Designing a Questionnaire
|
|
|
- Angelica Porter
- 9 years ago
- Views:
Transcription
1 Designing a Questionnaire What Makes a Good Questionnaire? As a rule of thumb, never to attempt to design a questionnaire! A questionnaire is very easy to design, but a good questionnaire is virtually impossible to design. The point is that it takes a long to construct a questionnaire with no guarantees that the end result will be of any use to anyone. A good questionnaire must have three things: Validity Reliability Discrimination Discrimination Before talking about validity and reliability, we should talk about discrimination, which is really an issue of item selection. Discrimination simply means that people with different scores on a questionnaire, should differ in the construct of interest to you. For example, a questionnaire measuring social phobia should discriminate between people with social phobia and people without it (i.e. people in the different groups should score differently). There are three corollaries to consider: 1. People with the same score should be equal to each other along the measured construct. 2. People with different scores should be different to each other along the measured construct. 3. The degree of difference between people the difference in scores. This is all pretty self-evident really so what's the fuss about? Well, let s take a really simple example of a 3-item questionnaire measuring sociability. Imagine we administered this questionnaire to two people: Jane and Katie. Their responses are shown in Figure 1. Jane Katie Yes No Yes No 1. I like going to parties 1. I like going to parties 2. I often go to the Pub 2. I often go to the Pub 3 I Really enjoy meeting people 3. I Really enjoy meeting people Figure 1 Jane responded yes to items 1 and 3 but no to item 2. If we score a yes with the value 1 and a no with a 0, then we can calculate a total score of 2. Katie on the other hand answers yes to items 1 and 2 but no to item 3. Using the same scoring system her score is also 2. Therefore, numerically you have identical answers (i.e. both Jane and Katie score 2 on this questionnaire); therefore, these two people should be comparable in their sociability are they? The answer is not necessarily. It seems that Katie likes to go to parties and the pub but doesn t enjoy meeting people in general, whereas, Jane enjoys parties and meeting people but Dr. Andy Field Page 1 9/8/2003
2 doesn t enjoy the pub. It seems that Katie likes social situations involving alcohol (e.g. the pub and parties) but Jane likes socialising in general, but can t tolerate cigarette smoke (such as you might get in a pub). In many sense, therefore, these people are very different because our questions are contaminated by other factors (i.e. attitudes to alcohol or smoky environments). A good questionnaire should be designed such that people with identical numerical scores are identical in the construct being measured and that s not as easy to achieve as you might think! A second related point is score differences. Imagine you take scores on the Spider Phobia Questionnaire (see last term s handouts for Project 1). Imagine you have three participants who do the questionnaire and get the following scores: Andy: 30 Graham: 15 Dan: 10 Difference = 15 Difference = 5 Andy scores 30 on the SPQ (very spider phobic), Graham scores 15 (moderately phobic) and Dan scores 10 (not very phobic at all). Does this mean that Dan and Graham are more similar in their spider phobia than Graham and Andy? In theory this should be the case because Graham s score is more similar to Dan s (difference = 5) than it is to Andy s (difference = 15). In addition, is it the case that Andy is three times more phobic of spiders than Dan is? Is he twice as phobic as Graham? Again, his scores suggest that he should be. The point is that you can t guarantee in advance that differences in score are going to be comparable, yet a questionnaire needs to be constructed such that the difference in score is proportional to the difference between people. Validity Items on your questionnaire must measure something and a good questionnaire measures what you designed it to measure (this is called validity). So, Validity basically means measuring what you think you re measuring. So, an anxiety measure that actually measures assertiveness is not valid, however, a materialism scale that does actually measure materialism is valid. Validity is a difficult thing to assess and it can take many forms: 1. Content validity: Items on a questionnaire must relate to the construct being measured. For example, a questionnaire measuring Intrusive Thoughts is pretty useless if it contains items relating to statistical ability. Content validity is really how representative your questions are the sampling adequacy of items. This is achieved when items are first selected: don t include items that are blatantly very similar to other items, and ensure that questions cover the full range of the construct. 2. Criterion Validity: This is basically whether the questionnaire is measuring what it claims to measure. In an ideal world, you could assess this by relating scores on each item to real world observations (e.g. comparing scores on sociability items with the number of times a person actually goes out to socialise). This is often impractical and so there are other techniques such as (1) use the questionnaire in a variety of situations and seeing how predictive it is; (2) see how well it correlates with other known measures of your construct (i.e. sociable people might be expected to score highly on extroversion scales); and (3) there are statistical techniques such as the Item Validity Index (IVI). Testing criterion validity is beyond the scope of your project, but be aware of what it is and make sure you select sensible items. 3. Factorial Validity: This validity basically refers to whether the factor structure of the questionnaire makes intuitive sense. As such, factorial validity is assessed through factor analysis. When you have your final set of items you can conduct a factor analysis Dr. Andy Field Page 2 9/8/2003
3 on the data (see your Handout on Factor Analysis or Field, 2000 Chapter 11). Factor analysis takes your correlated questions and recodes them into uncorrelated, underlying variables called factors (an example might be recoding the variables Height, chest size, shoulder width, and weight into an underling variable called Build ). As another example, to assess success in this course we might measure attentiveness in seminars; the amount of notes taken in seminars, and the number of questions asked during seminars all of these variables may relate to an underlying trait such as motivation to succeed. We ve already learnt how to do factor analysis on SPSS and this analysis produces a table of items and their correlation, or loading, with each factor. A factor is composed of items that correlate highly with it. Factorial validity can be seen from whether the items tied onto factors make intuitive sense or not. Basically, if your items cluster into meaningful groups then you can infer factorial validity. Validity is a necessary but not sufficient condition of a questionnaire. Reliability A questionnaire must not only be valid, but also reliable. Reliability is basically the ability of the questionnaire to produce the same results under the same conditions. To be reliable the questionnaire must first be valid. Clearly the easiest way to assess reliability is to test the same group of people twice: if the questionnaire is reliable you d expect each person s scores to be the same at both points in time. So, scores on the questionnaire should correlate perfectly (or very nearly!). However, in reality, is we did test the same people twice then we d expect some practice effects and confounding effects (people might remember their responses from last time). Also this method is not very useful for questionnaires purporting to measure something that we would expect to change (such as depressed mood or anxiety). These problems can be overcome using the alternate form method in which two comparable questionnaires are devised and compared. Needless to say this is a rather time-consuming way to ensure reliability and fortunately there are statistical methods to make life much easier. The simplest statistical technique is the split-half method. This method randomly splits the questionnaire items into two groups. A score for each subject is then calculated based on each half of the scale. If a scale is very reliable we d expect a person s score to be the same on one half of the scale as the other, and so the two halves should correlate perfectly. The correlation between the two halves is the statistic computed in the split half method, large correlations being a sign of reliability 1. The problem with this method is that there are a number of ways in which a set of data can be split into two and so the results might be a result of the way in which the data were split. To overcome this problem, Cronbach suggested splitting the data in two in every conceivable way and computing the correlation coefficient for each split. The average of these values is known as Cronbach s alpha, which is the most common measure of scale reliability. As a rough guide, a value of 0.8 is seen as an acceptable value for Cronbach s alpha; values substantially lower indicate an unreliable scale. How to Design your Questionnaire Step 1: Choose a Construct First you need to decide on what you would like to measure. Once you have done this use PsychLit and the Web of Science ( to do a basic search for some information on this topic. I don t expect you to search through reams of material, but just get some basic background on the construct you re testing and how it might relate to psychologically important things. For example, if you looked at Empathy, this is seen as an important component of Carl Roger s client-centred therapy, therefore, having the personality 1 In actual fact the correlation coefficient is adjusted to account for the smaller sample on which scores from the scale are based (remember that these scores are based on half of the items on the scale). Dr. Andy Field Page 3 9/8/2003
4 trait of empathy might be useful if you were to become a Rogerian therapist. It follows then that having a questionnaire to measure this trait might be useful for selection purposes on Rogerian therapy training courses. So, basically you need to set some kind of context to why the construct is important this information will form the basis of your introduction. Step 2: Decide on a Response Scale A fundamental issue is how you want respondents to answer questions. You could choose to have: Yes/No or Yes/No/Don t Know scales: This forces people to give one answer or another even though they might feel that they are neither a yes nor no. Also, imagine you were measuring Intrusive Thoughts and you had an item I think about killing children. Chances are everyone would respond no to that statement (even if they did have those thoughts) because it is a very undesirable thing to admit. Therefore, all this item is doing is subtracting a value to everybody s score it tells you nothing meaningful, it is just noise in the data. This scenario can also occur when you have a rating scale with a don t know response (because people just cannot make up their minds and opt for the neutral response). It is which is why it is sometimes nice to have questionnaires with a neutral point to help you identify which things people really have no feeling about. Without this midpoint you are simply making people go one way or the other which is comparable to balancing a coin on its edge and seeing which side up it lands when it falls. Basically, when forced 50% will choose one option while 50% will choose the opposite this is just noise in your data. Likert Scale: This is the standard Agree-Disagree ordinal categories response. It comes in many forms: o o o 3-point: AgreeNeither Agree nor DisagreeDisagree 5-point: AgreeMidpointNeither Agree nor DisagreeMidpointDisagree 7-Point: Agree2 PointsNeither Agree nor Disagree2 PointsDisagree Questions should encourage respondents to use all points of the scale. So, ideally the statistical distribution of responses to a single item should be normal with a mean that lies at the centre of the scale (so on a 5-point Likert scale the mean on a given question should be 3). The range of scores should also cover all possible responses. Step 3: Generate Your Items Once you ve found a construct to measure and decided on the type of response scale you re going to use, the next task is to generate items. I want you to restrict your questionnaire to around 30 items (20 minimum). The best way to generate items is to brainstorm a small sample of people. This involves getting people to list as many facets of your construct as possible. For example, if you devised a questionnaire on exam anxiety, you might ask a number of students (20 or so) from a variety of courses (arts and science), years (first, second and final) and even institutions (friends at other universities) to list (on a piece of paper) as many things about exams as possible that make them anxious. It is good if you can include people within this sample that you think might at the extremes of your construct (e.g. select a few people that get very anxious about exams and some who are very calm). This enables you to get items that span the entire spectrum of the construct that you want to measure. This will give you a pool of items to inspire questions. Re-phrase your sample s suggestions in a way that fits the rating scale you ve chosen and then eliminate any questions that are, basically the same. You should hopefully begin with a pool of say questions that you can reduce to about 30 by eliminating obviously similar questions. Things to Consider: 1. Wording of Questions: The way in which questions are phrased can bias the answers that people give; For example, Gaskell, Wright & O Muircheartaigh (1993) report Dr. Andy Field Page 4 9/8/2003
5 several studies in which subtle changes in the wording of survey questions can radically affect people s responses. Gaskell et al. s article is a very readable and useful summary of this work and their conclusions might be useful to you when thinking about how to phrase your questions. 2. Response Bias: This is the tendency of respondents to give the same answer to every question. Try to reverse-phrase a few items to avoid response bias (and remember to score these items in reverse when you enter the data into SPSS). Step 4: Collect the Data Once you ve written your questions, randomise their order and produce your questionnaire. This is the questionnaire that you re going test. Photocopy the questionnaire and administer it to as many people as possible (one benefit of making these questionnaires short is it minimises the time taken to complete them!). You should aim for respondents, but the more you get the better your analysis. Step 5: Analysis Enter the data into SPSS by having each question represented by a column in SPSS. Translate your response scale into numbers (i.e. 5 point Likert might be 1 = completely disagree, 2 = disagree, 3 = neither agree nor disagree, 4 = agree, 5 = completely agree). Reverse phrased items should be scored in reverse too! What we re trying to do with this analysis is to first eliminate any items on the questionnaire that aren t useful. So, we re trying to reduce our 30 items down further before we run our factor analysis. We can do this by looking at descriptive statistics, and also correlations between questions. Descriptive Statistics The first thing to look at is the statistical distribution of item scores. This alone will enable you to throw out many redundant items. Therefore, the first thing to do when piloting a questionnaire is descriptive statistics on the questionnaire items. This is easily done in SPSS (see your introductory handout from last term or Field, 2000 Chapter 2). We re on the look out for: 1. Range: Any item that has a limited range (all the points of the scale have not been used). 2. Skew: I mentioned above that ideally each question should elicit a normally distributed set of responses across subjects (each items mean should be at the centre of the scale and there should be no skew). To check for items that produce skewed data, look for the skewness and SE skew in your SPSS output. We can divide the skewness by its standard error (SE skew) to form a z-score (see Chapter 3 of Discovering Statistics). Basically, if you divide the skew by its standard error and the absolute value is greater than 1.96 then the skew is significant. Eliminate items that are significantly skewed. 3. Standard Deviation: Related to the range and skew of the distribution, items with high or low standard deviations may cause problems so be wary of high and low values for the SD. These are your first steps. Basically if any of these rules are violated then your items become non-comparable (in terms of the factor analysis) which makes the questionnaire pretty meaningless!! Correlations All of your items should inter-correlate at a significant level if they are measuring aspects of the same thing. If any items do not correlate at a 5% or 1% level of significance then exclude them (see the Factor Analysis Chapter of Discovering Statistics). Dr. Andy Field Page 5 9/8/2003
6 Factor Analysis When you ve eliminated any items that have distributional problems or do not correlate with each other, then run your factor analysis on the remaining items and try to interpret the resulting factor structure. Chapter 15 of Discovering Statistics details the process of factor analysis. What you should do is examine the factor structure and decide: 1. Which factors to retain 2. Which items load onto those factors 3. What your factors represent 4. If there are any items that don t load highly onto any factors, they should be eliminated from future versions of the questionnaire (for our purposes you need only state that they are not useful items as you won t have time to revise and re-test your questionnaires!). Step 6: Assess the Questionnaire Having looked at the factor structure, you need to check the reliability of your items and the questionnaire as a whole. We should run a reliability analysis on the questionnaire. I ve prepared a separate handout explaining how this is done. There are two things to look at: (1) the Item Reliability Index (IRI), which is the correlation between the score on the item and the score on the test as a whole multiplied by the standard deviation of that item (called the corrected item-total correlation in SPSS). SPSS will do this corrected item-total correlation and we d hope that these values would be significant for all items. Although we don t get significance values as such we can look for correlations greater than about 0.3 (although the exact value depends on the sample size this is a good cut-off for the size of sample you ll probably have). Any items having a correlations less than 0.3 should be excluded from the questionnaire. (2) Cronbach s alpha, as we ve seen, should be 0.8 or more and the deletion of an item should not affect this value too much (see the reliability analysis handout for more detail). The End? You should conclude by describing your factor structure and the reliability of the scale. Also say whether there are items that you would drop in a future questionnaire. In an ideal world we d then generate new items to add to the retained items and start the whole process again, luckily for you you re not expected to do this! In your discussion, do talk about the application of your questionnaire (how useful it is, when and where it might be used, does it support an existing theory of the construct measured etc.). Useful References Breakwell, G. M., Hammond, S., & Fife-Shaw, C. (Eds.) (1995). Research Methods in Psychology, London: Sage. [Chapters 8 & 12: QZ200 Res] Cook, T. D. & Campbell, D. T. (1979). Quasi-Experimentation. Chicago: Rand-McNally. [Chapter 2]. Cronbach, L. J. & Meehl, P. E. (1955). Construct Validity in Psychological Tests, Psychological Bulletin, 52 (4), Field, A. P. (2004). Discovering statistics using SPSS: advanced techniques for the beginner (2 nd Edition). London: Sage. Gaskell, G. D. Wright, D. B., & O Muircheartaigh, C. A. (1993). Reliability of Surveys. The Psychologist, 6 (11), Dr. Andy Field Page 6 9/8/2003
Reliability Analysis
Measures of Reliability Reliability Analysis Reliability: the fact that a scale should consistently reflect the construct it is measuring. One way to think of reliability is that other things being equal,
CALCULATIONS & STATISTICS
CALCULATIONS & STATISTICS CALCULATION OF SCORES Conversion of 1-5 scale to 0-100 scores When you look at your report, you will notice that the scores are reported on a 0-100 scale, even though respondents
Test-Retest Reliability and The Birkman Method Frank R. Larkey & Jennifer L. Knight, 2002
Test-Retest Reliability and The Birkman Method Frank R. Larkey & Jennifer L. Knight, 2002 Consultants, HR professionals, and decision makers often are asked an important question by the client concerning
Analysing Questionnaires using Minitab (for SPSS queries contact -) [email protected]
Analysing Questionnaires using Minitab (for SPSS queries contact -) [email protected] Structure As a starting point it is useful to consider a basic questionnaire as containing three main sections:
PRELIMINARY ITEM STATISTICS USING POINT-BISERIAL CORRELATION AND P-VALUES
PRELIMINARY ITEM STATISTICS USING POINT-BISERIAL CORRELATION AND P-VALUES BY SEEMA VARMA, PH.D. EDUCATIONAL DATA SYSTEMS, INC. 15850 CONCORD CIRCLE, SUITE A MORGAN HILL CA 95037 WWW.EDDATA.COM Overview
Structural Equation Modelling (SEM)
(SEM) Aims and Objectives By the end of this seminar you should: Have a working knowledge of the principles behind causality. Understand the basic steps to building a Model of the phenomenon of interest.
Scale Construction Notes
Scale Construction Notes Jamie DeCoster Department of Psychology University of Alabama 348 Gordon Palmer Hall Box 870348 Tuscaloosa, AL 35487-0348 Phone: (205) 348-4431 Fax: (205) 348-8648 June 5, 2000
Stigmatisation of people with mental illness
Stigmatisation of people with mental illness Report of the research carried out in July 1998 and July 2003 by the Office for National Statistics (ONS) on behalf of the Royal College of Psychiatrists Changing
Independent samples t-test. Dr. Tom Pierce Radford University
Independent samples t-test Dr. Tom Pierce Radford University The logic behind drawing causal conclusions from experiments The sampling distribution of the difference between means The standard error of
Cluster Analysis. Aims and Objectives. What is Cluster Analysis? How Does Cluster Analysis Work? Postgraduate Statistics: Cluster Analysis
Aims and Objectives By the end of this seminar you should: Cluster Analysis Have a working knowledge of the ways in which similarity between cases can be quantified (e.g. single linkage, complete linkage
Reliability Overview
Calculating Reliability of Quantitative Measures Reliability Overview Reliability is defined as the consistency of results from a test. Theoretically, each test contains some error the portion of the score
How to Get More Value from Your Survey Data
Technical report How to Get More Value from Your Survey Data Discover four advanced analysis techniques that make survey research more effective Table of contents Introduction..............................................................2
HYPOTHESIS TESTING: CONFIDENCE INTERVALS, T-TESTS, ANOVAS, AND REGRESSION
HYPOTHESIS TESTING: CONFIDENCE INTERVALS, T-TESTS, ANOVAS, AND REGRESSION HOD 2990 10 November 2010 Lecture Background This is a lightning speed summary of introductory statistical methods for senior undergraduate
An Instructor s Guide to Understanding Test Reliability. Craig S. Wells James A. Wollack
An Instructor s Guide to Understanding Test Reliability Craig S. Wells James A. Wollack Testing & Evaluation Services University of Wisconsin 1025 W. Johnson St., #373 Madison, WI 53706 November, 2003
Neutrality s Much Needed Place In Dewey s Two-Part Criterion For Democratic Education
Neutrality s Much Needed Place In Dewey s Two-Part Criterion For Democratic Education Taylor Wisneski, Kansas State University Abstract This paper examines methods provided by both John Dewey and Amy Gutmann.
REALISTIC THINKING. How to Do It
REALISTIC THINKING We can all be bogged down by negative thinking from time to time, such as calling ourselves mean names (e.g., idiot, loser ), thinking no one likes us, expecting something, terrible
Week 3&4: Z tables and the Sampling Distribution of X
Week 3&4: Z tables and the Sampling Distribution of X 2 / 36 The Standard Normal Distribution, or Z Distribution, is the distribution of a random variable, Z N(0, 1 2 ). The distribution of any other normal
Measurement: Reliability and Validity
Measurement: Reliability and Validity Y520 Strategies for Educational Inquiry Robert S Michael Reliability & Validity-1 Introduction: Reliability & Validity All measurements, especially measurements of
Levels of measurement in psychological research:
Research Skills: Levels of Measurement. Graham Hole, February 2011 Page 1 Levels of measurement in psychological research: Psychology is a science. As such it generally involves objective measurement of
" Y. Notation and Equations for Regression Lecture 11/4. Notation:
Notation: Notation and Equations for Regression Lecture 11/4 m: The number of predictor variables in a regression Xi: One of multiple predictor variables. The subscript i represents any number from 1 through
DATA ANALYSIS AND INTERPRETATION OF EMPLOYEES PERSPECTIVES ON HIGH ATTRITION
DATA ANALYSIS AND INTERPRETATION OF EMPLOYEES PERSPECTIVES ON HIGH ATTRITION Analysis is the key element of any research as it is the reliable way to test the hypotheses framed by the investigator. This
Frequency Distributions
Descriptive Statistics Dr. Tom Pierce Department of Psychology Radford University Descriptive statistics comprise a collection of techniques for better understanding what the people in a group look like
This chapter discusses some of the basic concepts in inferential statistics.
Research Skills for Psychology Majors: Everything You Need to Know to Get Started Inferential Statistics: Basic Concepts This chapter discusses some of the basic concepts in inferential statistics. Details
Chapter Seven. Multiple regression An introduction to multiple regression Performing a multiple regression on SPSS
Chapter Seven Multiple regression An introduction to multiple regression Performing a multiple regression on SPSS Section : An introduction to multiple regression WHAT IS MULTIPLE REGRESSION? Multiple
Study Guide for the Final Exam
Study Guide for the Final Exam When studying, remember that the computational portion of the exam will only involve new material (covered after the second midterm), that material from Exam 1 will make
Quantitative Research: Reliability and Validity
Quantitative Research: Reliability and Validity Reliability Definition: Reliability is the consistency of your measurement, or the degree to which an instrument measures the same way each time it is used
Session 7 Bivariate Data and Analysis
Session 7 Bivariate Data and Analysis Key Terms for This Session Previously Introduced mean standard deviation New in This Session association bivariate analysis contingency table co-variation least squares
Reliability and validity, the topics of this and the next chapter, are twins and
Research Skills for Psychology Majors: Everything You Need to Know to Get Started Reliability Reliability and validity, the topics of this and the next chapter, are twins and cannot be completely separated.
Lab 11. Simulations. The Concept
Lab 11 Simulations In this lab you ll learn how to create simulations to provide approximate answers to probability questions. We ll make use of a particular kind of structure, called a box model, that
HOW TO EVALUATE TRAINING PROGRAMS
3 HOW TO EVALUATE TRAINING PROGRAMS Warren Bobrow Warren Bobrow, Ph.D., specializes in employee selection, manager assessment, program evaluation, and opinion surveys. He has worked in a diverse range
6.4 Normal Distribution
Contents 6.4 Normal Distribution....................... 381 6.4.1 Characteristics of the Normal Distribution....... 381 6.4.2 The Standardized Normal Distribution......... 385 6.4.3 Meaning of Areas under
Measurement: Reliability and Validity Measures. Jonathan Weiner, DrPH Johns Hopkins University
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License. Your use of this material constitutes acceptance of that license and the conditions of use of materials on this
RESEARCH METHODS IN I/O PSYCHOLOGY
RESEARCH METHODS IN I/O PSYCHOLOGY Objectives Understand Empirical Research Cycle Knowledge of Research Methods Conceptual Understanding of Basic Statistics PSYC 353 11A rsch methods 01/17/11 [Arthur]
Descriptive Statistics and Measurement Scales
Descriptive Statistics 1 Descriptive Statistics and Measurement Scales Descriptive statistics are used to describe the basic features of the data in a study. They provide simple summaries about the sample
DDBA 8438: Introduction to Hypothesis Testing Video Podcast Transcript
DDBA 8438: Introduction to Hypothesis Testing Video Podcast Transcript JENNIFER ANN MORROW: Welcome to "Introduction to Hypothesis Testing." My name is Dr. Jennifer Ann Morrow. In today's demonstration,
X = T + E. Reliability. Reliability. Classical Test Theory 7/18/2012. Refers to the consistency or stability of scores
Reliability It is the user who must take responsibility for determining whether or not scores are sufficiently trustworthy to justify anticipated uses and interpretations. (AERA et al., 1999) Reliability
Theoretical Biophysics Group
Theoretical Biophysics Group BioCoRE Evaluation: A preliminary Report on Self Efficacy Scale - CTSE D. Brandon and G. Budescu University of Illinois Theoretical Biophysics Technical Report UIUC-2000 NIH
Rules for TAK Created December 30, 2014 Update Sept 9, 2015
Rules for TAK Created December 30, 2014 Update Sept 9, 2015 Design: James Ernest and Patrick Rothfuss Testers: Boyan Radakovich, Paul Peterson, Rick Fish, Jeff Morrow, Jeff Wilcox, and Joe Kisenwether.
Pre-Algebra Lecture 6
Pre-Algebra Lecture 6 Today we will discuss Decimals and Percentages. Outline: 1. Decimals 2. Ordering Decimals 3. Rounding Decimals 4. Adding and subtracting Decimals 5. Multiplying and Dividing Decimals
SPIN Selling SITUATION PROBLEM IMPLICATION NEED-PAYOFF By Neil Rackham
SITUATION PROBLEM IMPLICATION NEED-PAYOFF By Neil Rackham 1. Sales Behavior and Sales Success Small Sales Selling Techniques The traditional selling techniques that most of us have been trained to use
BBC Learning English Talk about English Business Language To Go Part 1 - Interviews
BBC Learning English Business Language To Go Part 1 - Interviews This programme was first broadcast in 2001. This is not a word for word transcript of the programme This series is all about chunks of language
WHAT IS A JOURNAL CLUB?
WHAT IS A JOURNAL CLUB? With its September 2002 issue, the American Journal of Critical Care debuts a new feature, the AJCC Journal Club. Each issue of the journal will now feature an AJCC Journal Club
UNDERSTANDING THE TWO-WAY ANOVA
UNDERSTANDING THE e have seen how the one-way ANOVA can be used to compare two or more sample means in studies involving a single independent variable. This can be extended to two independent variables
1/27/2013. PSY 512: Advanced Statistics for Psychological and Behavioral Research 2
PSY 512: Advanced Statistics for Psychological and Behavioral Research 2 Introduce moderated multiple regression Continuous predictor continuous predictor Continuous predictor categorical predictor Understand
THE TOP 5 TIPS FOR CREATING LASTING CONFIDENCE. Confidence is often seen as something you are born with. Those who
THE TOP 5 TIPS FOR CREATING LASTING CONFIDENCE Confidence is often seen as something you are born with. Those who lack confidence look on enviously at those who seem to have it and some of those who appear
Correlating PSI and CUP Denton Bramwell
Correlating PSI and CUP Denton Bramwell Having inherited the curiosity gene, I just can t resist fiddling with things. And one of the things I can t resist fiddling with is firearms. I think I am the only
RESEARCH METHODS IN I/O PSYCHOLOGY
RESEARCH METHODS IN I/O PSYCHOLOGY Objectives Understand Empirical Research Cycle Knowledge of Research Methods Conceptual Understanding of Basic Statistics PSYC 353 11A rsch methods 09/01/11 [Arthur]
Psychology 60 Fall 2013 Practice Exam Actual Exam: Next Monday. Good luck!
Psychology 60 Fall 2013 Practice Exam Actual Exam: Next Monday. Good luck! Name: 1. The basic idea behind hypothesis testing: A. is important only if you want to compare two populations. B. depends on
Relative and Absolute Change Percentages
Relative and Absolute Change Percentages Ethan D. Bolker Maura M. Mast September 6, 2007 Plan Use the credit card solicitation data to address the question of measuring change. Subtraction comes naturally.
INTRODUCTION. The Seven Rules of. Highly Worried People
INTRODUCTION The Seven Rules of Highly Worried People WORRYING IS SECOND NATURE to you, but imagine that someone who has been raised in the jungle and knows nothing about conventional modern life approached
Descriptive Statistics. Purpose of descriptive statistics Frequency distributions Measures of central tendency Measures of dispersion
Descriptive Statistics Purpose of descriptive statistics Frequency distributions Measures of central tendency Measures of dispersion Statistics as a Tool for LIS Research Importance of statistics in research
TeachingEnglish Lesson plans
Worksheets Meetings (1): Getting down to business Reading: Text 1 Let s stop wasting time and get on with it! TeachingEnglish Lesson plans Did you know you can download a clock from the internet to calculate
Fractions. If the top and bottom numbers of a fraction are the same then you have a whole one.
What do fractions mean? Fractions Academic Skills Advice Look at the bottom of the fraction first this tells you how many pieces the shape (or number) has been cut into. Then look at the top of the fraction
Multivariate Analysis of Variance. The general purpose of multivariate analysis of variance (MANOVA) is to determine
2 - Manova 4.3.05 25 Multivariate Analysis of Variance What Multivariate Analysis of Variance is The general purpose of multivariate analysis of variance (MANOVA) is to determine whether multiple levels
True Score Theory Measurement Error Theory of Reliability Types of Reliability Reliability & Validity
Reliability [ Home ] [ Construct Validity ] [ Reliability ] [ Levels of Measurement ] [ Survey Research ] [ Scaling ] [ Qualitative Measures ] [ Unobtrusive Measures ] True Score Theory Measurement Error
Lecture Notes Module 1
Lecture Notes Module 1 Study Populations A study population is a clearly defined collection of people, animals, plants, or objects. In psychological research, a study population usually consists of a specific
Guided Reading 9 th Edition. informed consent, protection from harm, deception, confidentiality, and anonymity.
Guided Reading Educational Research: Competencies for Analysis and Applications 9th Edition EDFS 635: Educational Research Chapter 1: Introduction to Educational Research 1. List and briefly describe the
Running head: SAMPLE FOR STUDENTS 1. Sample APA Paper for Students Interested in Learning APA Style 6th Edition. Jeffrey H. Kahn
Running head: SAMPLE FOR STUDENTS 1 Sample APA Paper for Students Interested in Learning APA Style 6th Edition Jeffrey H. Kahn Illinois State University Author Note Jeffrey H. Kahn, Department of Psychology,
A-level PSYCHOLOGY (7182/1)
SPECIMEN MATERIAL A-level PSYCHOLOGY (7182/1) Paper 1 Introductory Topics in Psychology 2017 Morning Time allowed: 2 hours Materials For this paper you may have: a calculator. Instructions Use black ink
Constructing a TpB Questionnaire: Conceptual and Methodological Considerations
Constructing a TpB Questionnaire: Conceptual and Methodological Considerations September, 2002 (Revised January, 2006) Icek Ajzen Brief Description of the Theory of Planned Behavior According to the theory
Linear Programming Notes VII Sensitivity Analysis
Linear Programming Notes VII Sensitivity Analysis 1 Introduction When you use a mathematical model to describe reality you must make approximations. The world is more complicated than the kinds of optimization
Chapter 8: Quantitative Sampling
Chapter 8: Quantitative Sampling I. Introduction to Sampling a. The primary goal of sampling is to get a representative sample, or a small collection of units or cases from a much larger collection or
The Kruskal-Wallis test:
Graham Hole Research Skills Kruskal-Wallis handout, version 1.0, page 1 The Kruskal-Wallis test: This test is appropriate for use under the following circumstances: (a) you have three or more conditions
Section 15 Revision Techniques
Section 15 Revision Techniques Introduction This section in your Study Skills manual will consolidate information relating to revision techniques. This section will consider how to prepare for examinations
Chapter 1 Introduction to Correlation
Chapter 1 Introduction to Correlation Suppose that you woke up one morning and discovered that you had been given the gift of being able to predict the future. Suddenly, you found yourself able to predict,
Multiple Regression Using SPSS
Multiple Regression Using SPSS The following sections have been adapted from Field (2009) Chapter 7. These sections have been edited down considerably and I suggest (especially if you re confused) that
A s h o r t g u i d e t o s ta n d A r d i s e d t e s t s
A short guide to standardised tests Copyright 2013 GL Assessment Limited Published by GL Assessment Limited 389 Chiswick High Road, 9th Floor East, London W4 4AL www.gl-assessment.co.uk GL Assessment is
Best Practices. Modifying NPS. When to Bend the Rules
Best Practices Modifying NPS When to Bend the Rules O ver the past decade, NPS (Net Promoter Score) has become an increasingly popular method for measuring and acting on customer feedback. Although there
Standard Deviation Estimator
CSS.com Chapter 905 Standard Deviation Estimator Introduction Even though it is not of primary interest, an estimate of the standard deviation (SD) is needed when calculating the power or sample size of
II. DISTRIBUTIONS distribution normal distribution. standard scores
Appendix D Basic Measurement And Statistics The following information was developed by Steven Rothke, PhD, Department of Psychology, Rehabilitation Institute of Chicago (RIC) and expanded by Mary F. Schmidt,
Terminology and Scripts: what you say will make a difference in your success
Terminology and Scripts: what you say will make a difference in your success Terminology Matters! Here are just three simple terminology suggestions which can help you enhance your ability to make your
DATA COLLECTION AND ANALYSIS
DATA COLLECTION AND ANALYSIS Quality Education for Minorities (QEM) Network HBCU-UP Fundamentals of Education Research Workshop Gerunda B. Hughes, Ph.D. August 23, 2013 Objectives of the Discussion 2 Discuss
We are often interested in the relationship between two variables. Do people with more years of full-time education earn higher salaries?
Statistics: Correlation Richard Buxton. 2008. 1 Introduction We are often interested in the relationship between two variables. Do people with more years of full-time education earn higher salaries? Do
Effect Sizes. Null Hypothesis Significance Testing (NHST) C8057 (Research Methods 2): Effect Sizes
Effect Sizes Null Hypothesis Significance Testing (NHST) When you read an empirical paper, the first question you should ask is how important is the effect obtained. When carrying out research we collect
Point and Interval Estimates
Point and Interval Estimates Suppose we want to estimate a parameter, such as p or µ, based on a finite sample of data. There are two main methods: 1. Point estimate: Summarize the sample by a single number
Prospect Theory Ayelet Gneezy & Nicholas Epley
Prospect Theory Ayelet Gneezy & Nicholas Epley Word Count: 2,486 Definition Prospect Theory is a psychological account that describes how people make decisions under conditions of uncertainty. These may
NF5-12 Flexibility with Equivalent Fractions and Pages 110 112
NF5- Flexibility with Equivalent Fractions and Pages 0 Lowest Terms STANDARDS preparation for 5.NF.A., 5.NF.A. Goals Students will equivalent fractions using division and reduce fractions to lowest terms.
7. Normal Distributions
7. Normal Distributions A. Introduction B. History C. Areas of Normal Distributions D. Standard Normal E. Exercises Most of the statistical analyses presented in this book are based on the bell-shaped
COACHING GUIDE. Preparing Athletes for Competition
COACHING GUIDE Preparing Athletes for Competition Table of Contents Table of Contents Psychological Considerations Anxiety and Stress Management Winning and Losing Handling Grief Taking Athletes to Competition
The role of the line in talent management
The role of the line in talent management A paper from HR in a disordered world: IES Perspectives on HR 2015 Wendy Hirsh, Principal Associate Member Paper 108 The role of the line in talent management
DESCRIPTIVE STATISTICS. The purpose of statistics is to condense raw data to make it easier to answer specific questions; test hypotheses.
DESCRIPTIVE STATISTICS The purpose of statistics is to condense raw data to make it easier to answer specific questions; test hypotheses. DESCRIPTIVE VS. INFERENTIAL STATISTICS Descriptive To organize,
SUS - A quick and dirty usability scale
SUS - A quick and dirty usability scale John Brooke Redhatch Consulting Ltd., 12 Beaconsfield Way, Earley, READING RG6 2UX United Kingdom email: [email protected] Abstract Usability does not exist
Main Effects and Interactions
Main Effects & Interactions page 1 Main Effects and Interactions So far, we ve talked about studies in which there is just one independent variable, such as violence of television program. You might randomly
5544 = 2 2772 = 2 2 1386 = 2 2 2 693. Now we have to find a divisor of 693. We can try 3, and 693 = 3 231,and we keep dividing by 3 to get: 1
MATH 13150: Freshman Seminar Unit 8 1. Prime numbers 1.1. Primes. A number bigger than 1 is called prime if its only divisors are 1 and itself. For example, 3 is prime because the only numbers dividing
The Dummy s Guide to Data Analysis Using SPSS
The Dummy s Guide to Data Analysis Using SPSS Mathematics 57 Scripps College Amy Gamble April, 2001 Amy Gamble 4/30/01 All Rights Rerserved TABLE OF CONTENTS PAGE Helpful Hints for All Tests...1 Tests
Z - Scores. Why is this Important?
Z - Scores Why is this Important? How do you compare apples and oranges? Are you as good a student of French as you are in Physics? How many people did better than you on a test? How many did worse? Are
Updates to Graphing with Excel
Updates to Graphing with Excel NCC has recently upgraded to a new version of the Microsoft Office suite of programs. As such, many of the directions in the Biology Student Handbook for how to graph with
Chapter 10. Key Ideas Correlation, Correlation Coefficient (r),
Chapter 0 Key Ideas Correlation, Correlation Coefficient (r), Section 0-: Overview We have already explored the basics of describing single variable data sets. However, when two quantitative variables
January 26, 2009 The Faculty Center for Teaching and Learning
THE BASICS OF DATA MANAGEMENT AND ANALYSIS A USER GUIDE January 26, 2009 The Faculty Center for Teaching and Learning THE BASICS OF DATA MANAGEMENT AND ANALYSIS Table of Contents Table of Contents... i
How ACT Fits Into ERP Treatment for OCD Page 1 Jonathan Grayson, Ph.D.
How ACT Fits Into ERP Treatment for OCD Page 1 I. Introduction A. Therapy must be tailored to the patient, not the patient to the therapy. 1. The alternative is a manualized treatment program suitable
Introduction to. Hypothesis Testing CHAPTER LEARNING OBJECTIVES. 1 Identify the four steps of hypothesis testing.
Introduction to Hypothesis Testing CHAPTER 8 LEARNING OBJECTIVES After reading this chapter, you should be able to: 1 Identify the four steps of hypothesis testing. 2 Define null hypothesis, alternative
Thinking about College? A Student Preparation Toolkit
Thinking about College? A Student Preparation Toolkit Think Differently About College Seeking Success If you are like the millions of other people who are thinking about entering college you are probably
Test Item Analysis & Decision Making Offered by the Measurement and Evaluation Center
Test Item Analysis & Decision Making Offered by the Measurement and Evaluation Center 1 Analyzing Multiple-Choice Item Responses Understanding how to interpret and use information based on student test
MANAGING YOUR EMAIL LIST
MANAGING YOUR EMAIL LIST Ensuring you reach the right people at the right time with a relevant message. 866.915.9465 www.delivra.com 2013 Delivra Professional Email Marketing Software and Consulting 2
Guide 7 Iceberg beliefs underlying beliefs that can undermine our resilience
Guide 7 Iceberg beliefs underlying beliefs that can undermine our resilience Some of our beliefs are difficult to identify because they are deeper and more complex. These beliefs operate at an unconscious
Carl Weisman Q&A So Why Have You Never Been Married?
Carl Weisman Q&A So Why Have You Never Been Married? 1. Why did you write So Why Have You Never Been Married? I wrote the book because I honestly could not answer the question Why have I never been married?
Best Practices: Understanding and Reducing Bias in Your Surveys
Best Practices: Understanding and Reducing Bias in Your Surveys Sampling Bias - Who You Survey Sampling Bias: When some members of your survey population are less likely to be invited to be surveyed than
Introduction to Hypothesis Testing. Hypothesis Testing. Step 1: State the Hypotheses
Introduction to Hypothesis Testing 1 Hypothesis Testing A hypothesis test is a statistical procedure that uses sample data to evaluate a hypothesis about a population Hypothesis is stated in terms of the
PERCENTS - compliments of Dan Mosenkis
PERCENTS - compliments of Dan Mosenkis Percent Basics: Percents are connected to many ideas: fractions, decimals, proportions, relative amounts, and multiplicative change. You could say they are like the
