Signal, Noise, and Detection Limits in Mass Spectrometry
|
|
|
- Heather McCormick
- 9 years ago
- Views:
Transcription
1 Signal, Noise, and Detection Limits in Mass Spectrometry Technical Note Chemical Analysis Group Authors Greg Wells, Harry Prest, and Charles William Russ IV, Agilent Technologies, Inc Centerville Road Wilmington, DE USA Abstract In the past, the signal-to-noise of a chromatographic peak determined from a single measurement has served as a convenient figure of merit used to compare the performance of two different MS systems. Design evolution of mass spectrometry instrumentation has resulted in very low noise systems that have made the comparison of performance based upon signal-to-noise increasingly difficult, and in some modes of operation impossible. This is especially true when using ultra-low noise modes such as high resolution mass spectrometry or tandem MS; where there are often no ions in the background and the noise is essentially zero. Statistical methodology commonly used to establish method detection limits for trace analysis in complex matrices as a means of characterizing instrument performance is shown to be valid for high and low background noise conditions.
2 Introduction Trace analysis in analytical chemistry generally requires establishing the limit of detection (LOD, or simply detection limit), which is the lowest quantity of a substance that can be distinguished from the system noise absent of that substance (a blank value). Mass spectrometers are increasing used for trace analysis, and an understanding of the factors that affect the estimation of analyte detection limits is important when using these instruments. There are a number of different detection limits commonly used. These include the instrument detection limit (IDL), the method detection limit (MDL), the practical quantification limit (PQL), and the limit of quantification (LOQ). Even when the same terminology is used, there can be differences in the LOD according to nuances of what definition is used and what type of noise contributes to the measurement and calibration. There is much confusion regarding figures of merit for instrument performance such as sensitivity, noise, signal-to-noise ratio and detection limits. An understanding of the factors that contribute to these figures of merit and how they are determined is important when estimating and reporting detection limits. Modern mass spectrometers, which can operate in modes that provide very low background noise and have the ability to detect individual ions, offer new challenges to the traditional means of determining detection limits. Terminology Instrument background signal The signal output from the instrument when a blank is measured; generally a voltage output that is digitized by an analog to digital converter. Noise (N) The fluctuation in the instrument background signal; generally measure as the standard deviation of the background signal. Analyte signal (S) The change in instrument response to the presence of a substance. Total instrument signal The sum of the analyte signal and the instrument background signal. Signal-to-noise ratio (S/N) The ratio of the analyte signal to the noise measured on a blank. Sensitivity The signal response to a particular quantity of analyte normalized to the amount of analyte giving rise to the response; generally determined by the slope of the calibration curve. [Sensitivity is often used interchangeably with terms such as S/N and LOD. For the purpose of this document, sensitivity will only apply to this analytical definition.] Instrument detection limit (IDL) Most analytical instruments produce a signal even when a blank (matrix without analyte) is analyzed. This signal is referred to as the instrument background level. Noise is a measure of the fluctuation of the background level. It is generally measured by calculating the standard deviation of a number of consecutive point measurements of the background signal. The instrument detection limit (IDL) is the analyte concentration required to produce a signal that is distinguishable from the noise level within a particular statistical confidence limit. Approximate estimate of LOD can be obtained from the signal-to-noise ratio (S/N) as described in this document. Method detection limit (MDL) For most applications, there is more to the analytical method than just analyzing a clean analyte. It might be necessary to remove unwanted matrix components, extract and concentrate the analyte, or even derivatize the analyte for improved chromatography or detection. The analyte may also be further diluted or concentrated prior to analysis on an instrument. Additional steps in an analysis add additional opportunities for error. Since detection limits are defined in terms of error, this will increase the measured detection limit. This detection limit (with all steps of the analysis included) is called the MDL. An approximate estimate of LOD can often be obtained from the S/N of the analyte measured in matrix. Limit of quantification (LOQ) and practical limit of quantification (PQL) Just because we can tell something from noise does not mean that we can necessarily know how much of the material there actually is with a particular degree of certainty. Repeated measurements of the same analyte under the same conditions, even on the same instrument, give slightly different results each time due to variability of sample introduction, separation, and detections processes in the instrument. The LOQ is the limit at which we can reasonably tell the difference between two different values of the amount of analyte. The LOQ can be drastically different between labs so another detection limit referred to as the Practical Quantitation Limit (PQL) is commonly used. There is no specific mathematical relationship between the PQL and the LOQ based on statistics. The PQL is often practically defined simply as about 5 10 times the MDL. 2
3 Estimating IDL and MDL using signal-to-noise Mass spectrometry measurements of an analyte generally use a chromatograph as a means of sample introduction. The resulting analyte signal from a chromatograph will have an approximately Gaussian shaped distribution as a function of time (Figure 1). In the case of chromatographic analyte introduction into the MS instrument, the signal is not constant and does not represent the same analyte amount at all points of the sample set. For the purpose of estimating detection limits by using signal-to-noise ratios, the measurement of the signal is generally accepted to be the height of the maximum of the chromatographic signal (S in Figure 1) above the baseline (X _ B ); and an estimate of the background noise under the peak must be made. A standard for estimating the noise is to measure the peak-to-peak (minimum to maximum) value of baseline noise, away from the peak tails, for 60 seconds before the peak (Figure 1) or 30 seconds before and after the peak. With the advent of modern integrator and data systems, the baseline segments for estimation of noise are auto-selected, and noise is calculated as the standard deviation (STD) or root-meansquare (RMS) of the baseline over the selected time window. However, it will be shown that the single measurement signalto-noise ratio approach fails in many cases. Signal S Time Start End Figure 1. Analyte signal as a function of time for a chromatographic peak, demonstrating the time dependence in the amount of analyte present. When a quantitative measurement of the amount of analyte is made, the signal is the total integrated signal of the Gaussian peak from start to end with the background subtracted. This area is a single sampling measurement and is a single point estimator for the true analyte amount in the population (that is, the amount of analyte in the original sample). The amount of analyte as a function of time can be expressed as: C(t) = KC 0 F(t); where C 0 is the amount of analyte in the test sample, F(t) is the shape of the chromatographic peak (amplitude versus time), and K is a calibration factor. If the analyte X B profile is reproducible and the response is linear in analyte amount, the area of the peak can be used as a measure of the original amount of analyte since the constant of proportionality, K, can be determine by calibration using known amounts of analyte. Repeated measurements (areas) of the same sample will yield a set of somewhat different responses that are normally distributed about the true value representing the population. The variance in the measured set of signals for both the sample and the background are due to a variety of factors: (1) variances in the amount injected, (2) variances in the amount of sample transferred onto the GC column, (3) variances in the amount of background, (4) variances in the ionization efficiency, (5) variances in the ion extraction from the ion source and transmission through the mass analyzer, and (6) variances in the recorded detection signal representing the number of ions measured. The latter factor at low ion fluxes will occur even if the number of ions striking the ion detector were the same, the output signal will be slightly different since the ion detector response depends on where the ion strikes it. A significant contributor to variance will be the determination of the area of the chromatographic peak. Variations in the determination of peak start, end and area below the background all contribute errors. Collectively, these variances can be viewed as sampling noise. That is, variations in the output signal due to the collective sampling and detecting processes. These variances are in addition to the normal variations due to measuring a finite number of ions (that is, the ion statistics). Modern mass spectrometer systems are capable of operating in a variety of modes that can make the background nearly zero. MS/MS, negative ion chemical ionization, and high resolution mass scanning can often have a near zero system background signal, particularly when the background from a chemical matrix is absent. Figure 2 shows a GC/MS extracted ion chromatogram for a clean standard of octafluoronaphthalene (OFN) in a clean system with a very low background. Each point in an extracted ion chromatogram represents the intensity of a centroided mass peak. If there are not enough ions for a particular mass to be centroided, the resulting intensity value may be reported as zero. It is possible with very clean systems operating in the MS/MS or negative chemical ionization mode to have no observable background ions and a zero calculated noise. This situation can be made more severe by increasing the threshold for ion detection. Under these circumstances, it is possible to increase the ion detector gain, and the signal level, without increasing the background noise. The signal of the analyte increases, but the noise does not. This is misleading and unacceptable. 3
4 Abundance (a) (b) (c) Time Figure 2. EI full scan extracted ion chromatogram of m/z = 272 from 1 pg OFN exhibiting very small chemical ion noise. The result is two practical problems: (1) What region of the baseline should be selected to estimate the background noise? and (2) Although the signal increased, there was no increase in the number of ions detected and therefore no change to the real detection limit. Unlike the high background case, when the background is very low, but not zero, the measured noise will depend strongly on where the noise is measured. The regions of the background labeled (a), (b), and (c) in Figure 2 have measured RMS noise values that are 54, 6, and 120 respectively. The resulting signal-to-noise values can differ by a factor of 20 in this example due exclusively to the large variation in where the noise is measured. Therefore, the use of signal-to-noise as an estimate of the detection limit will clearly fail to produce usable values when there is low and highly variable ion noise. The situation becomes even more indeterminate when the background noise is zero as shown in the MS/MS chromatogram in Figure 3. In this case, the noise is zero and the signal-to-noise becomes infinite. The only noise observed in Figure 3 is due to the electronic noise, which is several orders of magnitude lower than noise due to the presence of ions in the background. Abundance Figure m/z 272 m/z & 222 m/z Time EI MS/MS extracted ion chromatogram of m/z from 100 fg OFN exhibiting no chemical ion noise. Alternate methods to estimating IDL and MDL There are many alternative methods to estimate the IDL and MDL that produce more reliable estimates [2 7] for analytes introduced by a chromatograph. For the USA, the most common is the recommended EPA Guidelines Establishing Test Procedures for the Analysis of Pollutants [2]. A commonly used standard in Europe is found in The Official Journal of the European Communities, Commission Decision of 12 August 2002; Implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results [4]. Both of these methods are similar and require injecting multiple duplicate standards to assess the uncertainty in the measuring system. A small number of identical samples having a concentration near the expected limit of detection (within 5 10 times the noise level) are measured along with a comparable number of blanks. The average blank value is subtracted from each of the analyte measurements to remove the area contribution from any constant background if necessary. Often, because of the specificity of mass spectrometry detection, the contribution from the blank is negligible and is excluded once the significance of the contribution has been confirmed. The standard deviation of the set of measured analyte signals (that is, integrated areas of the baseline subtracted chromatographic peaks) is then determined. Since the variance in the peak areas includes both the analyte signal noise, the background noise, and the variance from injection to injection; the statistical significance of a single measurement being distinguishable from the system and sampling noise can be established with a known confidence level (that is, a known probability that the measured area is statistically different from the system noise). The use of signal-to-noise from a single sample measurement as an estimate of IDL does not capture the sample-to-sample variation or sampling noise that causes multiple measurements of the same analyte to be somewhat different. When the number of measurements is small (that is n < 30), the one-sided Student t-distribution [1] is used to determine the test statistic t a. In the case of chromatographic peaks, modern data systems report the area of the peak above the baseline, (that is, the background is subtracted, but not the contribution to the variance of the signal). The IDL or MDL is determined as the amount of analyte X _ that gives a signal (peak area) statistically greater than the population mean value of zero (µ = 0) as detailed in Appendix I. IDL = X _ µ = X = t a s x = t a S x Where the value of t a comes from a table of the Student t-test using n-1 (number of measurements minus one) as the degrees of freedom, 1-a is the probability that a measurement is greater than zero, and the standard deviation of the set of 4
5 measurements S X is used as an estimate of the true standard deviation of the distribution of sample means. This discussion eatablishes that at least two or more measurements are required in order to estimate the standard deviation and estimate the sampling noise. The larger the number of measurements n, the smaller is the value of t a and less the uncertainty in the estimate of the IDL or MDL. Figure 4 shows that for a given amount of standard, C STD, replicate measurements produce a distribution of measured values centered about the mean value X _ STD. The standard deviation is a measure of the width of this distribution. The IDL is amount of sample, C IDL, corresponding to a mean measured value, X _ IDL, that allows 1-a of the measurements to be greater than zero; where a is the percentage or probability that a measured value is equal or less than zero. Figure 5 shows the effect of a smaller standard deviation (greater precision) for the same a and the same instrument sensitivity. A smaller standard deviation of the measurements, keeping a the same, results in a smaller IDL since the mean value of the measured distribution is moved to smaller values in order to keep the same percentage (that is, same a) of the new distribution greater than zero. X STD X IDL _ 1 Standard deviation α Signal C IDL _ 1 CSTD Amount X STD X IDL _ 1 X IDL _ 2 Figure 5. Standard deviation α Signal CIDL 2 C 1 IDL CSTD Amount Instrument Detection Limit Amount of analyte with signal that is statistically > 0. Small variance in measured values. As an example, for the eight replicate injections in Figure 6 (7 degrees of freedom; n = 7) and a 99% (1-a = 0.99) confidence interval, the value of the test statistic (t a ) is Since the instrument detection limit is desired, a population mean of zero is assumed (that is 99% probability that a single measurement of X _ A (a single area measurement) will result in a signal statistically greater than zero with a probability of 1-a). For eight samples, the mean value of the area is 810 counts, the standard deviation is counts, the relative standard deviation is 5.1% and the value of the IDL is: IDL = t a S _ x X _ A = (2.998)(41.31) = counts. Since the calibration mean for 200 fg was 810 counts, the IDL is: ( counts)(200 fg)/(810 counts) = 30.6 fg. For data systems reporting relative standard deviation (RST) the IDL is: IDL = (t a )( RSD )(amount standard)/100%. In the previous example the IDL = (2.998)(5.1%)(200 fg)/100% = 30.6 fg Figure 4. Instrument Detection Limit Amount of analyte with signal that is statistically > 0. Large variance in measured values. 5
6 Figure 6. EI full scan extracted ion chromatograms of m/z = 272 from 200 fg OFN; eight replicate injections. Summary The historical use of the signal-to-noise ratio of a chromatographic peak determined from a single measurement is a convenient means of estimating IDL in many cases. A more practical means of estimating the IDL and MDL is to use the multiinjection statistical methodology commonly used for trace analysis in complex matrices. Using the mean value and standard deviation of replicate injections provides a way to estimate the statistical significance of differences between low level analyte responses and the combined uncertainties in both the analyte and background measurement, and the uncertainties in the analyte introduction or sampling process. This is especially true for modern mass spectrometers for which the background noise is nearly zero. The multi-injection method of estimating instrument and method detection limits is rigorously and statistically valid for both high and low background noise conditions. References 1. Statistics; D. R. Anderson, D. J. Sweeney, T. A. Williams; West Publishing, New York, U.S. EPA - Title 40: Protection of Environment; Part 136 Guidelines Establishing Test Procedures for the Analysis of Pollutants; Appendix B to Part 136 Definition and Procedure for the Determination of the Method Detection Limit Revision Uncertainty Estimation and Figures of Merit for Multivariate Calibration; IUPAC Technical Report, Pure Appl. Chem.; Vol. 78, No. 3, pp , Official Journal of the European Communities; Commission Decision of 12 August 2002; Implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results. 5. Guidance Document on Residue Analytical Methods; European Commission Directorate General Health and Consumer Protection; SANCO/825/00 rev. 7 17/03/ Guidelines for Data Acquisition and Data Quality Evaluation in Environmental Chemistry - ACS Committee on Environmental Improvement; Anal. Chem. 1980, 52, Guidlines for the Validation of Analytical Mrthods used in Residue Depletion Studies; VICH GL 49 (MRK) November 2009 Doc. Ref. EMEA/CVMP/VICH/463202/2009- CONSULTATION. 6
7 APPENDIX I How a signal is distinguished from noise The estimation of detection limits depends on how a signal from an analyte is distinguished from the background noise. The methodology for this estimate is rooted in statistical hypothesis testing. Hypothesis testing is similar to a criminal trial. In a criminal trial, the assumption is that the defendant is innocent. The null hypothesis H 0, expresses an assumption of innocence. The opposite of the null hypothesis is H a, the alternative hypothesis it expresses an assumption of guilt. The hypothesis for a criminal trial would be written: H 0 : The defendant is innocent H a : The defendant is guilty To test these competing statements, or hypothesis, a trial is held. The evidence presented at trail provides the sample information. If the sample information is not inconsistent with the assumption of innocence, the null hypothesis that the defendant is innocent cannot be rejected. However, if the sample information is inconsistent with the assumption, the null hypothesis must be rejected and the alternative hypothesis can be accepted. In the case of chromatographic peaks, modern data systems report the area of the peak above the baseline (that is, the constant background is subtracted, but not the contribution to the variance of the signal). The mean value of the population m A of the analyte is the true value of the amount of analyte stored in the analyte collection vessel. A measurement of a sample aliquot is a single point estimation of the population mean. The mean value X _ A of a set of replicate sample measurements is an approximation to the population mean m A. The question to be answered: Is the sample set mean value statistically greater or equal to the mean population within some specified confidence level. Since the IDL is desired, the population mean is assumed to be zero. In this case the rejection criterion is: H 0 : m A < 0 The estimate of the signal is not different from zero within the stated confidence or significance limit. H a : m A > 0 The estimate of the signal is different from zero within the stated confidence or significance limit. Accept H 0 if m A < 0 and reject H 0 if m A > 0 and accept the alternative hypothesis H a. The statistical criteria for testing the hypothesis is: if the test statistic t a is less than a value that is obtained from a probability table. The table value depends on the number of measurements (n) that contributed to obtaining the mean value and the probability that the mean value is greater than the population mean. t a = X _ µ s < table value x Where: X _ A is the mean value of the set of sample measurements m A is the true value of the population s X is the standard deviation of the set of sample measurements t a is the test statistic 1-a is the probability the sample set mean is different from the population mean The value of the test statistic t depends on the number of degrees of freedom which is defined as the number of measurements minus one. For small numbers of measurements (n < 30), the value of t a comes from a table of the Student t-test using n-1 (number of measurements minus one). For example, for 7 measurements (6 degrees of freedom) and a confidence level of 99% (a = 0.01 which is a 99% probability that the value is different from zero; m = 0) the table value is Therefore, if: X _ µ s X = X S X = t a < accept the null hypothesis; and if this is greater than t a, the null hypothesis must be rejected and the alternative hypothesis (that is, the background corrected analyte signal is statistically different from zero) must be accepted with a (1-a probability of being correct. The value of the standard deviation of the population s X is usually approximated by the standard deviation of the sample set S X. For 4 samples (3 degrees of freedom) and a 97.5% confidence level, the value of the test statistic is For 8 samples (7 degrees of freedom) and a 99.0% confidence level, the value of the test statistic is The average value is about 3. Hence the common rule of thumb for estimating the IDL or MDL is: X _ IDL = 3 S X _. 7
8 For More Information For more information on our products and services, visit our Web site at Agilent shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this material. Information, descriptions, and specifications in this publication are subject to change without notice. Agilent Technologies, Inc., 2011 Printed in the USA May 3, EN
Strategies for Developing Optimal Synchronous SIM-Scan Acquisition Methods AutoSIM/Scan Setup and Rapid SIM. Technical Overview.
Strategies for Developing Optimal Synchronous SIM-Scan Acquisition Methods AutoSIM/Scan Setup and Rapid SIM Technical Overview Introduction The 5975A and B series mass selective detectors (MSDs) provide
GUIDELINES FOR THE VALIDATION OF ANALYTICAL METHODS FOR ACTIVE CONSTITUENT, AGRICULTURAL AND VETERINARY CHEMICAL PRODUCTS.
GUIDELINES FOR THE VALIDATION OF ANALYTICAL METHODS FOR ACTIVE CONSTITUENT, AGRICULTURAL AND VETERINARY CHEMICAL PRODUCTS October 2004 APVMA PO Box E240 KINGSTON 2604 AUSTRALIA http://www.apvma.gov.au
Pesticide Analysis by Mass Spectrometry
Pesticide Analysis by Mass Spectrometry Purpose: The purpose of this assignment is to introduce concepts of mass spectrometry (MS) as they pertain to the qualitative and quantitative analysis of organochlorine
Step-by-Step Analytical Methods Validation and Protocol in the Quality System Compliance Industry
Step-by-Step Analytical Methods Validation and Protocol in the Quality System Compliance Industry BY GHULAM A. SHABIR Introduction Methods Validation: Establishing documented evidence that provides a high
VALIDATION OF ANALYTICAL PROCEDURES: TEXT AND METHODOLOGY Q2(R1)
INTERNATIONAL CONFERENCE ON HARMONISATION OF TECHNICAL REQUIREMENTS FOR REGISTRATION OF PHARMACEUTICALS FOR HUMAN USE ICH HARMONISED TRIPARTITE GUIDELINE VALIDATION OF ANALYTICAL PROCEDURES: TEXT AND METHODOLOGY
Evaluating System Suitability CE, GC, LC and A/D ChemStation Revisions: A.03.0x- A.08.0x
CE, GC, LC and A/D ChemStation Revisions: A.03.0x- A.08.0x This document is believed to be accurate and up-to-date. However, Agilent Technologies, Inc. cannot assume responsibility for the use of this
ICH Topic Q 2 (R1) Validation of Analytical Procedures: Text and Methodology. Step 5
European Medicines Agency June 1995 CPMP/ICH/381/95 ICH Topic Q 2 (R1) Validation of Analytical Procedures: Text and Methodology Step 5 NOTE FOR GUIDANCE ON VALIDATION OF ANALYTICAL PROCEDURES: TEXT AND
Guidance for Industry
Guidance for Industry Q2B Validation of Analytical Procedures: Methodology November 1996 ICH Guidance for Industry Q2B Validation of Analytical Procedures: Methodology Additional copies are available from:
# LCMS-35 esquire series. Application of LC/APCI Ion Trap Tandem Mass Spectrometry for the Multiresidue Analysis of Pesticides in Water
Application Notes # LCMS-35 esquire series Application of LC/APCI Ion Trap Tandem Mass Spectrometry for the Multiresidue Analysis of Pesticides in Water An LC-APCI-MS/MS method using an ion trap system
Ecology Quality Assurance Glossary
Ecology Quality Assurance Glossary Edited by William Kammin, Ecology Quality Assurance Officer Accreditation - A certification process for laboratories, designed to evaluate and document a lab s ability
Enhancing GCMS analysis of trace compounds using a new dynamic baseline compensation algorithm to reduce background interference
Enhancing GCMS analysis of trace compounds using a new dynamic baseline compensation algorithm to reduce background interference Abstract The advantages of mass spectrometry (MS) in combination with gas
A4, Empower3 Processing Tips and Tricks
A4, Empower3 Processing Tips and Tricks Rune Buhl Frederiksen, Manager, Waters Educational Services 2012 Waters Corporation 1 Content Basic Chromatography Workflow Processing Workflow Integration Theory
Analytical Test Method Validation Report Template
Analytical Test Method Validation Report Template 1. Purpose The purpose of this Validation Summary Report is to summarize the finding of the validation of test method Determination of, following Validation
Alignment and Preprocessing for Data Analysis
Alignment and Preprocessing for Data Analysis Preprocessing tools for chromatography Basics of alignment GC FID (D) data and issues PCA F Ratios GC MS (D) data and issues PCA F Ratios PARAFAC Piecewise
AMINO ACID ANALYSIS By High Performance Capillary Electrophoresis
AMINO ACID ANALYSIS By High Performance Capillary Electrophoresis Analysis of Amino Acid Standards Label free analysis using the HPCE-512 ABSTRACT Capillary electrophoresis using indirect UV detection
Sample Analysis Design Step 2 Calibration/Standard Preparation Choice of calibration method dependent upon several factors:
Step 2 Calibration/Standard Preparation Choice of calibration method dependent upon several factors: 1. potential matrix effects 2. number of samples 3. consistency of matrix across samples Step 2 Calibration/Standard
CHI-SQUARE: TESTING FOR GOODNESS OF FIT
CHI-SQUARE: TESTING FOR GOODNESS OF FIT In the previous chapter we discussed procedures for fitting a hypothesized function to a set of experimental data points. Such procedures involve minimizing a quantity
HPLC Analysis of Acetaminophen Tablets with Waters Alliance and Agilent Supplies
HPLC Analysis of Acetaminophen Tablets with Waters Alliance and Agilent Supplies Application Note Small Molecule Pharmaceuticals Authors Jignesh Shah, Tiantian Li, and Anil Sharma Agilent Technologies,
Conversion of a USP Gas Chromatography Method to Convergence Chromatography: Analysis of Atropa Belladonna
Conversion of a USP Gas Chromatography Method to Convergence Chromatography: Analysis of Atropa Belladonna Paula Hong and Pat McConville Waters Corporation, Milford, MA, USA A P P L I C AT ION B E N E
INTRODUCTION. The principles of which are to:
Taking the Pain Out of Chromatographic Peak Integration Shaun Quinn, 1 Peter Sauter, 1 Andreas Brunner, 1 Shawn Anderson, 2 Fraser McLeod 1 1 Dionex Corporation, Germering, Germany; 2 Dionex Corporation,
Analysis of Free Bromate Ions in Tap Water using an ACQUITY UPLC BEH Amide Column
Analysis of Free Bromate Ions in Tap Water using an ACQUITY UPLC BEH Amide Column Sachiki Shimizu, FUJIFILM Fine Chemicals Co., Ltd., Kanagawa, Japan Kenneth J. Fountain, Kevin Jenkins, and Yoko Tsuda,
Part 2: Analysis of Relationship Between Two Variables
Part 2: Analysis of Relationship Between Two Variables Linear Regression Linear correlation Significance Tests Multiple regression Linear Regression Y = a X + b Dependent Variable Independent Variable
Evaluating Laboratory Data. Tom Frick Environmental Assessment Section Bureau of Laboratories
Evaluating Laboratory Data Tom Frick Environmental Assessment Section Bureau of Laboratories Overview of Presentation Lab operations review QA requirements MDLs/ PQLs Why do we sample? Protect physical,
AMD Analysis & Technology AG
AMD Analysis & Technology AG Application Note 120419 Author: Karl-Heinz Maurer APCI-MS Trace Analysis of volatile organic compounds in ambient air A) Introduction Trace analysis of volatile organic compounds
Jennifer L. Simeone and Paul D. Rainville Waters Corporation, Milford, MA, USA A P P L I C AT ION B E N E F I T S INT RO DU C T ION
A Validated Liquid-Liquid Extraction Method with Direct Injection of Hexane for Clopidogrel in Human Plasma Using UltraPerformance Convergence Chromatography (UPC 2 ) and Xevo TQ-S Jennifer L. Simeone
Samples RMN070714. Analytical Report (0714-63) GC/FID Analysis (RM01) Nicotine Purity
For the benefit of VaporFi, Inc. Samples RMN070714 Analytical Report (0714-63) GC/FID Analysis (RM01) Nicotine Purity GC/MS Analysis (QG02) Anabasine, Anatabine, Myosmine, Nornicotine Enthalpy Analytical,
LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING
LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING In this lab you will explore the concept of a confidence interval and hypothesis testing through a simulation problem in engineering setting.
STANDARD OPERATING PROCEDURES
PAGE: 1 of 33 CONTENTS 1.0 SCOPE AND APPLICATION 2.0 METHOD SUMMARY 3.0 SAMPLE PRESERVATION, CONTAINERS, HANDLING, AND STORAGE 4.0 INTERFERENCES AND POTENTIAL PROBLEMS 5.0 EQUIPMENT/APPARATUS 6.0 REAGENTS
A commitment to quality and continuous improvement
Guidance for the Validation of Analytical Methodology and Calibration of Equipment used for Testing of Illicit Drugs in Seized Materials and Biological Specimens A commitment to quality and continuous
ANALYTICAL METHODS INTERNATIONAL QUALITY SYSTEMS
VALIDATION OF ANALYTICAL METHODS 1 GERT BEUVING INTERNATIONAL PHARMACEUTICAL OPERATIONS TASKS: - Internal auditing - Auditing of suppliers and contract manufacturers - Preparing for and guiding of external
ANALYTICAL DETECTION LIMIT GUIDANCE. & Laboratory Guide for Determining Method Detection Limits
ANALYTICAL DETECTION LIMIT GUIDANCE & Laboratory Guide for Determining Method Detection Limits Wisconsin Department of Natural Resources Laboratory Certification Program April 1996 PUBL-TS-056-96 introduction
II. DISTRIBUTIONS distribution normal distribution. standard scores
Appendix D Basic Measurement And Statistics The following information was developed by Steven Rothke, PhD, Department of Psychology, Rehabilitation Institute of Chicago (RIC) and expanded by Mary F. Schmidt,
Overview. Triple quadrupole (MS/MS) systems provide in comparison to single quadrupole (MS) systems: Introduction
Advantages of Using Triple Quadrupole over Single Quadrupole Mass Spectrometry to Quantify and Identify the Presence of Pesticides in Water and Soil Samples André Schreiber AB SCIEX Concord, Ontario (Canada)
Signal to Noise Instrumental Excel Assignment
Signal to Noise Instrumental Excel Assignment Instrumental methods, as all techniques involved in physical measurements, are limited by both the precision and accuracy. The precision and accuracy of a
ProteinPilot Report for ProteinPilot Software
ProteinPilot Report for ProteinPilot Software Detailed Analysis of Protein Identification / Quantitation Results Automatically Sean L Seymour, Christie Hunter SCIEX, USA Pow erful mass spectrometers like
Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression
Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression Objectives: To perform a hypothesis test concerning the slope of a least squares line To recognize that testing for a
Building Agilent GC/MSD Deconvolution Reporting Libraries for Any Application Technical Overview
Building Agilent GC/MSD Deconvolution Reporting Libraries for Any Application Technical Overview Authors Xiaofei Ping Agilent Technologies (Shanghai) Co Ltd 412 Yinglun Road, Shanghai, 200131 P.R. China
Chemistry 321, Experiment 8: Quantitation of caffeine from a beverage using gas chromatography
Chemistry 321, Experiment 8: Quantitation of caffeine from a beverage using gas chromatography INTRODUCTION The analysis of soft drinks for caffeine was able to be performed using UV-Vis. The complex sample
Mass Spectrometry Signal Calibration for Protein Quantitation
Cambridge Isotope Laboratories, Inc. www.isotope.com Proteomics Mass Spectrometry Signal Calibration for Protein Quantitation Michael J. MacCoss, PhD Associate Professor of Genome Sciences University of
Analysis of Polyphenols in Fruit Juices Using ACQUITY UPLC H-Class with UV and MS Detection
Analysis of Polyphenols in Fruit Juices Using ACQUITY UPLC H-Class with UV and MS Detection Evelyn Goh, Antonietta Gledhill Waters Pacific, Singapore, Waters Corporation, Manchester, UK A P P L I C AT
ASSURING THE QUALITY OF TEST RESULTS
Page 1 of 12 Sections Included in this Document and Change History 1. Purpose 2. Scope 3. Responsibilities 4. Background 5. References 6. Procedure/(6. B changed Division of Field Science and DFS to Office
Gas Chromatography. Let s begin with an example problem: SPME head space analysis of pesticides in tea and follow-up analysis by high speed GC.
Gas Chromatography Let s begin with an example problem: SPME head space analysis of pesticides in tea and follow-up analysis by high speed GC. Samples in 10mL sealed glass vials were placed in the MPS-2
Introduction to. Hypothesis Testing CHAPTER LEARNING OBJECTIVES. 1 Identify the four steps of hypothesis testing.
Introduction to Hypothesis Testing CHAPTER 8 LEARNING OBJECTIVES After reading this chapter, you should be able to: 1 Identify the four steps of hypothesis testing. 2 Define null hypothesis, alternative
Simultaneous Qualitative and Quantitative Data Acquisition for Research of Diabetes Drugs
Liquid Chromatography Mass Spectrometry SSI-LCMS-068 Simultaneous Qualitative and Quantitative Data Acquisition for Research of Diabetes Drugs LCMS-8050 Summary By utilizing the LCMS-8050 s ultrafast scan
Sample Analysis Design Isotope Dilution
Isotope Dilution Most accurate and precise calibration method available Requires analyte with two stable isotopes Monoisotopic elements cannot be determined via isotope dilution Spike natural sample with
Introduction to Quantitative Methods
Introduction to Quantitative Methods October 15, 2009 Contents 1 Definition of Key Terms 2 2 Descriptive Statistics 3 2.1 Frequency Tables......................... 4 2.2 Measures of Central Tendencies.................
GUIDELINES ON THE USE OF MASS SPECTROMETRY (MS) FOR IDENTIFICATION, CONFIRMATION AND QUANTITATIVE DETERMINATION OF RESIDUES CAC/GL 56-2005
CAC/GL 56-2005 Page 1 of 6 GUIDELINES ON THE USE OF MASS SPECTROMETRY (MS) FOR IDENTIFICATION, CONFIRMATION AND QUANTITATIVE DETERMINATION OF RESIDUES CAC/GL 56-2005 CONFIRMATORY TESTS When analyses are
Independent t- Test (Comparing Two Means)
Independent t- Test (Comparing Two Means) The objectives of this lesson are to learn: the definition/purpose of independent t-test when to use the independent t-test the use of SPSS to complete an independent
Lesson 1: Comparison of Population Means Part c: Comparison of Two- Means
Lesson : Comparison of Population Means Part c: Comparison of Two- Means Welcome to lesson c. This third lesson of lesson will discuss hypothesis testing for two independent means. Steps in Hypothesis
Chapter 6: The Information Function 129. CHAPTER 7 Test Calibration
Chapter 6: The Information Function 129 CHAPTER 7 Test Calibration 130 Chapter 7: Test Calibration CHAPTER 7 Test Calibration For didactic purposes, all of the preceding chapters have assumed that the
Detection of Estrogens in Aqueous and Solid Environmental Matrices by Direct Injection LC-MS/MS
Detection of Estrogens in Aqueous and Solid Environmental Matrices by Direct Injection LC-MS/MS D. Loeffler 1, M. Ramil 1, T. Ternes 1, M. Suter 2, R. Schönenberger 2, H.-R. Aerni 2, S, König, A. Besa,
Increasing Quality While Maintaining Efficiency in Drug Chemistry with DART-TOF MS Screening
Increasing Quality While Maintaining Efficiency in Drug Chemistry with DART-TOF MS Screening Application Note Forensics Author Erin Shonsey Director of Research Alabama Department of Forensic Science Abstract
NCSS Statistical Software
Chapter 06 Introduction This procedure provides several reports for the comparison of two distributions, including confidence intervals for the difference in means, two-sample t-tests, the z-test, the
Introduction to Hypothesis Testing OPRE 6301
Introduction to Hypothesis Testing OPRE 6301 Motivation... The purpose of hypothesis testing is to determine whether there is enough statistical evidence in favor of a certain belief, or hypothesis, about
Uses of Derivative Spectroscopy
Uses of Derivative Spectroscopy Application Note UV-Visible Spectroscopy Anthony J. Owen Derivative spectroscopy uses first or higher derivatives of absorbance with respect to wavelength for qualitative
UHPLC/MS: An Efficient Tool for Determination of Illicit Drugs
Application Note: 439 UHPLC/MS: An Efficient Tool for Determination of Illicit Drugs Guifeng Jiang, Thermo Fisher Scientific, San Jose, CA, USA Key Words Accela UHPLC System MSQ Plus MS Detector Drugs
3.4 Statistical inference for 2 populations based on two samples
3.4 Statistical inference for 2 populations based on two samples Tests for a difference between two population means The first sample will be denoted as X 1, X 2,..., X m. The second sample will be denoted
LC-MS/MS for Chromatographers
LC-MS/MS for Chromatographers An introduction to the use of LC-MS/MS, with an emphasis on the analysis of drugs in biological matrices LC-MS/MS for Chromatographers An introduction to the use of LC-MS/MS,
AppNote 6/2003. Analysis of Flavors using a Mass Spectral Based Chemical Sensor KEYWORDS ABSTRACT
AppNote 6/2003 Analysis of Flavors using a Mass Spectral Based Chemical Sensor Vanessa R. Kinton Gerstel, Inc., 701 Digital Drive, Suite J, Linthicum, MD 21090, USA Kevin L. Goodner USDA, Citrus & Subtropical
Content Sheet 7-1: Overview of Quality Control for Quantitative Tests
Content Sheet 7-1: Overview of Quality Control for Quantitative Tests Role in quality management system Quality Control (QC) is a component of process control, and is a major element of the quality management
Thermo Scientific Dionex Chromeleon 7 Chromatography Data System Software
Thermo Scientific Dionex Chromeleon 7 Chromatography Data System Software Frank Tontala, Thermo Fisher Scientific, Germering, Germany Technical Note 708 Key Words Chromeleon Chromatography Data System,
UPLC-MS/MS Analysis of Aldosterone in Plasma for Clinical Research
UPLC-MS/MS Analysis of in Plasma for Clinical Research Dominic Foley and Lisa Calton Waters Corporation, Wilmslow, UK APPLICATION BENEFITS Analytical selectivity improves reproducibility through removal
Lecture Notes Module 1
Lecture Notes Module 1 Study Populations A study population is a clearly defined collection of people, animals, plants, or objects. In psychological research, a study population usually consists of a specific
Sample Size and Power in Clinical Trials
Sample Size and Power in Clinical Trials Version 1.0 May 011 1. Power of a Test. Factors affecting Power 3. Required Sample Size RELATED ISSUES 1. Effect Size. Test Statistics 3. Variation 4. Significance
Assay Development and Method Validation Essentials
Assay Development and Method Validation Essentials Thomas A. Little Ph.D. 10/13/2012 President Thomas A. Little Consulting 12401 N Wildflower Lane Highland, UT 84003 1-925-285-1847 [email protected]
Validation and Calibration. Definitions and Terminology
Validation and Calibration Definitions and Terminology ACCEPTANCE CRITERIA: The specifications and acceptance/rejection criteria, such as acceptable quality level and unacceptable quality level, with an
Increasing the Multiplexing of High Resolution Targeted Peptide Quantification Assays
Increasing the Multiplexing of High Resolution Targeted Peptide Quantification Assays Scheduled MRM HR Workflow on the TripleTOF Systems Jenny Albanese, Christie Hunter AB SCIEX, USA Targeted quantitative
Setting up a Quantitative Analysis MS ChemStation
Setting up a Quantitative Analysis MS ChemStation Getting Ready 1. Use the tutorial section "Quant Reports" on the MSD Reference Collection CD-ROM that came with your ChemStation software. 2. Know what
Electrical Resonance
Electrical Resonance (R-L-C series circuit) APPARATUS 1. R-L-C Circuit board 2. Signal generator 3. Oscilloscope Tektronix TDS1002 with two sets of leads (see Introduction to the Oscilloscope ) INTRODUCTION
Applying Statistics Recommended by Regulatory Documents
Applying Statistics Recommended by Regulatory Documents Steven Walfish President, Statistical Outsourcing Services [email protected] 301-325 325-31293129 About the Speaker Mr. Steven
Accurate Mass Screening Workflows for the Analysis of Novel Psychoactive Substances
Accurate Mass Screening Workflows for the Analysis of Novel Psychoactive Substances TripleTOF 5600 + LC/MS/MS System with MasterView Software Adrian M. Taylor AB Sciex Concord, Ontario (Canada) Overview
SPE, LC-MS/MS Method for the Determination of Ethinyl Estradiol from Human Plasma
SPE, LC-MS/MS Method for the Determination of Ethinyl Estradiol from uman Plasma Krishna Rao Dara, Dr. Tushar N. Mehta, Asia Pacific Center of Excellence, Thermo Fisher Scientific, Ahmedabad, India Application
Agilent Enhanced Matrix Removal Lipid LOSE THE LIPIDS, FIND YOUR ANALYTES
Agilent Enhanced Matrix Removal Lipid LOSE THE LIPIDS, FIND YOUR ANALYTES AGILENT ENHANCED MATRIX REMOVAL LIPID ARE LIPIDS WEIGHING YOUR SAMPLES DOWN? Interference from lipids is a problem for labs measuring
Characterizing Digital Cameras with the Photon Transfer Curve
Characterizing Digital Cameras with the Photon Transfer Curve By: David Gardner Summit Imaging (All rights reserved) Introduction Purchasing a camera for high performance imaging applications is frequently
American Association for Laboratory Accreditation
Page 1 of 12 The examples provided are intended to demonstrate ways to implement the A2LA policies for the estimation of measurement uncertainty for methods that use counting for determining the number
Hypothesis testing. c 2014, Jeffrey S. Simonoff 1
Hypothesis testing So far, we ve talked about inference from the point of estimation. We ve tried to answer questions like What is a good estimate for a typical value? or How much variability is there
Final Exam Practice Problem Answers
Final Exam Practice Problem Answers The following data set consists of data gathered from 77 popular breakfast cereals. The variables in the data set are as follows: Brand: The brand name of the cereal
Frequency Response of Filters
School of Engineering Department of Electrical and Computer Engineering 332:224 Principles of Electrical Engineering II Laboratory Experiment 2 Frequency Response of Filters 1 Introduction Objectives To
APPENDIX N. Data Validation Using Data Descriptors
APPENDIX N Data Validation Using Data Descriptors Data validation is often defined by six data descriptors: 1) reports to decision maker 2) documentation 3) data sources 4) analytical method and detection
Nuclear Physics Lab I: Geiger-Müller Counter and Nuclear Counting Statistics
Nuclear Physics Lab I: Geiger-Müller Counter and Nuclear Counting Statistics PART I Geiger Tube: Optimal Operating Voltage and Resolving Time Objective: To become acquainted with the operation and characteristics
Project 5: Scoville Heat Value of Foods HPLC Analysis of Capsaicinoids
Willamette University Chemistry Department 2013 Project 5: HPLC Analysis of Capsaicinoids LABORATORY REPORT: Formal Writing Exercises PRE-LAB ASSIGNMENT Read the entire laboratory project and section 28C
Noise reduction of fast, repetitive GC/MS measurements using principal component analysis (PCA)
Analytica Chimica Acta 401 (1999) 35 43 Noise reduction of fast, repetitive GC/MS measurements using principal component analysis (PCA) M. Statheropoulos a,, A. Pappa a, P. Karamertzanis a, H.L.C. Meuzelaar
Selective Testosterone Analysis in Human Serum by LC-FAIMS-MS/MS
Application Note: 446 Selective Testosterone Analysis in Human Serum by LC-FAIMS-MS/MS Jonathan McNally and Michael Belford, Thermo Fisher Scientific, San Jose, CA James Kapron, Thermo Fisher Scientific,
Using R for Linear Regression
Using R for Linear Regression In the following handout words and symbols in bold are R functions and words and symbols in italics are entries supplied by the user; underlined words and symbols are optional
Analytical Procedures and Method Validation
IPPC Discharges Monitoring Workshop Analytical Procedures and Method Validation Peter Webster Regional Chemist (EPA Cork) Contents... Overview of data quality Selection of suitable Analytical Methods Choosing
Appendix 5 Overview of requirements in English
Appendix 5 Overview of requirements in English This document is a translation of Appendix 4 (Bilag 4) section 2. This translation is meant as a service for the bidder and in case of any differences between
MarkerView Software 1.2.1 for Metabolomic and Biomarker Profiling Analysis
MarkerView Software 1.2.1 for Metabolomic and Biomarker Profiling Analysis Overview MarkerView software is a novel program designed for metabolomics applications and biomarker profiling workflows 1. Using
An introduction to Value-at-Risk Learning Curve September 2003
An introduction to Value-at-Risk Learning Curve September 2003 Value-at-Risk The introduction of Value-at-Risk (VaR) as an accepted methodology for quantifying market risk is part of the evolution of risk
AutoSpec Premier. Are you? Analyzing dioxins and related compounds? Required to satisfy regulatory requirements?
AutoSpec Premier Are you? Analyzing dioxins and related compounds? Required to satisfy regulatory requirements? Looking for sensitivity, selectivity and dynamic range? The AutoSpec Premier is the latest
How To Use An Ionsonic Microscope
Sample Analysis Design Element2 - Basic Software Concepts Scan Modes Magnetic Scan (BScan): the electric field is kept constant and the magnetic field is varied as a function of time the BScan is suitable
Standard Deviation Estimator
CSS.com Chapter 905 Standard Deviation Estimator Introduction Even though it is not of primary interest, an estimate of the standard deviation (SD) is needed when calculating the power or sample size of
UNDERSTANDING THE DEPENDENT-SAMPLES t TEST
UNDERSTANDING THE DEPENDENT-SAMPLES t TEST A dependent-samples t test (a.k.a. matched or paired-samples, matched-pairs, samples, or subjects, simple repeated-measures or within-groups, or correlated groups)
Jitter Measurements in Serial Data Signals
Jitter Measurements in Serial Data Signals Michael Schnecker, Product Manager LeCroy Corporation Introduction The increasing speed of serial data transmission systems places greater importance on measuring
Confidence Intervals for the Difference Between Two Means
Chapter 47 Confidence Intervals for the Difference Between Two Means Introduction This procedure calculates the sample size necessary to achieve a specified distance from the difference in sample means
Unique Software Tools to Enable Quick Screening and Identification of Residues and Contaminants in Food Samples using Accurate Mass LC-MS/MS
Unique Software Tools to Enable Quick Screening and Identification of Residues and Contaminants in Food Samples using Accurate Mass LC-MS/MS Using PeakView Software with the XIC Manager to Get the Answers
DYNAMIC LIGHT SCATTERING COMMON TERMS DEFINED
DYNAMIC LIGHT SCATTERING COMMON TERMS DEFINED Abstract: There are a number of sources of information that give a mathematical description of the terms used in light scattering. However, these will not
