9.63 Laboratory in Cognitive Science. Hypothetical Experiment

Size: px
Start display at page:

Download "9.63 Laboratory in Cognitive Science. Hypothetical Experiment"

Transcription

1 9.63 Laboratory in Cognitive Science Fall 2005 Course 2a- Signal Detection Theory Aude Oliva Ben Balas, Charles Kemp Hypothetical Experiment Question: How LSD drug affects rat s running speed? Method & Subjects: 40 rats have been trained to run a straight-alley maze for a food reward. They are randomly assigned to two groups (Experimental group: LSD injection, and Control group: injection of a placebo). 1

2 Hypothetical Experiment: Results The distribution of running times is characterized by two measurements: Central tendency (mean) Dispersion: how the score are spread out about the center (standard deviation) Frequency distributions Running time (seconds) Histograms representing scores for 20 participants in the control (top) and experimental conditions of the hypothetical LSD experiment Normal Distribution (curve) Mean Normal distribution 2

3 Normal Distribution Inflection Point Inflection Point 2.14% 2.14% 0.13% 0.13% 13.59% 34.13% 34.13% 13.59% Standard (z) Score Units Proportions of scores in specific areas under the normal curve. The inflection points are one standard deviation from the mean. Figure by MIT OCW. Each side of the normal curve has a point where the curve slightly reverses its direction: this is the inflection point The inflection point is always one standard-deviation from the mean About 68 % of all scores are contained within one standard deviation of the mean 96 % of the scores are contained within 2 stdev % of the scores are contained within 3 stdev This property of normal curves is extremely useful because if we know an individual s score and the mean and standard deviation in the distribution of scores, we also know the person relative rank. % of people with this score IQ Population Distribution 14% 10% 6% 2% Mean Normal distribution IQ Most IQ tests are devised so that the population mean is 100 and the stdev is 15. If a person has an IQ of 115, she has scored higher than XX % of all people. 3

4 IQ Population Distribution % of people with this score 14% 10% 6% 2% Mentally Retarded IQ Mentally Gifted Normal Curve and Z scores Inflection Point Inflection Point 2.14% 2.14% 0.13% 0.13% 13.59% 34.13% 34.13% 13.59% Standard (z) Score Units Proportions of scores in specific areas under the normal curve. The inflection points are one standard deviation from the mean. Figure by MIT OCW. It is common to compare scores across normal distributions with different means and variances in terms of standard scores or Z-scores The z-score is the difference between an individual score and the mean expressed in units of standard deviations. So, an IQ of 115 transfers in a z-score of X? An IQ of 78 translates to a z-score of Y? Grades in courses should be calculated in terms of z-scores, why? 4

5 Detection Task Reaction Time distribution Figure removed due to copyright reasons. 874 msec Histogram distribution of all reaction times for 6 participants (4200 samples total) for target present case Mean = 471 msec Stdev = 141 msec 3 stdev from the mean = 874 msec Detection Task: Reaction Time Distribution Figures removed due to copyright reasons. Please see: Bacon-Macé, Nadège, et al. Figures 1 and 3A in "The time course of visual processing: Backward masking and natural scene categorisation." Vision Research 45 (2005): Masking effects on behavioral reaction time. Reaction time distribution of correct go responses as a function of the SOA (10 msec bins) averaged in 16 subjects. 5

6 Visual Search: Reaction Time Distribution Figure removed due to copyright reasons. Please see: Wolfe, Jeremy M., and Aude Oliva, et al. Figures 13 and 16 in "Segmentation of objects from backgrounds in visual search tasks." Vision Research 42 (2002): Signal Detection Theory Starting point of signal detection theory: all reasoning and decision making takes place in the presence of uncertainty Your decision depends on the signal but also your response bias and internal criterion 6

7 A tumor scenario You are a radiologist examining a CT scan, looking for a tumor. The task is hard, so there is some uncertainty: either there is a tumor (signal present), or there is not (signal absent). Either you see a tumor (response yes ), either you do not see a tumor (response no ). There are 4 possible outcomes: Signal Present Signal Absent Say Yes" Hit False Alarm Say No" Miss Correct Rejection Adapted from David Heeger document Decision making process Two main components: (1) The signal or information. You look at the information in the CT scan. A tumor might be brighter or darker, have a different texture, etc. With expertise and additional information (other scans), the likelihood of getting a HIT or CORRECT REJECTION increase. Adapted from David Heeger document 7

8 Decision making process Two main components: (2) Criterion: the second component of the decision process is very different: it refers to your own judgment or internal criterion. For instance, for two doctors: Criterion life and death (and money): Increase in False Alarm = decision towards yes (tumor present) decision. A false alarm will result in a routine biopsy operation. This doctor has a bias toward yes : liberal response strategy. Criterion unnecessary surgery : surgeries are very bad (expensive, stress). They will miss more tumors and save money to the social system. They will feel that a tumor if there is really one will be picked-up at the next check-up. This doctor has a bias towards no : a conservative response strategy. Adapted from David Heeger document Internal Response and Internal noise Content removed due to copyright reasons. Refer to: Heeger, David. Signal Detection Theory. Department of Psychology, New York University,

9 Probability of Occurrence Curves Content removed due to copyright reasons. Refer to: Heeger, David. Signal Detection Theory. Department of Psychology, New York University, Probability of Occurrence Curves Content removed due to copyright reasons. Refer to: Heeger, David. Signal Detection Theory. Department of Psychology, New York University,

10 Hypothetical internal response curves SDT assumes that your internal response will vary randomly over trials around an average value, producing a normal curve distribution of internal responses. The decision process compare the strength of the internal (sensory) response to an internally set criterion: whenever the internal response is greater than this criterion, response yes. Whenever the internal response is less than the criterion, response no. Figure removed due to copyright reasons. Refer to: Heeger, David. Figure 2 in Signal Detection Theory. Department of Psychology, New York University, The decision process is influenced by knowledge of the probability of signal events (cf. Wolfe et al., Nature, 2005) and payoff factors. Criterion line divides the graph into 4 sections (hits, misses, false alarm, correct rejections). On both HIT and FA, the internal criterion is greater than the criterion. Adapted from David Heeger document Effects of Criterion If you choose a low criterion, you respond yes to almost everything (never miss a tumor and have a very high HIT rate, but a lot of unnecessary surgeries). If you choose a high criterion, you respond no to almost everything. Figure removed due to copyright reasons. Refer to: Heeger, David. Figure 2 in Signal Detection Theory. Department of Psychology, New York University, from David Heeger document 10

11 SDT and d-prime The underlying model of SDT consists of two normal distributions one representing a signal (target present) and another representing "noise." (target absent) The willingness of the person to say 'Signal Present' in response to an ambiguous stimulus is represented by the criterion. How well a person can discriminate between Signal Present and Signal Absent trials is represented by the difference between the means of the two distributions, d'. Criterion Data from an experiment with target present/absent: Where do I start? Everything is in the HIT and FA rates. For instance: HIT = 0.84 FA = 0.16 Response bias c = -0.5[z(H)+z(F)] Sensitivity (discrimination) d = z(h)-z(f) 11

12 D-prime: d' = separation / spread d = z (hit rate) - z (false alarm) FA = 0.16 Proportion of yes responses given the target is absent HIT = 0.84 Proportion of yes responses given the target is present Target absent Target Present Only need of HIT and FA HIT = 0.84 = Area to the right of C is 84 % absent present Criterion FA = 0.16 Area to the right of C is 16 % Response bias c = -0.5[z(H)+z(F)] C = [z(0.84) + z(0.16)] C = [-1 + 1] C = 0 (no bias) Sensitivity d = z(h)-z(f) d = z(0.84) - z(0.16) d = -1-1 d = 2 In Excel: z(x) is NORMINV(x,0,1) e.g. NORMINV(0.84,0,1) 12

13 D-prime: d' = separation / spread d = z (hit rate) - z (false alarm) FA =?? Proportion of yes responses Given the target is absent HIT =?? Proportion of yes responses given the target is present Target absent Target Present Higher Criterion D-prime: d' = separation / spread d = z (hit rate) - z (false alarm) FA = (very small) HIT = 0.5 Proportion of yes responses Proportion of yes responses Given the target is absent given the target is present Target absent Target Present Higher Criterion 13

14 Area under normal curve and z-score 1 stdev 84 % (area to the left) Z-scores are measured in standard deviations from the mean. Area to the right of a z-score is the probability that a draw from the normal distribution will be above the z-score Slide adapted from Ben Backus, Uni. Pennsylvania Conclusion on d d' is a measure of sensitivity. The larger the d' value, the better your performance. A d' value of zero means that you cannot distinguish trials with the target from trials without the target. A d' of 4.6 indicates a nearly perfect ability to distinguish between trials that included the target and trials that did not include the target. C is a measure of response bias. A value greater than 0 indicates a conservative bias (a tendency to say `absent' more than `present') and a value less than 0 indicates a liberal bias. Values close to 0 indicate neutral bias. 14

15 CogLab 1: Signal Detection Results d' is a measure of sensitivity. A d' value of zero means that?????? A d' of 4.6 indicates a nearly perfect ability to distinguish between trials that included the target and trials that did not include the target. C is a measure of response bias. A value greater than 0 indicates????? a value less than 0 indicates????? Values close to 0 indicate????? Hit False Alarm N=6 / SDT, Perception and Memory "Yes-No" paradigms A research domain where SDT has been successfully applied is in the study of memory. Typically in memory experiments, partici pants are shown a list of words and later asked to make a "yes" or "no" statement as to whether they remember seeing an item before. Alternatively, participants make "old" or "new" responses. The results of the experiment can be portrayed in what is called a decision matrix. The hit rate is defined as the proportion of "old" responses given for items that are Old and the false alarm rate is the proportion of "old" responses given to items that are New. Hypothetical distribution of yes and no response. The decision criterion C determines whether a yes or no response will be made. Strong evidence to the right of the criterion will lead to yes responses and weak evidence to the left will lead to weak responses. Interactive program: the WISE Project's Signal Theory Tutorial 15

16 Animal Detection Task (Project) Images removed due to copyright reasons. Target: Image removed due to copyright reasons. Distractor: Image removed due to copyright reasons. Method: experiment ready to run in matlab False Memory (Project) Scene memory and visual complexity (clutter) Images removed due to copyright reasons. Method: pictures already ranked for complexity. Experiment can be done with powerpoint. Also: Memory of comics drawing, memory of places (e.g. for eyewitness testimony) memory of emotional images, memory under dual-tasks, short term memory (change blindness paradigm, etc), memory of emotions-faces, etc.. 16

17 Costs and Utilities of d What are the costs of a false alarm and of a miss for the following: A pilot emerges from the fog and estimates whether her position is suitable for landing A doctor estimates whether a fuzzy spot could be a tumor You are screening bags at the airport Wolfe et al (2005) Detection of Rare Target - Visual Search (project) Refer to: Wolfe, Jeremy M., Todd. S. Horowitz, and Naomi M. Kenner. Rare items often missed in visual searches. Nature 435 (2005): Our society relies on accurate performance in visual screening tasks. These are visual search for rare targets: we show here that target rarity leads to disturbingly Inaccurate performance in target detection 17

18 What happened? Find the tool When tools are present on 50% of trials, observers missed 5-10% of them When the same tools are present on just 1% of trials, observers missed 30-40% of them A problem with performance, not searcher competence. Courtesy of Dr. Jeremy Wolfe. Used with permission. l Here, the important errors are Misses Figure removed due to copyright reasons. Please see: Wolfe, Jeremy M., Todd. S. Horowitz, and Naomi M. Kenner. Figure 1 in Rare items often missed in visual searches. Nature 435 (2005):

19 The Gambler s Fallacy 2000 Reaction Time (msec) Trial relative to Target Present Trial Right after a MISS, RTs jump way up l Courtesy of Dr. Jeremy Wolfe. Used with permission. But I am sure another rare target won t come again soon right? 2000 Reaction Time (msec) Trial relative to Target Present Trial So I don t learn from my error Courtesy of Dr. Jeremy Wolfe. Used with permission. l 19

20 And I do the same after a Hit. Reaction Time (msec) Trial relative to Target Present Trial Courtesy of Dr. Jeremy Wolfe. Used with permission. The Gambler s Fallacy Reaction Time (msec) Trial relative to Target Present Trial Courtesy of Dr. Jeremy Wolfe. Used with permission. S 20

21 The z-score z i = (x i x) How many standard deviations above the s mean is score z i? x = 18, 24, 12, 6 x = 1.5, 2, 1, 0.5 z =.4, 1.3, -.4,-1.3 z =.4, 1.3, -.4, Courtesy of Ruth Rosenholtz. Used with permission. Example use of z-scores How do you combine scores from different people? Mary, Jeff, and Raul see a movie. Their ratings of the movie, on a scale from 1 to 10: Mary = 7, Jeff = 9, Raul = 5 Average score = 7? It s more meaningful to see how those scores compare to how they typically rate movies. Courtesy of Ruth Rosenholtz. Used with permission. 21

22 Example use of z-scores Recent ratings from Mary, Jeff, & Raul: Mary: 7, 8, 7, 9, 8, 9 7 is pretty low Jeff: 8, 9, 9, 10, 8, 10 9 is average Raul: 1, 2, 2, 4, 5 5 is pretty good z-scores: Mary: m=8, s=.8 z(7) = -1.2 Jeff: m=9 z(9) = 0 Raul: m=2.8, s=1.5 z(5) = 1.5 mean(z) = 0.1 = # of standard deviations above the mean It s probably your average movie, nothing outstanding. Courtesy of Ruth Rosenholtz. Used with permission. 22

Map of the course. Who is that person? 9.63 Laboratory in Visual Cognition. Detecting Emotion and Attitude Which face is positive vs. negative?

Map of the course. Who is that person? 9.63 Laboratory in Visual Cognition. Detecting Emotion and Attitude Which face is positive vs. negative? 9.63 Laboratory in Visual Cognition Fall 2009 Mon. Sept 14 Signal Detection Theory Map of the course I - Signal Detection Theory : Why it is important, interesting and fun? II - Some Basic reminders III

More information

9.63 Laboratory in Cognitive Science. Interaction: memory experiment

9.63 Laboratory in Cognitive Science. Interaction: memory experiment 9.63 Laboratory in Cognitive Science Fall 25 Lecture 6 Factorial Design: Complex design Aude Oliva Ben Balas, Charles Kemp Interaction: memory experiment Goal: In an experiment, you compare the explicit

More information

What is the difference between sensation and. Perception:

What is the difference between sensation and. Perception: 4C signal detection and subliminal messages 1 What is the difference between sensation and perception? Sensation: The process of detecting a stimulus, such as light waves (vision), Perception: The process

More information

Descriptive Statistics

Descriptive Statistics Descriptive Statistics Primer Descriptive statistics Central tendency Variation Relative position Relationships Calculating descriptive statistics Descriptive Statistics Purpose to describe or summarize

More information

II. DISTRIBUTIONS distribution normal distribution. standard scores

II. DISTRIBUTIONS distribution normal distribution. standard scores Appendix D Basic Measurement And Statistics The following information was developed by Steven Rothke, PhD, Department of Psychology, Rehabilitation Institute of Chicago (RIC) and expanded by Mary F. Schmidt,

More information

Descriptive Statistics and Measurement Scales

Descriptive Statistics and Measurement Scales Descriptive Statistics 1 Descriptive Statistics and Measurement Scales Descriptive statistics are used to describe the basic features of the data in a study. They provide simple summaries about the sample

More information

Detection Sensitivity and Response Bias

Detection Sensitivity and Response Bias Detection Sensitivity and Response Bias Lewis O. Harvey, Jr. Department of Psychology University of Colorado Boulder, Colorado The Brain (Observable) Stimulus System (Observable) Response System (Observable)

More information

Factorial Design. A factorial design. 9.63 Laboratory in Visual Cognition. Effect of Attraction x Emotion

Factorial Design. A factorial design. 9.63 Laboratory in Visual Cognition. Effect of Attraction x Emotion 9.63 aboratory in Visual Cognition Fall 29 Factorial Design & Interaction Factorial Design Two or more independent variables Simplest case: a 2 x 2 design (2 factors and 2 conditions per factor) A factorial

More information

Two-Way ANOVA Lab: Interactions

Two-Way ANOVA Lab: Interactions Name Two-Way ANOVA Lab: Interactions Perhaps the most complicated situation that you face in interpreting a two-way ANOVA is the presence of an interaction. This brief lab is intended to give you additional

More information

CALCULATIONS & STATISTICS

CALCULATIONS & STATISTICS CALCULATIONS & STATISTICS CALCULATION OF SCORES Conversion of 1-5 scale to 0-100 scores When you look at your report, you will notice that the scores are reported on a 0-100 scale, even though respondents

More information

Study Guide for the Final Exam

Study Guide for the Final Exam Study Guide for the Final Exam When studying, remember that the computational portion of the exam will only involve new material (covered after the second midterm), that material from Exam 1 will make

More information

z-scores AND THE NORMAL CURVE MODEL

z-scores AND THE NORMAL CURVE MODEL z-scores AND THE NORMAL CURVE MODEL 1 Understanding z-scores 2 z-scores A z-score is a location on the distribution. A z- score also automatically communicates the raw score s distance from the mean A

More information

Lesson 7 Z-Scores and Probability

Lesson 7 Z-Scores and Probability Lesson 7 Z-Scores and Probability Outline Introduction Areas Under the Normal Curve Using the Z-table Converting Z-score to area -area less than z/area greater than z/area between two z-values Converting

More information

9.63 Laboratory in Cognitive Science. Factorial Design

9.63 Laboratory in Cognitive Science. Factorial Design 9.63 Laboratory in Cognitive Science Fall 25 Lecture 4a Factorial Design: Interaction Aude Oliva Ben Balas, Charles Kemp Factorial Design Two or more factors in such a way that all the possible combinations

More information

CRITICAL THINKING REASONS FOR BELIEF AND DOUBT (VAUGHN CH. 4)

CRITICAL THINKING REASONS FOR BELIEF AND DOUBT (VAUGHN CH. 4) CRITICAL THINKING REASONS FOR BELIEF AND DOUBT (VAUGHN CH. 4) LECTURE PROFESSOR JULIE YOO Claims Without Arguments When Claims Conflict Conflicting Claims Conflict With Your Background Information Experts

More information

9.63 Laboratory in Visual Cognition. Single Factor design. Single design experiment. Experimental design. Textbook Chapters

9.63 Laboratory in Visual Cognition. Single Factor design. Single design experiment. Experimental design. Textbook Chapters 9.63 Laboratory in Visual Cognition Fall 2009 Single factor design Textbook Chapters Chapter 5: Types of variables Chapter 8: Controls Chapter 7: Validity Chapter 11: Single factor design Single design

More information

Z - Scores. Why is this Important?

Z - Scores. Why is this Important? Z - Scores Why is this Important? How do you compare apples and oranges? Are you as good a student of French as you are in Physics? How many people did better than you on a test? How many did worse? Are

More information

Statistics. Measurement. Scales of Measurement 7/18/2012

Statistics. Measurement. Scales of Measurement 7/18/2012 Statistics Measurement Measurement is defined as a set of rules for assigning numbers to represent objects, traits, attributes, or behaviors A variableis something that varies (eye color), a constant does

More information

Inclusion and Exclusion Criteria

Inclusion and Exclusion Criteria Inclusion and Exclusion Criteria Inclusion criteria = attributes of subjects that are essential for their selection to participate. Inclusion criteria function remove the influence of specific confounding

More information

Introduction to. Hypothesis Testing CHAPTER LEARNING OBJECTIVES. 1 Identify the four steps of hypothesis testing.

Introduction to. Hypothesis Testing CHAPTER LEARNING OBJECTIVES. 1 Identify the four steps of hypothesis testing. Introduction to Hypothesis Testing CHAPTER 8 LEARNING OBJECTIVES After reading this chapter, you should be able to: 1 Identify the four steps of hypothesis testing. 2 Define null hypothesis, alternative

More information

Analysis of Data. Organizing Data Files in SPSS. Descriptive Statistics

Analysis of Data. Organizing Data Files in SPSS. Descriptive Statistics Analysis of Data Claudia J. Stanny PSY 67 Research Design Organizing Data Files in SPSS All data for one subject entered on the same line Identification data Between-subjects manipulations: variable to

More information

Problem-Based Group Activities for a Sensation & Perception Course. David S. Kreiner. University of Central Missouri

Problem-Based Group Activities for a Sensation & Perception Course. David S. Kreiner. University of Central Missouri -Based Group Activities for a Course David S. Kreiner University of Central Missouri Author contact information: David Kreiner Professor of Psychology University of Central Missouri Lovinger 1111 Warrensburg

More information

Grade 12 Psychology (40S) Outcomes Unedited Draft 1

Grade 12 Psychology (40S) Outcomes Unedited Draft 1 Grade 12 Psychology (40S) Outcomes Unedited Draft 1 Theme 1: Introduction and Research Methods Topic 1: Introduction 1.1.1 Define psychology, and list and explain its goals. 1.1.2 Describe and compare

More information

Prospect Theory Ayelet Gneezy & Nicholas Epley

Prospect Theory Ayelet Gneezy & Nicholas Epley Prospect Theory Ayelet Gneezy & Nicholas Epley Word Count: 2,486 Definition Prospect Theory is a psychological account that describes how people make decisions under conditions of uncertainty. These may

More information

CORRELATIONAL ANALYSIS: PEARSON S r Purpose of correlational analysis The purpose of performing a correlational analysis: To discover whether there

CORRELATIONAL ANALYSIS: PEARSON S r Purpose of correlational analysis The purpose of performing a correlational analysis: To discover whether there CORRELATIONAL ANALYSIS: PEARSON S r Purpose of correlational analysis The purpose of performing a correlational analysis: To discover whether there is a relationship between variables, To find out the

More information

Introduction to Hypothesis Testing. Hypothesis Testing. Step 1: State the Hypotheses

Introduction to Hypothesis Testing. Hypothesis Testing. Step 1: State the Hypotheses Introduction to Hypothesis Testing 1 Hypothesis Testing A hypothesis test is a statistical procedure that uses sample data to evaluate a hypothesis about a population Hypothesis is stated in terms of the

More information

1) Write the following as an algebraic expression using x as the variable: Triple a number subtracted from the number

1) Write the following as an algebraic expression using x as the variable: Triple a number subtracted from the number 1) Write the following as an algebraic expression using x as the variable: Triple a number subtracted from the number A. 3(x - x) B. x 3 x C. 3x - x D. x - 3x 2) Write the following as an algebraic expression

More information

Measurement & Data Analysis. On the importance of math & measurement. Steps Involved in Doing Scientific Research. Measurement

Measurement & Data Analysis. On the importance of math & measurement. Steps Involved in Doing Scientific Research. Measurement Measurement & Data Analysis Overview of Measurement. Variability & Measurement Error.. Descriptive vs. Inferential Statistics. Descriptive Statistics. Distributions. Standardized Scores. Graphing Data.

More information

Lab 11. Simulations. The Concept

Lab 11. Simulations. The Concept Lab 11 Simulations In this lab you ll learn how to create simulations to provide approximate answers to probability questions. We ll make use of a particular kind of structure, called a box model, that

More information

HYPOTHESIS TESTING WITH SPSS:

HYPOTHESIS TESTING WITH SPSS: HYPOTHESIS TESTING WITH SPSS: A NON-STATISTICIAN S GUIDE & TUTORIAL by Dr. Jim Mirabella SPSS 14.0 screenshots reprinted with permission from SPSS Inc. Published June 2006 Copyright Dr. Jim Mirabella CHAPTER

More information

Midterm Review Problems

Midterm Review Problems Midterm Review Problems October 19, 2013 1. Consider the following research title: Cooperation among nursery school children under two types of instruction. In this study, what is the independent variable?

More information

Statistics Review PSY379

Statistics Review PSY379 Statistics Review PSY379 Basic concepts Measurement scales Populations vs. samples Continuous vs. discrete variable Independent vs. dependent variable Descriptive vs. inferential stats Common analyses

More information

Independent samples t-test. Dr. Tom Pierce Radford University

Independent samples t-test. Dr. Tom Pierce Radford University Independent samples t-test Dr. Tom Pierce Radford University The logic behind drawing causal conclusions from experiments The sampling distribution of the difference between means The standard error of

More information

Descriptive Statistics

Descriptive Statistics Y520 Robert S Michael Goal: Learn to calculate indicators and construct graphs that summarize and describe a large quantity of values. Using the textbook readings and other resources listed on the web

More information

Fairfield Public Schools

Fairfield Public Schools Mathematics Fairfield Public Schools AP Statistics AP Statistics BOE Approved 04/08/2014 1 AP STATISTICS Critical Areas of Focus AP Statistics is a rigorous course that offers advanced students an opportunity

More information

psychology the science of psychology CHAPTER third edition Psychology, Third Edition Saundra K. Ciccarelli J. Noland White

psychology the science of psychology CHAPTER third edition Psychology, Third Edition Saundra K. Ciccarelli J. Noland White psychology third edition CHAPTER 1 the science of psychology Learning Objectives LO 1.1 Definition and Goals of Psychology LO 1.2 Structuralism and Functionalism LO 1.3 Early Gestalt, Psychoanalysis, and

More information

8. THE NORMAL DISTRIBUTION

8. THE NORMAL DISTRIBUTION 8. THE NORMAL DISTRIBUTION The normal distribution with mean μ and variance σ 2 has the following density function: The normal distribution is sometimes called a Gaussian Distribution, after its inventor,

More information

Chapter 2: Descriptive Statistics

Chapter 2: Descriptive Statistics Chapter 2: Descriptive Statistics **This chapter corresponds to chapters 2 ( Means to an End ) and 3 ( Vive la Difference ) of your book. What it is: Descriptive statistics are values that describe the

More information

Frequency Distributions

Frequency Distributions Descriptive Statistics Dr. Tom Pierce Department of Psychology Radford University Descriptive statistics comprise a collection of techniques for better understanding what the people in a group look like

More information

DDBA 8438: Introduction to Hypothesis Testing Video Podcast Transcript

DDBA 8438: Introduction to Hypothesis Testing Video Podcast Transcript DDBA 8438: Introduction to Hypothesis Testing Video Podcast Transcript JENNIFER ANN MORROW: Welcome to "Introduction to Hypothesis Testing." My name is Dr. Jennifer Ann Morrow. In today's demonstration,

More information

CLINICAL TRIALS SHOULD YOU PARTICIPATE? by Gwen L. Nichols, MD

CLINICAL TRIALS SHOULD YOU PARTICIPATE? by Gwen L. Nichols, MD CLINICAL TRIALS SHOULD YOU PARTICIPATE? by Gwen L. Nichols, MD Gwen L. Nichols, M.D., is currently the Oncology Site Head of the Roche Translational Clinical Research Center at Hoffman- LaRoche. In this

More information

BNG 202 Biomechanics Lab. Descriptive statistics and probability distributions I

BNG 202 Biomechanics Lab. Descriptive statistics and probability distributions I BNG 202 Biomechanics Lab Descriptive statistics and probability distributions I Overview The overall goal of this short course in statistics is to provide an introduction to descriptive and inferential

More information

Introduction to Hypothesis Testing OPRE 6301

Introduction to Hypothesis Testing OPRE 6301 Introduction to Hypothesis Testing OPRE 6301 Motivation... The purpose of hypothesis testing is to determine whether there is enough statistical evidence in favor of a certain belief, or hypothesis, about

More information

Clinical Trials and Screening: What You Need to Know

Clinical Trials and Screening: What You Need to Know Scan for mobile link. Clinical Trials and Screening: What You Need to Know What is a Clinical Trial? At A Glance A clinical trial is a research study that tests how well new medical techniques work in

More information

Risk Analysis and Quantification

Risk Analysis and Quantification Risk Analysis and Quantification 1 What is Risk Analysis? 2. Risk Analysis Methods 3. The Monte Carlo Method 4. Risk Model 5. What steps must be taken for the development of a Risk Model? 1.What is Risk

More information

The child is given oral, "trivia"- style. general information questions. Scoring is pass/fail.

The child is given oral, trivia- style. general information questions. Scoring is pass/fail. WISC Subscales (WISC-IV shown at bottom with differences noted) Verbal Subscales What is Asked or Done What it Means or Measures Information (Supplemental in WISC-IV) The child is given oral, "trivia"-

More information

Advanced Topics in Statistical Process Control

Advanced Topics in Statistical Process Control Advanced Topics in Statistical Process Control The Power of Shewhart s Charts Second Edition Donald J. Wheeler SPC Press Knoxville, Tennessee Contents Preface to the Second Edition Preface The Shewhart

More information

Lecture 2: Descriptive Statistics and Exploratory Data Analysis

Lecture 2: Descriptive Statistics and Exploratory Data Analysis Lecture 2: Descriptive Statistics and Exploratory Data Analysis Further Thoughts on Experimental Design 16 Individuals (8 each from two populations) with replicates Pop 1 Pop 2 Randomly sample 4 individuals

More information

Section 1.3 Exercises (Solutions)

Section 1.3 Exercises (Solutions) Section 1.3 Exercises (s) 1.109, 1.110, 1.111, 1.114*, 1.115, 1.119*, 1.122, 1.125, 1.127*, 1.128*, 1.131*, 1.133*, 1.135*, 1.137*, 1.139*, 1.145*, 1.146-148. 1.109 Sketch some normal curves. (a) Sketch

More information

Designing a Questionnaire

Designing a Questionnaire Designing a Questionnaire What Makes a Good Questionnaire? As a rule of thumb, never to attempt to design a questionnaire! A questionnaire is very easy to design, but a good questionnaire is virtually

More information

http://wrap.warwick.ac.uk

http://wrap.warwick.ac.uk Original citation: Russell, Nicholas C. C. and Kunar, Melina A.. (2012) Colour and spatial cueing in lowprevalence visual search. The Quarterly Journal of Experimental Psychology, Volume 65 (Number 7).

More information

DESCRIPTIVE STATISTICS. The purpose of statistics is to condense raw data to make it easier to answer specific questions; test hypotheses.

DESCRIPTIVE STATISTICS. The purpose of statistics is to condense raw data to make it easier to answer specific questions; test hypotheses. DESCRIPTIVE STATISTICS The purpose of statistics is to condense raw data to make it easier to answer specific questions; test hypotheses. DESCRIPTIVE VS. INFERENTIAL STATISTICS Descriptive To organize,

More information

Average producers can easily increase their production in a larger office with more market share.

Average producers can easily increase their production in a larger office with more market share. The 10 Keys to Successfully Recruiting Experienced Agents by Judy LaDeur Understand whom you are hiring. Don t make the mistake of only wanting the best agents or those from offices above you in market

More information

Introduction to Statistics for Psychology. Quantitative Methods for Human Sciences

Introduction to Statistics for Psychology. Quantitative Methods for Human Sciences Introduction to Statistics for Psychology and Quantitative Methods for Human Sciences Jonathan Marchini Course Information There is website devoted to the course at http://www.stats.ox.ac.uk/ marchini/phs.html

More information

Al Ahliyya Amman University Faculty of Arts Department of Psychology Course Description Special Education

Al Ahliyya Amman University Faculty of Arts Department of Psychology Course Description Special Education Al Ahliyya Amman University Faculty of Arts Department of Psychology Course Description Special Education 0731111 Psychology and life {3} [3-3] Defining humans behavior; Essential life skills: problem

More information

C. The null hypothesis is not rejected when the alternative hypothesis is true. A. population parameters.

C. The null hypothesis is not rejected when the alternative hypothesis is true. A. population parameters. Sample Multiple Choice Questions for the material since Midterm 2. Sample questions from Midterms and 2 are also representative of questions that may appear on the final exam.. A randomly selected sample

More information

Prostate Cancer Guide. A resource to help answer your questions about prostate cancer

Prostate Cancer Guide. A resource to help answer your questions about prostate cancer Prostate Cancer Guide A resource to help answer your questions about prostate cancer Thank you for downloading this guide to prostate cancer treatment. We know that all the information provided online

More information

COMP6053 lecture: Relationship between two variables: correlation, covariance and r-squared. [email protected]

COMP6053 lecture: Relationship between two variables: correlation, covariance and r-squared. jn2@ecs.soton.ac.uk COMP6053 lecture: Relationship between two variables: correlation, covariance and r-squared [email protected] Relationships between variables So far we have looked at ways of characterizing the distribution

More information

WHAT IS A JOURNAL CLUB?

WHAT IS A JOURNAL CLUB? WHAT IS A JOURNAL CLUB? With its September 2002 issue, the American Journal of Critical Care debuts a new feature, the AJCC Journal Club. Each issue of the journal will now feature an AJCC Journal Club

More information

Determining the Acceleration Due to Gravity

Determining the Acceleration Due to Gravity Chabot College Physics Lab Scott Hildreth Determining the Acceleration Due to Gravity Introduction In this experiment, you ll determine the acceleration due to earth s gravitational force with three different

More information

AP Psychology Course Syllabus and Survival Guide

AP Psychology Course Syllabus and Survival Guide AP Psychology Course Syllabus and Survival Guide Mr. Koch [email protected] 651 982 8550 Course website: http://hs.forestlake.k12.mn.us/staff_sites/dan_koch_home/koch_ap_psychology/ Wiki page:

More information

Correlational Research

Correlational Research Correlational Research Chapter Fifteen Correlational Research Chapter Fifteen Bring folder of readings The Nature of Correlational Research Correlational Research is also known as Associational Research.

More information

Competency Approach to Human Resource Management

Competency Approach to Human Resource Management Competency Approach to Human Resource Management What do we mean when we say COMPETENCY? A Competency is an underlying characteristic of a person which enables him /her to deliver superior performance

More information

There are basically three options available for overcoming barriers to learning:

There are basically three options available for overcoming barriers to learning: COGNITIVE SKILLS DEVELOPMENT Teacher Introduction Determining Your Students Weaknesses (Excerpts from article by Dr. Ken Gibson, Founder and CEO of LearningRx) Do you have students who struggle to understand

More information

X = T + E. Reliability. Reliability. Classical Test Theory 7/18/2012. Refers to the consistency or stability of scores

X = T + E. Reliability. Reliability. Classical Test Theory 7/18/2012. Refers to the consistency or stability of scores Reliability It is the user who must take responsibility for determining whether or not scores are sufficiently trustworthy to justify anticipated uses and interpretations. (AERA et al., 1999) Reliability

More information

Chapter 6: Probability

Chapter 6: Probability Chapter 6: Probability In a more mathematically oriented statistics course, you would spend a lot of time talking about colored balls in urns. We will skip over such detailed examinations of probability,

More information

Forex Success Formula. Presents. Secure Your Money. www.forexsuccessformula.com - 1 -

Forex Success Formula. Presents. Secure Your Money. www.forexsuccessformula.com - 1 - Forex Success Formula Presents Secure Your Money www.forexsuccessformula.com - 1 - Risk Disclosure Statement The contents of this e-book are for informational purposes only. No Part of this publication

More information

Week 3&4: Z tables and the Sampling Distribution of X

Week 3&4: Z tables and the Sampling Distribution of X Week 3&4: Z tables and the Sampling Distribution of X 2 / 36 The Standard Normal Distribution, or Z Distribution, is the distribution of a random variable, Z N(0, 1 2 ). The distribution of any other normal

More information

The Envision process Defining tomorrow, today

The Envision process Defining tomorrow, today The Envision process Defining tomorrow, today Because life and the markets change over time, you need an investment plan that helps you know exactly where you stand now, tomorrow, and in the years to come.

More information

Specific learning outcomes (Course: Introduction to experimental research)

Specific learning outcomes (Course: Introduction to experimental research) IB Psychology: course 1 (i3psh1, i3pss1) Standard and higher level: Introduction to experimental research The first course focuses on setting the ground for studying IB psychology; we will begin by looking

More information

Chapter 3 RANDOM VARIATE GENERATION

Chapter 3 RANDOM VARIATE GENERATION Chapter 3 RANDOM VARIATE GENERATION In order to do a Monte Carlo simulation either by hand or by computer, techniques must be developed for generating values of random variables having known distributions.

More information

Section 1.7 22 Continued

Section 1.7 22 Continued Section 1.5 23 A homogeneous equation is always consistent. TRUE - The trivial solution is always a solution. The equation Ax = 0 gives an explicit descriptions of its solution set. FALSE - The equation

More information

WISE Power Tutorial All Exercises

WISE Power Tutorial All Exercises ame Date Class WISE Power Tutorial All Exercises Power: The B.E.A.. Mnemonic Four interrelated features of power can be summarized using BEA B Beta Error (Power = 1 Beta Error): Beta error (or Type II

More information

STATISTICS 8: CHAPTERS 7 TO 10, SAMPLE MULTIPLE CHOICE QUESTIONS

STATISTICS 8: CHAPTERS 7 TO 10, SAMPLE MULTIPLE CHOICE QUESTIONS STATISTICS 8: CHAPTERS 7 TO 10, SAMPLE MULTIPLE CHOICE QUESTIONS 1. If two events (both with probability greater than 0) are mutually exclusive, then: A. They also must be independent. B. They also could

More information

Decision Making under Uncertainty

Decision Making under Uncertainty 6.825 Techniques in Artificial Intelligence Decision Making under Uncertainty How to make one decision in the face of uncertainty Lecture 19 1 In the next two lectures, we ll look at the question of how

More information

Decision Analysis. Here is the statement of the problem:

Decision Analysis. Here is the statement of the problem: Decision Analysis Formal decision analysis is often used when a decision must be made under conditions of significant uncertainty. SmartDrill can assist management with any of a variety of decision analysis

More information

Basic Data Analysis. Stephen Turnbull Business Administration and Public Policy Lecture 12: June 22, 2012. Abstract. Review session.

Basic Data Analysis. Stephen Turnbull Business Administration and Public Policy Lecture 12: June 22, 2012. Abstract. Review session. June 23, 2012 1 review session Basic Data Analysis Stephen Turnbull Business Administration and Public Policy Lecture 12: June 22, 2012 Review session. Abstract Quantitative methods in business Accounting

More information

Sample Paper for Research Methods. Daren H. Kaiser. Indiana University Purdue University Fort Wayne

Sample Paper for Research Methods. Daren H. Kaiser. Indiana University Purdue University Fort Wayne Running head: RESEARCH METHODS PAPER 1 Sample Paper for Research Methods Daren H. Kaiser Indiana University Purdue University Fort Wayne Running head: RESEARCH METHODS PAPER 2 Abstract First notice that

More information

Chapter 7 Conditioning and Learning

Chapter 7 Conditioning and Learning Chapter 7 Conditioning and Learning Chapter Summary Definitions Learning is defined as a relatively permanent change in behavior due to experience. A stimulus is anything that comes in through your senses.

More information

Test Item Analysis & Decision Making Offered by the Measurement and Evaluation Center

Test Item Analysis & Decision Making Offered by the Measurement and Evaluation Center Test Item Analysis & Decision Making Offered by the Measurement and Evaluation Center 1 Analyzing Multiple-Choice Item Responses Understanding how to interpret and use information based on student test

More information

Lesson 4 Measures of Central Tendency

Lesson 4 Measures of Central Tendency Outline Measures of a distribution s shape -modality and skewness -the normal distribution Measures of central tendency -mean, median, and mode Skewness and Central Tendency Lesson 4 Measures of Central

More information

A guide for the patient

A guide for the patient Understanding series LUNG CANCER CLINICAL TRIALS 1-800-298-2436 LungCancerAlliance.org A guide for the patient TABLE OF CONTENTS The Basics What is a Clinical Trial?...3 Types of Clinical Trials... 3 Phases

More information

A Picture Really Is Worth a Thousand Words

A Picture Really Is Worth a Thousand Words 4 A Picture Really Is Worth a Thousand Words Difficulty Scale (pretty easy, but not a cinch) What you ll learn about in this chapter Why a picture is really worth a thousand words How to create a histogram

More information

Investigating the genetic basis for intelligence

Investigating the genetic basis for intelligence Investigating the genetic basis for intelligence Steve Hsu University of Oregon and BGI www.cog-genomics.org Outline: a multidisciplinary subject 1. What is intelligence? Psychometrics 2. g and GWAS: a

More information

Mathematical goals. Starting points. Materials required. Time needed

Mathematical goals. Starting points. Materials required. Time needed Level S2 of challenge: B/C S2 Mathematical goals Starting points Materials required Time needed Evaluating probability statements To help learners to: discuss and clarify some common misconceptions about

More information

Improvement of Visual Attention and Working Memory through a Web-based Cognitive Training Program

Improvement of Visual Attention and Working Memory through a Web-based Cognitive Training Program . Improvement of Visual Attention and Working Memory through a Web-based Cognitive Training Program Michael Scanlon David Drescher Kunal Sarkar Context: Prior work has revealed that cognitive ability is

More information

The Standardized Precipitation Index

The Standardized Precipitation Index The Standardized Precipitation Index Theory The Standardized Precipitation Index (SPI) is a tool which was developed primarily for defining and monitoring drought. It allows an analyst to determine the

More information

BUSINESS STRATEGY SYLLABUS

BUSINESS STRATEGY SYLLABUS Master of Science in Management BUSINESS STRATEGY SYLLABUS Academic Year 2011-2012 Professor: Yuliya Snihur Email: [email protected] Office hours: by appointment COURSE OUTLINE Strategy involves

More information

FMEA Failure Risk Scoring Schemes

FMEA Failure Risk Scoring Schemes FMEA Failure Risk Scoring Schemes 1-10 Scoring for Severity, Occurrence and Detection CATEGORY Severity 10 9 8 7 6 5 3 2 1 Hazardous, without warning Hazardous, with warning Very High High Moderate Low

More information

Epilepsy and Neuropsychology Dr. Sare Akdag, RPsych

Epilepsy and Neuropsychology Dr. Sare Akdag, RPsych Epilepsy and Neuropsychology Dr. Sare Akdag, RPsych Most people living with epilepsy do not experience serious problems with their thinking. However, there are aspects of thinking that can be affected

More information

Sample Size and Power in Clinical Trials

Sample Size and Power in Clinical Trials Sample Size and Power in Clinical Trials Version 1.0 May 011 1. Power of a Test. Factors affecting Power 3. Required Sample Size RELATED ISSUES 1. Effect Size. Test Statistics 3. Variation 4. Significance

More information

Appendix A: Science Practices for AP Physics 1 and 2

Appendix A: Science Practices for AP Physics 1 and 2 Appendix A: Science Practices for AP Physics 1 and 2 Science Practice 1: The student can use representations and models to communicate scientific phenomena and solve scientific problems. The real world

More information

standardized tests used to assess mental ability & development, in an educational setting.

standardized tests used to assess mental ability & development, in an educational setting. Psychological Testing & Intelligence the most important aspect of knowledge about genetic variability is that it gives us respect for people s individual differences. We are not all balls of clay that

More information

consider the number of math classes taken by math 150 students. how can we represent the results in one number?

consider the number of math classes taken by math 150 students. how can we represent the results in one number? ch 3: numerically summarizing data - center, spread, shape 3.1 measure of central tendency or, give me one number that represents all the data consider the number of math classes taken by math 150 students.

More information

Introduction to Learning & Decision Trees

Introduction to Learning & Decision Trees Artificial Intelligence: Representation and Problem Solving 5-38 April 0, 2007 Introduction to Learning & Decision Trees Learning and Decision Trees to learning What is learning? - more than just memorizing

More information

Potential Interview Questions

Potential Interview Questions Potential Interview Questions Listed below are some questions commonly asked by employers during interviews along with some hints about how to best answer each question. Outline or write out your responses

More information

Chapter 14: Repeated Measures Analysis of Variance (ANOVA)

Chapter 14: Repeated Measures Analysis of Variance (ANOVA) Chapter 14: Repeated Measures Analysis of Variance (ANOVA) First of all, you need to recognize the difference between a repeated measures (or dependent groups) design and the between groups (or independent

More information