serial Interface
AVR155: Accessing an I 2 C LCD Display using the AVR 2-wire Serial Interface Features Compatible with Philips' I 2 C protocol 2-wire Serial Interface Master Driver for Easy Transmit and Receive Function
AVR32110: Using the AVR32 Timer/Counter. 32-bit Microcontrollers. Application Note. Features. 1 Introduction
AVR32110: Using the AVR32 Timer/Counter Features Three independent 16 bit Timer/Counter Channels Multiple uses: - Waveform generation - Analysis and measurement support: Frequency and interval measurements
Application Note. Migrating from RS-232 to USB Bridge Specification USB Microcontrollers. Doc Control. References. Abbreviations
Migrating from RS-232 to USB Bridge Specification USB Microcontrollers Doc Control Rev Purpose of Modifications Date 0.0 Creation date 24 Nov 2003 Application Note 1.0 updates 22 Dec 2003 References Universal
AVR442: PC Fan Control using ATtiny13. 8-bit Microcontrollers. Application Note. Features. 1 Introduction
AVR442: PC Fan Control using ATtiny13 Features Variable speed based on: - Temperature sensor (NTC). - External PWM input. Stall detection with alarm output. Implementation in C code to ease modification.
AVR120: Characterization and Calibration of the ADC on an AVR. 8-bit Microcontrollers. Application Note. Features. Introduction
AVR120: Characterization and Calibration of the ADC on an AVR Features Understanding Analog to Digital Converter (ADC) characteristics Measuring parameters describing ADC characteristics Temperature, frequency
USB Test Environment ATUSBTEST- SS7400. Summary
Features Simple Command-driven Host Model Comprehensive Reports by Monitor Protocol Validation by Monitor Comprehensive Test Suite Fully Compliant with USB Forum Checklist Generates and Monitors Packets
2-wire Serial EEPROM AT24C1024. Advance Information
Features Low-voltage Operation 2.7(V CC =2.7Vto5.5V) Internally Organized 3,072 x 8 2-wire Serial Interface Schmitt Triggers, Filtered Inputs for Noise Suppression Bi-directional Data Transfer Protocol
AVR1900: Getting started with ATxmega128A1 on STK600. 8-bit Microcontrollers. Application Note. 1 Introduction
AVR1900: Getting started with ATxmega128A1 on STK600 1 Introduction This document contains information about how to get started with the ATxmega128A1 on STK 600. The first three sections contain information
Application Note. USB Mass Storage Device Implementation. USB Microcontrollers. References. Abbreviations. Supported Controllers
USB Mass Storage Device Implementation References Universal Serial Bus Specification, revision 2.0 Universal Serial Bus Class Definition for Communication Devices, version 1.1 USB Mass Storage Overview,
Table of Contents. Section 1 Introduction... 1-1. Section 2 Getting Started... 2-1. Section 3 Hardware Description... 3-1
ISP... User Guide Table of Contents Table of Contents Section 1 Introduction... 1-1 1.1 Features...1-1 1.2 Device Support...1-2 Section 2 Getting Started... 2-1 2.1 Unpacking the System...2-1 2.2 System
2-Wire Serial EEPROM AT24C32 AT24C64. 2-Wire, 32K Serial E 2 PROM. Features. Description. Pin Configurations. 32K (4096 x 8) 64K (8192 x 8)
Features Low-Voltage and Standard-Voltage Operation 2.7 (V CC = 2.7V to 5.5V) 1.8 (V CC = 1.8V to 5.5V) Low-Power Devices (I SB = 2 µa at 5.5V) Available Internally Organized 4096 x 8, 8192 x 8 2-Wire
How To Prevent Power Supply Corruption On An 8Bit Microcontroller From Overheating
AVR180: External Brown-out Protection Features Low-voltage Detector Prevent Register and EEPROM Corruption Two Discrete Solutions Integrated IC Solution Extreme Low-cost Solution Extreme Low-power Solution
Two-wire Automotive Serial EEPROM AT24C01A AT24C02 AT24C04 AT24C08 (1) AT24C16 (2)
Features Medium-voltage and Standard-voltage Operation 5.0 (V CC = 4.5V to 5.5V) 2.7 (V CC = 2.7V to 5.5V) Internally Organized 128 x 8 (1K), 256 x 8 (2K), 512 x 8 (4K), 1024 x 8 (8K) or 2048 x 8 (16K)
ATF15xx Product Family Conversion. Application Note. ATF15xx Product Family Conversion. Introduction
ATF15xx Product Family Conversion Introduction Table 1. Atmel s ATF15xx Family The ATF15xx Complex Programmable Logic Device (CPLD) product family offers high-density and high-performance devices. Atmel
Application Note. 8-bit Microcontrollers. AVR280: USB Host CDC Demonstration. 1. Introduction
AVR280: USB Host CDC Demonstration 1. Introduction The RS232 interface has disappeared from the new generation of PCs replaced by the USB interface. To follow this change, applications based on UART interface
8-bit Microcontroller. Application Note. AVR410: RC5 IR Remote Control Receiver
AVR410: RC5 IR Remote Control Receiver Features Low-cost Compact Design, Only One External Component Requires Only One Controller Pin, Any AVR Device Can be Used Size-efficient Code Introduction Most audio
AVR1309: Using the XMEGA SPI. 8-bit Microcontrollers. Application Note. Features. 1 Introduction SCK MOSI MISO SS
AVR1309: Using the XMEGA SPI Features Introduction to SPI and the XMEGA SPI module Setup and use of the XMEGA SPI module Implementation of module drivers Polled master Interrupt controlled master Polled
AT86RF230 (2450 MHz band) Radio Transceiver... User Guide
ATAVRRZ200 Demonstration Kit AT86RF230 (2450 MHz band) Radio Transceiver... User Guide Section 1 1.1 Organization...1-1 1.2 General Description...1-1 1.3 Demonstration kit features...1-2 1.4 Included
Application Note. 8-bit Microcontrollers. AVR091: Replacing AT90S2313 by ATtiny2313. Features. Introduction
AVR091: Replacing AT90S2313 by ATtiny2313 Features AT90S2313 Errata Corrected in ATtiny2313 Changes to Bit and Register Names Changes to Interrupt Vector Oscillators and Selecting Start-up Delays Improvements
Two-wire Serial EEPROM AT24C1024 (1)
Features Low-voltage Operation 2.7 (V CC = 2.7V to 5.5V) Internally Organized 131,072 x 8 Two-wire Serial Interface Schmitt Triggers, Filtered Inputs for Noise Suppression Bidirectional Data Transfer Protocol
8-bit. Application Note. Microcontrollers. AVR282: USB Firmware Upgrade for AT90USB
AVR282: USB Firmware Upgrade for AT90USB Features Supported by Atmel FLIP program on all Microsoft O/S from Windows 98SE and later FLIP 3.2.1 or greater supports Linux Default on chip USB bootloader In-System
AVR444: Sensorless control of 3-phase brushless DC motors. 8-bit Microcontrollers. Application Note. Features. 1 Introduction
AVR444: Sensorless control of 3-phase brushless DC motors Features Robust sensorless commutation control. External speed reference. Overcurrent detection/protection. Basic speed controller included. Full
AVR033: Getting Started with the CodeVisionAVR C Compiler. 8-bit Microcontrollers. Application Note. Features. 1 Introduction
AVR033: Getting Started with the CodeVisionAVR C Compiler Features Installing and Configuring CodeVisionAVR to Work with the Atmel STK 500 Starter Kit and AVR Studio Debugger Creating a New Project Using
AVR1922: Xplain Board Controller Firmware. 8-bit Microcontrollers. Application Note. Features. 1 Introduction
AVR1922: Xplain Board Controller Firmware Features USB interface - Mass-storage to on-board DataFlash memory Atmel AVR XMEGA TM reset control 1 Introduction The Xplain board controller, an AT90USB1287,
AVR32701: AVR32AP7 USB Performance. 32-bit Microcontrollers. Application Note. Features. 1 Introduction
AVR32701: AVR32AP7 USB Performance Features Linux USB bulk transfer performance ATSTK1000 (32-bit SDRAM bus width) ATNGW100 (16-bit SDRAM bus width) GadgetFS driver and gadgetfs-test application USB performance
DIP Top View VCC A16 A15 A12 A7 A6 A5 A4 A3 A2 A1 A0 I/O0 I/O1 I/O2 GND A17 A14 A13 A8 A9 A11 A10 I/O7 I/O6 I/O5 I/O4 I/O3. PLCC Top View VCC A17
Features Fast Read Access Time 70 ns 5-volt Only Reprogramming Sector Program Operation Single Cycle Reprogram (Erase and Program) 1024 Sectors (256 Bytes/Sector) Internal Address and Data Latches for
Using CryptoMemory in Full I 2 C Compliant Mode. Using CryptoMemory in Full I 2 C Compliant Mode AT88SC0104CA AT88SC0204CA AT88SC0404CA AT88SC0808CA
Using CryptoMemory in Full I 2 C Compliant Mode 1. Introduction This application note describes how to communicate with CryptoMemory devices in full I 2 C compliant mode. Full I 2 C compliance permits
AVR1600: Using the XMEGA Quadrature Decoder. 8-bit Microcontrollers. Application Note. Features. 1 Introduction. Sensors
AVR1600: Using the XMEGA Quadrature Decoder Features Quadrature Decoders 16-bit angular resolution Rotation speed and acceleration 1 Introduction Quadrature encoders are used to determine the position
Atmel AVR1017: XMEGA - USB Hardware Design Recommendations. 8-bit Atmel Microcontrollers. Application Note. Features.
Atmel AVR1017: XMEGA - USB Hardware Design Recommendations Features USB 2.0 compliance - Signal integrity - Power consumption - Back driver voltage - Inrush current EMC/EMI considerations Layout considerations
Step Motor Controller. Application Note. AVR360: Step Motor Controller. Theory of Operation. Features. Introduction
AVR360: Step Motor Controller Features High-Speed Step Motor Controller Interrupt Driven Compact Code (Only 10 Bytes Interrupt Routine) Very High Speed Low Computing Requirement Supports all AVR Devices
8-bit Microcontroller. Application Note. AVR134: Real-Time Clock (RTC) using the Asynchronous Timer. Features. Theory of Operation.
AVR134: Real-Time Clock (RTC) using the Asynchronous Timer Features Real-Time Clock with Very Low Power Consumption (4µA @ 3.3V) Very Low Cost Solution Adjustable Prescaler to Adjust Precision Counts Time,
8-bit RISC Microcontroller. Application Note. AVR335: Digital Sound Recorder with AVR and DataFlash
AVR5: Digital Sound Recorder with AVR and DataFlash Features Digital Voice Recorder 8-bit Sound Recording 8 khz Sampling Rate Sound Frequency up to 4000 Hz Maximum Recording Time 4 /4 Minutes Very Small
AVR2006: Design and characterization of the Radio Controller Board's 2.4GHz PCB Antenna. Application Note. Features.
AVR26: Design and characterization of the Radio Controller Board's 2.4GHz PCB Antenna Features Radiation pattern Impedance measurements WIPL design files NEC model Application Note 1 Introduction This
Application Note. 8-bit Microcontrollers. AVR307: Half Duplex UART Using the USI Module
AVR307: Half Duplex UART Using the USI Module Features Half Duplex UART Communication Communication Speed Up To 230.4 kbps at 14.75MHz Interrupt Controlled Communication Eight Bit Data, One Stop-bit, No
AVR32138: How to optimize the ADC usage on AT32UC3A0/1, AT32UC3A3 and AT32UC3B0/1 series. 32-bit Microcontrollers. Application Note.
AVR32138: How to optimize the ADC usage on AT32UC3A0/1, AT32UC3A3 and AT32UC3B0/1 series 1 Introduction This application note outlines the steps necessary to optimize analog to digital conversions on AT32UC3A0/1,
AVR441: Intelligent BLDC Fan Controller with Temperature Sensor and Serial Interface. 8-bit Microcontrollers. Application Note.
AVR441: Intelligent BLDC Fan Controller with Temperature Sensor and Serial Interface Features Application Example for Controlling Brushless DC Motors - Ideal for Use as an Integrated Fan Controller Automatically
AVR353: Voltage Reference Calibration and Voltage ADC Usage. 8-bit Microcontrollers. Application Note. Features. 1 Introduction
AVR353: Voltage Reference Calibration and Voltage ADC Usage Features Voltage reference calibration. - 1.100V +/-1mV (typical) and < 90ppm/ C drift from 10 C to +70 C. Interrupt controlled voltage ADC sampling.
JTAG ICE.... User Guide
JTAG ICE... User Guide Table of Contents Table of Contents Section 1 Introduction... 1-1 1.1 Features...1-1 1.2 JTAG ICE and the OCD Concept...1-2 1.2.4.1 Software Breakpoints...1-3 1.2.4.2 Hardware Breakpoints...1-3
2-wire Serial EEPROM AT24C512
Features Low-voltage and Standard-voltage Operation 5.0 (V CC = 4.5V to 5.5V). (V CC =.V to 5.5V). (V CC =.V to.v) Internally Organized 5,5 x -wire Serial Interface Schmitt Triggers, Filtered Inputs for
All-band AM/FM Receiver and Audio Amplifier IC U2510B
Features Superior Strong Signal Behavior by Using an RF AGC Soft Mute and HCC for Decreasing Interstation Noise in Mode Level Indicator (LED Drive) for and DC Mode Control:, and Tape Wide Supply-voltage
AVR1318: Using the XMEGA built-in AES accelerator. 8-bit Microcontrollers. Application Note. Features. 1 Introduction
AVR1318: Using the XMEGA built-in AES accelerator Features Full compliance with AES (FIPS Publication 197, 2002) - Both encryption and decryption procedures 128-bit Key and State memory XOR load option
Application Note. 8051 Microcontrollers. Guidelines to Keep ADC Resolution within Specification. Introduction. ADC Resolution
Guidelines to Keep ADC Resolution within Specification Introduction This application note describes how to optimize the ADC hardware environment in order not to alter the intrinsic ADC resolution and to
AVR1510: Xplain training - XMEGA USART. 8-bit Microcontrollers. Application Note. Prerequisites. 1 Introduction
AVR1510: Xplain training - XMEGA USART Prerequisites Required knowledge AVR1500: Xplain training XMEGA Basics AVR1502: Xplain training XMEGA Direct Memory Access Controller Software prerequisites Atmel
Application Note. 8-bit Microcontrollers. AVR270: USB Mouse Demonstration
AVR270: USB Mouse Demonstration Features Runs with AT90USB Microcontrollers at 8MHz USB Low Power Bus Powered Device (less then 100mA) Supported by any PC running Windows (98SE or later), Linux or Mac
AVR1301: Using the XMEGA DAC. 8-bit Microcontrollers. Application Note. Features. 1 Introduction
AVR1301: Using the XMEGA DAC Features 12 bit resolution Up to 1 M conversions per second Continuous drive or sample-and-hold output Built-in offset and gain calibration High drive capabilities Driver source
3-output Laser Driver for HD-DVD/ Blu-ray/DVD/ CD-ROM ATR0885. Preliminary. Summary. Features. Applications. 1. Description
Features Three Selectable Outputs All Outputs Can Be Used Either for Standard (5V) or High Voltage (9V) Maximum Output Current at All Outputs Up to 150 ma On-chip Low-EMI RF Oscillator With Spread-spectrum
AVR2004: LC-Balun for AT86RF230. Application Note. Features. 1 Introduction
AVR2004: LC-Balun for AT86RF230 Features Balun for AT86RF230 with lumped elements Simulation results S-Parameter file 1 Introduction In some cases the used balun on the ATAVR RZ502 Radio Boards must be
AT91SAM ARM-based Flash MCU. Application Note
Modbus Slave Stack for the Atmel Family of SAM3 Microcontrollers (Free Modbus Stack from Embedded Solutions) 1. Scope This application note provides directions and instructions to application engineers
Application Note. 8-bit Microcontrollers. AVR272: USB CDC Demonstration UART to USB Bridge
AVR272: USB CDC Demonstration UART to USB Bridge Features Supported by Windows 2000 or later No driver installation Virtual COM Port Enumeration USB to RS232 Bridge with dynamic baudrate Bus powered 8-bit
AVR318: Dallas 1-Wire master. 8-bit Microcontrollers. Application Note. Features. Introduction
AVR318: Dallas 1-Wire master Features Supports standard speed Dallas 1-Wire protocol. Compatible with all AVRs. Polled or interrupt-driven implementation. Polled implementation requires no external hardware.
ATF1500AS Device Family. Application Note. In-System Programming of Atmel ATF1500AS Devices on the HP3070. Introduction.
In-System Programming of Atmel ATF1500AS Devices on the HP3070 Introduction In-System Programming (ISP) support of Programmable Logic Devices (PLD) is becoming a requirement for customers using Automated
AVR115: Data Logging with Atmel File System on ATmega32U4. Microcontrollers. Application Note. 1 Introduction. Atmel
AVR115: Data Logging with Atmel File System on ATmega32U4 Microcontrollers 01101010 11010101 01010111 10010101 Application Note 1 Introduction Atmel provides a File System management for AT90USBx and ATmegaxxUx
AVR040: EMC Design Considerations. 8-bit Microcontrollers. Application Note PRELIMINARY. Scope. 1 Introduction
AVR040: EMC Design Considerations Scope This application note covers the most common EMC problems designers encounter when using microcontrollers. It will briefly discuss the various phenomena. The reference
8-bit Microcontroller. Application Note. AVR313: Interfacing the PC AT Keyboard
AVR313: Interfacing the PC AT Keyboard Features Interfacing Standard PC AT Keyboards Requires Only Two I/O Pins. One of them must be an External Interrupt Pin No Extra Hardware Required Complete Example
8-bit RISC Microcontroller. Application Note. AVR910: In-System Programming
AVR910: In-System Programming Features Complete In-System Programming Solution for AVR Microcontrollers Covers All AVR Microcontrollers with In-System Programming Support Reprogram Both Data Flash and
8-bit. Application Note. Microcontrollers. AVR273: USB Mass Storage Implementation. Features. 1. Introduction
: USB Mass Storage Implementation Features Bulk-Only Transport Protocol Supported by all Microsoft O/S from Windows 98SE and later Supported by Linux Kernel 2.4 or later and Mac OS 9/x or later. Complete
STK 500, AVRISP, AVRISP
AVR053: Calibration of the internal RC oscillator Features Calibration using STK 500, AVRISP, AVRISP mkii, JTAGICE or JTAGICE mkii Calibration using 3 rd party programmers Adjustable RC frequency with
256K (32K x 8) OTP EPROM AT27C256R 256K EPROM. Features. Description. Pin Configurations
Features Fast Read Access Time - 45 ns Low-Power CMOS Operation 100 µa max. Standby 20 ma max. Active at 5 MHz JEDEC Standard Packages 28-Lead 600-mil PDIP 32-Lead PLCC 28-Lead TSOP and SOIC 5V ± 10% Supply
AVR32788: AVR 32 How to use the SSC in I2S mode. 32-bit Microcontrollers. Application Note. Features. 1 Introduction
AVR32788: AVR 32 How to use the SSC in I2S mode Features I²S protocol overview I²S on the AVR32 I²S sample rate configurations Example of use with AT32UC3A on EVK1105 board 32-bit Microcontrollers Application
APPLICATION NOTE. Atmel AVR600: STK600 Expansion, Routing and Socket Boards. Atmel Microcontrollers. Introduction
APPLICATION NOTE Atmel AVR600: STK600 Expansion, Routing and Socket Boards Introduction Atmel Microcontrollers This application note describes the process of developing new routing, socket and expansion
Application Note. AVR Microcontrollers. AVR493: Sensorless Commutation of Brushless DC Motor (BLDC) using AT90PWM3 and ATAVRMC100. 1.
AVR493: Sensorless Commutation of Brushless DC Motor (BLDC) using AT90PWM3 and ATAVRMC100 1. Introduction This application note describes how to implement a sensorless commutation of BLDC motors with the
CAN bus board. www.matrixmultimedia.com EB018
CAN bus board www.matrixmultimedia.com EB018 Contents About this document 3 Board layout 3 General information 4 Circuit description 5 Protective cover 6 Circuit diagram 7 2 Copyright About this document
Application Note. 8-bit Microcontrollers. AVR293: USB Composite Device
AVR293: USB Composite Device Features Combining several USB applications using ONE DEVICE No HUB needed Bus powered 1. Introduction Adding to the flexibility given to the user with the Hot Plug & Play,
80C51 MCU s. Application Note. Analyzing the Behavior of an Oscillator and Ensuring Good Start-up. Oscillator Fundamentals
Analyzing the Behavior o an Oscillator and Ensuring Good Start-up This application note explains how an oscillator unctions and which methods can be used to check i the oscillation conditions are met in
UM1613 User manual. 16-pin smartcard interface ST8034P demonstration board. Introduction
User manual 16-pin smartcard interface ST8034P demonstration board Introduction The purpose of this document is to describe, and provide information on, how to efficiently use the ST8034P smartcard interface
Application Note. 8-bit Microcontrollers. AVR435: BLDC/BLAC Motor Control Using a Sinus Modulated PWM Algorithm. 1. Features. 2.
AVR45: BLDC/BLAC Motor Control Using a Sinus Modulated PWM Algorithm 1. Features Cost-effective and energy efficient BLDC/BLAC motor drive Implemented on an AT9PWM AVR low cost microcontroller Low memory
Atmel AVR4921: ASF - USB Device Stack Differences between ASF V1 and V2. 8-bit Atmel Microcontrollers. Application Note. Features.
Atmel AVR4921: ASF - USB Device Stack Differences between ASF V1 and V2 Features Advantages Implementation differences Integration Migration from stack V1 to stack V2 8-bit Atmel Microcontrollers Application
MFRD52x. Mifare Contactless Smart Card Reader Reference Design. Document information
Rev. 2.1 17. April 2007 Preliminary Data Sheet Document information Info Keywords Content MFRC522, MFRC523, MFRC52x, MFRD522, MFRD523, Mifare Contactless Smart Card Reader Reference Design, Mifare Reader
AVR068: STK500 Communication Protocol. 8-bit Microcontrollers. Application Note. Features. 1 Introduction
AVR068: STK500 Communication Protocol Features Interfaces both STK500 and AVRISP Supports STK500 FW 2.XX 1 Introduction This document describes the 2.0 version of the communication protocol between the
Atmel AVR4920: ASF - USB Device Stack - Compliance and Performance Figures. Atmel Microcontrollers. Application Note. Features.
Atmel AVR4920: ASF - USB Device Stack - Compliance and Performance Figures Features Compliance to USB 2.0 - Chapters 8 and 9 - Classes: HID, MSC, CDC, PHDC Interoperability: OS, classes, self- and bus-powered
