UHPLC/MS: An Efficient Tool for Determination of Illicit Drugs
|
|
|
- Marianna Flynn
- 10 years ago
- Views:
Transcription
1 Application Note: 439 UHPLC/MS: An Efficient Tool for Determination of Illicit Drugs Guifeng Jiang, Thermo Fisher Scientific, San Jose, CA, USA Key Words Accela UHPLC System MSQ Plus MS Detector Drugs of Abuse Hypersil GOLD PFP Columns Sensitivity Goal Optimize a UHPLC/MS method with respect to stationary phase, mobile phase, and detector settings to achieve picogram level quantitation of fourteen drugs and metabolites employing a 12 minutes separation. Introduction Gas chromatography-mass spectrometry (GC-MS) is commonly employed for the separation and identification of drugs and metabolites in forensic toxicology, using electron impact (EI) or chemical ionization (CI). 1 This methodology has become a gold standard in terms of admissibility and defensibility in court because of its good sensitivity, excellent selectivity and a high degree of standardization. 2 However, laborious and time consuming derivatization procedures and sample clean ups are mandatory in most cases. LC/MS methods eliminate the need to derivatize and often simplify sample preparation. However, long run times and low separation efficiency limit the utility of conventional HPLC. Ultra high performance liquid chromatography (UHPLC) performs separations 5 to 10 times faster than conventional HPLC by employing sub-2 µm diameter particles. The 1-2 second peak widths and relatively high separation efficiency of UHPLC are more competitive with capillary GC, making UHPLC-MS an attractive alternative method for illicit drug analysis. This application note illustrates the separation and detection of a mixture of 14 illicit drugs/metabolites by ultra high performance liquid chromatography-mass spectrometry (UHPLC-MS). The drugs/metabolites are separated on a Hypersil GOLD PFP, 1.9 µm, 100 x 2.1 mm column and detected by a fast scanning single quadrupole mass spectrometer. Experimental Conditions 1. Drug Standard Preparation Pseudoephedrine, ephedrine, amphetamine, methamphetamine, 3,4-methylenedioxy-N-methamphetamine (3,4-MDMA), oxycodone, hydrocodone, clonazepam, noscapine, cocaine, caffeine, tetrahydrocannabinol (THC), cannabinol and cannabidiol standards (1 mg/ml in methanol) were purchased from Alltech-Applied Science (State College, PA, USA). The above fourteen compounds were mixed with the optimized molar ratio in the range of 1 to 100 and diluted to 0.1 ppm with methanol to make the drug mixture standards. 2. Chromatographic Conditions Chromatographic analyses were performed using the Accela UHPLC system (Thermo Scientific, San Jose, CA). The chromatographic conditions were as follows: LC Column: Hypersil GOLD, 1.9 µm, 20 x 2.1 mm Hypersil GOLD, 1.9 µm, 50 x 2.1 mm Hypersil GOLD, 1.9 µm, 100 x 2.1 mm Hypersil GOLD, aq (polar endcapped C18), 1.9 µm, 100 x 2.1 mm Hypersil GOLD PFP (perfluorinated phenyl), 1.9 µm, 100 x 2.1 mm Hypersil GOLD PFP (perfluorinated phenyl), 1.9 µm, 50 x 2.1 mm Column Temperature: 45 C Injection: 1 µl Partial Loop Injection, 25 µl Loop Size Syringe Speed: 8 µl/sec Flush Speed: 100 µl/sec Flush Volume: 400 µl Wash Volume: 100 µl Flush/Wash Source: Bottle with methanol Gradients: Method I Column: Hypersil GOLD PFP 1.9 µm, 100 x 2.1 mm A: Water (0.06% acetic acid) B: Acetonitrile (0.06% acetic acid) C: Methanol (0.06% acetic acid) Time (min) Eluent A% Eluent B% Eluent C% For the other gradient methods used, see Appendix A for details.
2 3. Mass Spectrometer Conditions MS analysis was carried out on a MSQ Plus single quadrupole LC-MS detector (Thermo Scientific, San Jose, CA). The MS conditions were as follows: Ionization: Electrospray (ESI) Polarity: Positive Probe Temperature: 450 C Cone Voltage: 60 V Scan Mode: Full scans ( m/z ) and/or Selected ion monitoring (SIM) ESI Voltage: 4.5 kv Results and Discussion 1. MS Detection Both positive and negative electrospray analysis were performed using the polarity switch function of the Xcalibur software. All of the analytes exhibited higher ionization efficiency in the positive ion mode compared with the negative mode. The MS spectra of the drug standards show both molecular ion signals of [M+H] + and acetonitrile adducts of the form [M+ACN+H] +. For 13 of the analytes, the signal from the molecular ion was more intense than the signal from the acetonitrile adduct. For amphetamine, the most intense signal was from the acetonitrile adduct [M+ACN+H] + at m/z of (data not shown). 2. Separations with Standard Stationary Phases Three columns were evaluated to separate the illicit drug mixtures: Hypersil GOLD, Hypersil GOLD aq and Hypersil GOLD PFP (Figure 1). The UHPLC method with each column type was optimized individually. Hypersil GOLD aq, a polar endcapped C18 phase which offers more retention of polar compounds, did not resolve the early eluting compounds including methamphetamine, oxycodone, caffeine, MDMA and hydrocodone. 3 The separation on Hypersil GOLD aq may have been impaired by interactions between the polar endcapped stationary phase and the polar analytes. Hypersil GOLD, with LI or C18 selectivity, showed improved selectivity for all analytes except caffeine (peak 1) and oxycodone (peak 7). Hypersil GOLD uses highly pure silica and endcapping procedure to minimize unwanted interactions between analytes and the acidic silanols of the silica support. Hypersil GOLD PFP enabled the optimal separation of all 14 analytes by improving the resolution of the earlier eluting compounds. Hypersil GOLD PFP introduces a fluorine group into the stationary phase to improve selectivity towards halogenated compounds, as well as polar compounds containing hydroxyl, carboxyl, nitro or other polar groups Separations using Acetic Acid and Trifluoroacetic Acid (TFA) as Eluent Modifier Trifluoroacetic acid, formic acid and acetic acid can be added into the mobile phase to generate differences in selectivity. Separation of 14 illicit drugs on a Hypersil GOLD PFP column was evaluated by using either trifluoroacetic acid, formic acid or acetic acid as eluent modifier. The separation method with 0.02% TFA (Figure 2A) provided fast separation performance with good resolution and sharp peaks. However, the use of TFA is generally not recommended with MS detection due to its effect on signal suppression. All of the analytes are well resolved with 0.1% formic acid as modifier (Figure 1C), but only when 100% water is used at the beginning of the gradient method (Method C). Prolonged use of 100% water may degrade the stationary phase and shorten the column lifetime, so gradient method C is not suited for routine use. Most of the analytes are well separated with adequate resolution using 0.06% acetic acid as eluent modifier (Figure 2B). However, under such conditions, a few pairs of compounds, such as oxycodone and methamphetamine (peaks 7 & 6), hydrocodone and 3, 4-MDMA (peaks 5 & 8), cocaine and noscapine (peaks 10 & 11), are not baseline resolved. 4. Separations with Hybrid Column Phases Three hybrid stationary phases were evaluated after connecting different stationary phase columns in series: Figure 3A: 50 x 2.1 mm Hypersil GOLD + 50 x 2.1 mm Hypersil GOLD PFP Figure 3B: 50 x 2.1 mm Hypersil GOLD PFP + 50 x 2.1 mm Hypersil GOLD Figure 3C: 100 x 2.1 mm Hypersil GOLD PFP + 20 x 2.1 mm Hypersil GOLD Separations of 14 illicit drugs with these three hybrid stationary phases demonstrated great variation in selectivity. In general, the hybrid column phases improved selectivity between THC and cannabinol, cocaine and noscapine, but reduced selectivity between earlier eluting compounds, such as oxycodone, MA, hydrocodone and MDMA, compared with the Hypersil GOLD PFP phase. 5. Separation with Ternary Gradient The separation of the drug mixtures was dramatically improved by using three solvents: water, acetonitrile and methanol (Figure 4). Baseline resolution of all 14 drugs was achieved. Methanol, a weaker eluent compared with acetonitrile, provided better resolution for most of the analytes. However, the flow rate had to be reduced to accommodate high column backpressure caused by the high viscosity of methanol. Adding acetonitrile reduced the column backpressure so as to maintain the same separation speed.
3 Figure 1: Comparison of 1.9 µm Hypersil GOLD stationary phases for the UHPLC separation of 14 illicit drugs. A) Hypersil GOLD aq, Method A was applied; B) Hypersil GOLD, Method B was applied; C) Hypersil GOLD PFP, Method C was applied. See Appendix A for methods details. 6. Calibration Curve and Sensitivity Calibration curves for the drug standards were constructed over the concentration range listed in Table 1 with 10 calibration levels (Figure 5). Each calibration level was injected three times and the mean area responses were plotted against the concentrations. Correlation coefficients with R 2 = or better were achieved for all illicit drug compounds. The limit of quantitation (LOQ) and the limit of detection (LOD) of the drug compounds were determined based on the calibration curve of signal-to-noise ratio versus concentration and the definitions of LOQ and LOD using s/n = 10 and 3, respectively. LOQs for all drugs were in the range of ng/ml, while LODs were from 0.29 to 90.0 ng/ml (Table 1). The outstanding sensitivity by this method was highlighted by the achievement of picogram level quantitation for 10 illicit drugs with 1 µl sample injection. LOQ LOD Linear Range Analyte (ng/ml) (ng/ml) (ng/ml) ephedrine pseudoephedrine amphetamine methamphetamine ,4-MDMA hydrocodone oxycodone clonazepam cocaine noscapine cannabidiol cannabinol THC Table 1: LOQ and LOD of the thirteen drug compounds with 1 µl sample injection. Figure 2: UHPLC/MS chromatograms of the 14 illicit drugs with acidic solvent modifiers. A) 0.02%TFA (Method D); B) 0.06% acetic acid (Method E). See Appendix A for methods details.
4 Conclusions Fourteen illicit drugs and metabolites are baseline separated in twelve minutes by employing UHPLC/MS with a ternary solvent gradient. Various selectivities are achieved by different column surface chemistry, acidic solvent modifier and eluent system. These results are useful for method developments of drug identification and quantitation. Detection by single quadrupole MS at the ppb (ng/ml) level is more than sufficient to identify and quantify illicit drugs in real samples. References 1. C. Koeppel and J. Tenczer: Scope and limitations of a general unknown screening by gas chromatography-mass spectrometry in acute poisoning. J. Am Soc. Mass Spectrom. 1995, 6, W. Weinmann, A. Wiedemann, B. Eppinger, M. Renz and M. Svoboda: Screening for drugs in serum by electrospray ionization/collisioninduced dissociation and library searching. J. Am Soc Mass Spectrom. 1999, 10, Catalog, Chromatography Columns and Consumables, 08 09, Thermo Scientific, page Figure 3: Comparison of hybrid stationary phase chemistry for the separation of 14 illicit drugs. A) 50 x 2.1 mm Hypersil GOLD + 50 x 2.1 mm Hypersil GOLD PFP, Method F; B) 50 x 2.1 mm Hypersil GOLD PFP + 50 x 2.1 mm Hypersil GOLD, Method G; C) 100 x 2.1 mm Hypersil GOLD PFP + 20 x 2.1 mm Hypersil GOLD, Method H. See Appendix A for method details. Figure 4: Optimized UHPLC/MS separation of 14 illicit drugs with ternary gradient, listed in Method I.
5 Figure 5: Calibration curves for illicit drugs.
6 Appendix A In addition to these offices, Thermo Fisher Method A Method D Method G Scientific maintains Column: Hypersil GOLD aq, 1.9 µm, 100 x 2.1 mm A: Water, 0.1% FA B: Acetonitrile, 0.1% FA Flow Rate: 750 µl/min Method B Column: Hypersil GOLD, 1.9 µm, 100 x 2.1 mm A: Water, 0.1% FA B: Acetonitrile, 0.1% FA Method C Column: Hypersil GOLD PFP, 1.9 µm, 100 x 2.1 mm A: Water, 0.1% FA B: Acetonitrile, 0.1% FA Column: Hypersil GOLD PFP, 1.9 µm, 100 x 2.1mm A: Water, 0.02% TFA B: Acetonitrile, 0.02% TFA Method E Column: Hypersil GOLD PFP, 1.9 µm, 100 x 2.1 mm Method F Hypersil GOLD, 1.9 µm, 50 x 2.1 mm Hypersil GOLD PFP, 1.9 µm, 50 x 2.1 mm Hypersil GOLD PFP, 1.9 µm, 50 x 2.1mm Hypersil GOLD, 1.9 µm, 50 x 2.1 mm Method H Hypersil GOLD PFP, 1.9 µm, 100 x 2.1 mm Hypersil GOLD, 1.9 µm, 20 x 2.1 mm a network of representative organizations throughout the world. Africa Australia Austria Belgium Canada China Denmark Europe-Other France Germany India Italy Japan Latin America Middle East Netherlands South Africa Spain Sweden/Norway/ Finland Switzerland UK USA Legal Notices 2008 Thermo Fisher Scientific Inc. All rights reserved. All trademarks are the property of Thermo Fisher Scientific Inc. and its subsidiaries. This information is presented as an example of the capabilities of Thermo Fisher Scientific Inc. products. It is not intended to encourage use of these products in any manners that might infringe the intellectual property rights of others. Specifications, terms and pricing are subject to change. Not all products are available in all countries. Please consult your local sales representative for details. View additional Thermo Scientific LC/MS application notes at: Thermo Fisher Scientific, San Jose, CA USA is ISO Certified. AN62904_E 10/08M Part of Thermo Fisher Scientific
Simultaneous Quantitation of 43 Drugs in Human Urine with a Dilute-and-Shoot LC-MS/MS Method
Simultaneous Quantitation of 4 Drugs in Human Urine with a Dilute-and-Shoot LC-MS/MS Method Xiang He and Marta Kozak, Thermo Fisher Scientific, San Jose, CA Application Note 76 Key Words TSQ Quantum Access
Rapid Screening Method for Illicit Drugs, Using an Advanced Solid Core UHPLC Column and UHPLC System with MS/MS Detection
Rapid Screening Method for Illicit Drugs, Using an Advanced Solid Core UHPLC Column and UHPLC System with MS/MS Detection Derek Hillbeck, Thermo Fisher Scientific, Runcorn, UK Application Note 2999 Key
Thermo Scientific Prelude SPLC System FPO. Making LC/MS accessible. to clinical research and toxicology labs
Thermo Scientific Prelude SPLC System FPO Making LC/MS accessible to clinical research and toxicology labs Specifically designed to make the power of LC/MS accessible Analysis of target compounds in complex
LC-MS/MS Method for the Determination of Docetaxel in Human Serum for Clinical Research
LC-MS/MS Method for the Determination of Docetaxel in Human Serum for Clinical Research J. Jones, J. Denbigh, Thermo Fisher Scientific, Runcorn, Cheshire, UK Application Note 20581 Key Words SPE, SOLA,
SPE, LC-MS/MS Method for the Determination of Ethinyl Estradiol from Human Plasma
SPE, LC-MS/MS Method for the Determination of Ethinyl Estradiol from uman Plasma Krishna Rao Dara, Dr. Tushar N. Mehta, Asia Pacific Center of Excellence, Thermo Fisher Scientific, Ahmedabad, India Application
Selective Testosterone Analysis in Human Serum by LC-FAIMS-MS/MS
Application Note: 446 Selective Testosterone Analysis in Human Serum by LC-FAIMS-MS/MS Jonathan McNally and Michael Belford, Thermo Fisher Scientific, San Jose, CA James Kapron, Thermo Fisher Scientific,
The Use of Micro Flow LC Coupled to MS/MS in Veterinary Drug Residue Analysis
The Use of Micro Flow LC Coupled to MS/MS in Veterinary Drug Residue Analysis Stephen Lock AB SCIEX Warrington (UK) Overview A rapid, robust, sensitive and specific LC-MS/MS method has been developed for
Daniel M. Mueller, Katharina M. Rentsch Institut für Klinische Chemie, Universitätsspital Zürich, CH-8091 Zürich, Schweiz
Toxichem Krimtech 211;78(Special Issue):324 Online extraction LC-MS n method for the detection of drugs in urine, serum and heparinized plasma Daniel M. Mueller, Katharina M. Rentsch Institut für Klinische
Utilization of Rapid LC-MS for Screening and Quantitative Analysis of Pesticides in Food Matrix using an Exactive Plus Benchtop Orbitrap Platform
Utilization of Rapid LC-MS for Screening and Quantitative Analysis of Pesticides in Food Matrix using an Exactive Plus Benchtop Orbitrap Platform Charles Yang, Leo Wang, Dipankar Ghosh, Jonathan Beck,
Overview. Triple quadrupole (MS/MS) systems provide in comparison to single quadrupole (MS) systems: Introduction
Advantages of Using Triple Quadrupole over Single Quadrupole Mass Spectrometry to Quantify and Identify the Presence of Pesticides in Water and Soil Samples André Schreiber AB SCIEX Concord, Ontario (Canada)
Fast, Reproducible LC-MS/MS Analysis of Dextromethorphan and Dextrorphan
Fast, Reproducible LC-MS/MS Analysis of and Kimberly Phipps, Thermo Fisher Scientific, Runcorn, Cheshire, UK Application Note 685 Key Words Accucore C18, dextromethorphan, dextrorphan, SOLA CX Abstract
Analysis of the Vitamin B Complex in Infant Formula Samples by LC-MS/MS
Analysis of the Vitamin B Complex in Infant Formula Samples by LC-MS/MS Stephen Lock 1 and Matthew Noestheden 2 1 AB SCIEX Warrington, Cheshire (UK), 2 AB SCIEX Concord, Ontario (Canada) Overview A rapid,
Extraction of Epinephrine, Norepinephrine and Dopamine from Human Plasma Using EVOLUTE EXPRESS WCX Prior to LC-MS/MS Analysis
Application Note AN844 Extraction of, and from Human Plasma Using EVOLUTE EXPRESS WCX Page 1 Extraction of, and from Human Plasma Using EVOLUTE EXPRESS WCX Prior to LC-MS/MS Analysis Introduction Catecholamines
Using Natural Products Application Solution with UNIFI for the Identification of Chemical Ingredients of Green Tea Extract
Using Natural Products Application Solution with UNIFI for the Identification of Chemical Ingredients of Green Tea Extract Lirui Qiao, 1 Rob Lewis, 2 Alex Hooper, 2 James Morphet, 2 Xiaojie Tan, 1 Kate
Guide to Reverse Phase SpinColumns Chromatography for Sample Prep
Guide to Reverse Phase SpinColumns Chromatography for Sample Prep www.harvardapparatus.com Contents Introduction...2-3 Modes of Separation...4-6 Spin Column Efficiency...7-8 Fast Protein Analysis...9 Specifications...10
GENERAL UNKNOWN SCREENING FOR DRUGS IN BIOLOGICAL SAMPLES BY LC/MS Luc Humbert1, Michel Lhermitte 1, Frederic Grisel 2 1
GENERAL UNKNOWN SCREENING FOR DRUGS IN BIOLOGICAL SAMPLES BY LC/MS Luc Humbert, Michel Lhermitte, Frederic Grisel Laboratoire de Toxicologie & Génopathologie, CHRU Lille, France Waters Corporation, Guyancourt,
# LCMS-35 esquire series. Application of LC/APCI Ion Trap Tandem Mass Spectrometry for the Multiresidue Analysis of Pesticides in Water
Application Notes # LCMS-35 esquire series Application of LC/APCI Ion Trap Tandem Mass Spectrometry for the Multiresidue Analysis of Pesticides in Water An LC-APCI-MS/MS method using an ion trap system
AMD Analysis & Technology AG
AMD Analysis & Technology AG Application Note 120419 Author: Karl-Heinz Maurer APCI-MS Trace Analysis of volatile organic compounds in ambient air A) Introduction Trace analysis of volatile organic compounds
Thermo Scientific SIEVE Software for Differential Expression Analysis
m a s s s p e c t r o m e t r y Thermo Scientific SIEVE Software for Differential Expression Analysis Automated, label-free, semi-quantitative analysis of proteins, peptides, and metabolites based on comparisons
Quick and Sensitive Analysis of Multiclass Veterinary Drug Residues in Meat, Plasma, and Milk on a Q Exactive Focus LC-MS System
Quick and Sensitive Analysis of Multiclass Veterinary Drug Residues in Meat, Plasma, and Milk on a Q Exactive Focus LC-MS System Olaf Scheibner, Maciej Bromirski, Thermo Fisher Scientific, Bremen, Germany
Simultaneous qualitative and quantitative analysis using the Agilent 6540 Accurate-Mass Q-TOF
Simultaneous qualitative and quantitative analysis using the Agilent 654 Accurate-Mass Q-TOF Technical Overview Authors Pat Perkins Anabel Fandino Lester Taylor Agilent Technologies, Inc. Santa Clara,
Thermo Scientific ClinQuan MD Software For In Vitro Diagnostic Use. Confidence in Results With Data Integrity
Thermo Scientific ClinQuan MD Software For In Vitro Diagnostic Use Confidence in Results With Data Integrity 2 Make the World Healthier With the LC-MS Tests You Run Confidence in Test Results With Data
Overview. Introduction. AB SCIEX MPX -2 High Throughput TripleTOF 4600 LC/MS/MS System
Investigating the use of the AB SCIEX TripleTOF 4600 LC/MS/MS System for High Throughput Screening of Synthetic Cannabinoids/Metabolites in Human Urine AB SCIEX MPX -2 High Throughput TripleTOF 4600 LC/MS/MS
Determination of Pesticide Residues in Drinking Water Using Automated Solid-Phase Extraction and Gas Chromatography with Nitrogen Phosphorus Detection
Determination of Pesticide Residues in Drinking Water Using Automated Solid-Phase Extraction and Gas Chromatography with Nitrogen Phosphorus Detection Application Note 1097 Liu Qian, Zheng Hongguo and
TargetQuan 3 Software. Leading the way in regulatory. POPs quantification. Bullet Bullet Bullet
TargetQuan 3 Software Leading the way in regulatory POPs quantification Bullet Bullet Bullet Leading the way in regulatory POPs quantification Analyse Samples Open Sequence Process Sequence Analyse Samples
Thermo Scientific HyperSep Solid Phase Extraction Method Development Guide
chromatography Thermo Scientific HyperSep Solid Phase Extraction Method Development Guide The following guide provides considerations, tips and general guidelines for developing SPE methods using the Thermo
Pesticide Analysis by Mass Spectrometry
Pesticide Analysis by Mass Spectrometry Purpose: The purpose of this assignment is to introduce concepts of mass spectrometry (MS) as they pertain to the qualitative and quantitative analysis of organochlorine
IC-MS and LC-MS Determination of Ionic Liquids, Counterions, and Impurities
ICMS and LCMS Determination of Ionic Liquids, Counterions, and Impurities Leo Wang, Detlef Jensen, and William Schnute Dionex Corporation, Sunnyvale, CA, USA; Dionex Corporation, Olten, Switzerland INTRODUCTION
Micromass LCT User s Guide
Micromass LCT User s Guide 1) Log on to MassLynx with your username & password. 2) After you have logged in, the MassLynx software will automatically run. 3) After MassLynx has come up, open your project
A Complete Solution for Method Linearity in HPLC and UHPLC
Now sold under the Thermo Scientific brand A Complete Solution for Method Linearity in HPLC and UHPLC Frank Steiner, Fraser McLeod, Tobias Fehrenbach, and Andreas Brunner Dionex Corporation, Germering,
Analysis of Free Bromate Ions in Tap Water using an ACQUITY UPLC BEH Amide Column
Analysis of Free Bromate Ions in Tap Water using an ACQUITY UPLC BEH Amide Column Sachiki Shimizu, FUJIFILM Fine Chemicals Co., Ltd., Kanagawa, Japan Kenneth J. Fountain, Kevin Jenkins, and Yoko Tsuda,
SCREENING FOR DRUGS IN SERUM AND URINE BY LC/ESI/CID-MS AND MS/MS WITH LIBRARY SEARCHING *
SCREENING FOR DRUGS IN SERUM AND URINE BY LC/ESI/CID-MS AND MS/MS WITH LIBRARY SEARCHING * Wolfgang WEINMANN 1, Natalie LEHMANN 1, Michaela RENZ 1, Alexander WIEDEMANN 1, Michal SVOBODA 2 1 Institute of
Overview. Purpose. Methods. Results
A ovel Approach to Quantify Unbound Cisplatin, Carboplatin, and xaliplatin in Human Plasma Ultrafiltrate by Measuring Platinum-DDTC Complex Using LC/M/M Min Meng, Ryan Kuntz, Al Fontanet, and Patrick K.
Technical Report. Automatic Identification and Semi-quantitative Analysis of Psychotropic Drugs in Serum Using GC/MS Forensic Toxicological Database
C146-E175A Technical Report Automatic Identification and Semi-quantitative Analysis of Psychotropic Drugs in Serum Using GC/MS Forensic Toxicological Database Hitoshi Tsuchihashi 1 Abstract: A sample consisting
One Source Toxicology Laboratory, 1213 Genoa Red Bluff, Pasadena, Texas 77504
Validation of Analysis of Amphetamines, Opiates, Phencyclidine, Cocaine, and Benzoylecgonine in Oral Fluids by Liquid Chromatography Tandem Mass Spectrometry Subbarao V. Kala*, Steve E. Harris, Tom D.
Thermo Scientific Compound Discoverer Software. A New Generation. of integrated solutions for small molecule structure ID
Thermo Scientific Compound Discoverer Software A New Generation of integrated solutions for small molecule structure ID Transforming Small Molecule Research Solutions for Small Molecule Structural ID Thermo
CONFIRMATION OF ZOLPIDEM BY LIQUID CHROMATOGRAPHY MASS SPECTROMETRY
CONFIRMATION OF ZOLPIDEM BY LIQUID CHROMATOGRAPHY MASS SPECTROMETRY 9.1 POLICY This test method may be used to confirm the presence of zolpidem (ZOL), with diazepam-d 5 (DZP-d 5 ) internal standard, in
Simultaneous Metabolite Identification and Quantitation with UV Data Integration Using LightSight Software Version 2.2
Technical ote Simultaneous Metabolite Identification and Quantitation with UV Data Integration Using LightSight Software Version 2.2 Alek. Dooley, Carmai Seto, esham Ghobarah, and Elliott B. Jones verview:
Chemistry 321, Experiment 8: Quantitation of caffeine from a beverage using gas chromatography
Chemistry 321, Experiment 8: Quantitation of caffeine from a beverage using gas chromatography INTRODUCTION The analysis of soft drinks for caffeine was able to be performed using UV-Vis. The complex sample
Thermo Scientific ExactFinder Software
mass spectrometry Thermo Scientific ExactFinder Software Workflow software for routine targeted and general unknown screening Unifies qualitative and quantitative high-resolution accurate mass workflows
[ Care and Use Manual ]
PREP Calibration Mix DIOS Low i. Introduction Pre-packaged PREP Calibration Mixtures eliminate the need to purchase and store large quantities of the component calibration reagents, simplifying sample
New drugs of abuse? A case study on Phenazepam & Methoxetamine
New drugs of abuse? A case study on Phenazepam & Methoxetamine Presenter: Nadia Wong Co authors: Dr Yao Yi Ju & Alex Low Xuan Kai Analytical Toxicology Laboratory Clinical & Forensic Toxicology Unit Applied
Advantages of Polar, Reversed- Phase HPLC Columns for the Analysis of Drug Metabolites
Advantages of Polar, Reversed- Phase HPLC Columns for the Analysis of Drug Metabolites Carmen T. Santasania and David S. Bell SUPELCO, 595 North Harrison Road, Bellefonte, PA 16823 T404045 GUS Abstract
Thermo Scientific PepFinder Software A New Paradigm for Peptide Mapping
Thermo Scientific PepFinder Software A New Paradigm for Peptide Mapping For Conclusive Characterization of Biologics Deep Protein Characterization Is Crucial Pharmaceuticals have historically been small
Analyzing Small Molecules by EI and GC-MS. July 2014
Analyzing Small Molecules by EI and GC-MS July 2014 Samples Appropriate for GC-MS Volatile and semi-volatile organic compounds Rule of thumb,
WATERS QUANTITATIVE ANALYSIS solutions
More sensitivity. More speed. What more can you ask for in a complete quantitative analysis solution? WATERS QUANTITATIVE ANALYSIS solutions THE CHALLENGE OF QUANTITATIVE ANALYSIS Tandem mass spectrometry,
Hydrophilic-Interaction Chromatography (HILIC) for LC-MS/MS Analysis of Monoamine Neurotransmitters using XBridge BEH Amide XP Columns
Hydrophilic-Interaction Chromatography (HILIC) for LC-MS/MS Analysis of Monoamine Neurotransmitters using XBridge BEH Amide XP Columns Jonathan P. Danaceau, Kenneth J. Fountain, and Erin E. Chambers Waters
Automated Method Development Utilizing Software-Based Optimization and Direct Instrument Control
Automated Method Development Utilizing Software-Based Optimization and Direct Instrument Control Dr. Frank Steiner, 1 Andreas Brunner, 1 Fraser McLeod, 1 Dr. Sergey Galushko 2 1 Dionex Corporation, Germering,
Comparison of the Reversed-Phase Selectivity of Solid Core HPLC Columns
omparison of the Reversed-Phase Selectivity of Solid ore HPL olumns M. Dolci, L. Pereira, Thermo Fisher Scientific, Runcorn, heshire, UK Technical Note 20788 Key Words Accucore, solid core, column characterization,
MEPS - Micro Extraction by Packed Sorbent Online SPE for GC and LC sample preparation - Extraction to injection in a single process
- Micro Extraction by Packed Sorbent Online SPE for GC and LC sample preparation - Extraction to injection in a single process Save Hours in Sample Preparation Reduce the time to prepare and inject samples
FT-NIR for Online Analysis in Polyol Production
Application Note: 51594 FT-NIR for Online Analysis in Polyol Production Key Words Acid Number Ethylene Oxide FT-NIR Hydroxyl Value Polyester Polyols Abstract Hydroxyl value and other related parameters
LC-MS/MS for Chromatographers
LC-MS/MS for Chromatographers An introduction to the use of LC-MS/MS, with an emphasis on the analysis of drugs in biological matrices LC-MS/MS for Chromatographers An introduction to the use of LC-MS/MS,
PosterREPRINT AN LC/MS ORTHOGONAL TOF (TIME OF FLIGHT) MASS SPECTROMETER WITH INCREASED TRANSMISSION, RESOLUTION, AND DYNAMIC RANGE OVERVIEW
OVERVIEW Exact mass LC/MS analysis using an orthogonal acceleration time of flight (oa-tof) mass spectrometer is a well-established technique with a broad range of applications. These include elemental
Third Party Instrument Control with Chromeleon Chromatography Data System (CDS) Software
Third Party Instrument Control with Chromeleon Chromatography Data System (CDS) Software White Paper 70885 Executive Summary Over the last few decades chromatographic instrumentation and separations have
Thermo Scientific ConFlo IV Universal Interface
m a s s s p e c t r o m e t r y Thermo Scientific ConFlo IV Universal Interface The Universal Interface Part of Thermo Fisher Scientific ConFlo IV Universal Interface The Universal Interface The development
Thermo Scientific Syncronis HPLC Columns. Technical Manual
Thermo Scientific Syncronis HPLC Columns Technical Manual Thermo Scientific Syncronis HPLC Columns When developing a new method, one of the most important goals for the chromatographer is to achieve a
STANFORD UNIVERSITY MASS SPECTROMETRY 333 CAMPUS DR., MUDD 175 STANFORD, CA 94305-5080
Training on the ZQ Open access MS Questions? Contact Dr. Allis Chien [email protected] 650-723-0710 0710 STANFORD UNIVERSITY MASS SPECTROMETRY STANFORD UNIVERSITY MASS SPECTROMETRY 333 CAMPUS DR., MUDD
Supplementary Materials and Methods (Metabolomics analysis)
Supplementary Materials and Methods (Metabolomics analysis) Metabolite extraction and mass spectrometry analysis. 12 Vldlr-/- knock out and 12 wild type (WT) retinas were separately frozen at -80 ºC in
Cliquid Drug Screen & Quant Software for Routine Forensic Toxicology. great interest in forensic, toxicological and clinical research laboratories.
Application Note Cliquid Drug Screen & Quant Software A Fast and Sensitive LC/MS/MS Method for the Quantitation and Confirmation of 30 Benzodiazepines and Nonbenzodiazepine Hypnotics in Forensic Urine
Thermo Scientific SOLA SPE cartridges and plates Technical Guide. Join the revolution. unparalleled performance
Thermo Scientific SOLA SPE cartridges and plates Technical Guide Join the revolution unparalleled performance Join the revolution next-generation SPE Thermo Scientific SOLA products revolutionize Solid
Making the Leap to LC/MS/MS: Enhancing and Accelerating Clinical Research and Forensic Toxicology Applications
Making the Leap to LC/MS/MS: Enhancing and Accelerating Clinical Research and Forensic Toxicology Applications Introduction The resolving power of chromatography combined with the sensitivity and selectivity
SIMULTANEOUS DETERMINATION OF NALTREXONE AND 6- -NALTREXOL IN SERUM BY HPLC
SIMULTANEOUS DETERMINATION OF NALTREXONE AND 6- -NALTREXOL IN SERUM BY HPLC Katja SÄRKKÄ, Kari ARINIEMI, Pirjo LILLSUNDE Laboratory of Substance Abuse, National Public Health Institute Manerheimintie,
for mass spectrometry calibration tools Thermo Scientific Pierce Controls and Standards for Mass Spectrometry
Thermo Scientific Pierce Controls and Standards for Mass Spectrometry calibration tools for mass spectrometry Ensure confidence in instrument performance with Thermo Scientific Pierce Calibration Solutions
Therapeutic Drug Monitoring of Antiretroviral Drugs with HPLC-MS
Therapeutic Drug Monitoring of Antiretroviral Drugs with PLC-M Ursula Gutteck-Amsler, Katharina M. Rentsch Abstract Prospective and retrospective studies have provided some evidence of the clinical and
Background Information
1 Gas Chromatography/Mass Spectroscopy (GC/MS/MS) Background Information Instructions for the Operation of the Varian CP-3800 Gas Chromatograph/ Varian Saturn 2200 GC/MS/MS See the Cary Eclipse Software
In-Depth Qualitative Analysis of Complex Proteomic Samples Using High Quality MS/MS at Fast Acquisition Rates
In-Depth Qualitative Analysis of Complex Proteomic Samples Using High Quality MS/MS at Fast Acquisition Rates Using the Explore Workflow on the AB SCIEX TripleTOF 5600 System A major challenge in proteomics
A Generic LC-MS Method for the Analysis of Multiple of Drug of Abuse Classes with the Thermo Scientific Exactive TM System
A Generic LC-MS Method for the Analysis of Multiple of Drug of Abuse Classes with the Thermo Scientific Exactive TM System Kent Johnson Fortes lab, Wilsonville Oregon List of drug of abuse candidates for
Comprehensive LC/MS Analysis of Illicit and Pain Management Drugs, Including Their Metabolites, in Urine
Comprehensive LC/MS Analysis of Illicit and Pain Management Drugs, Including Their Metabolites, in Urine Application Note Authors Peter JW Stone and Kevin McCann Agilent Technologies, Inc. Santa Clara,
Advantages of the LTQ Orbitrap for Protein Identification in Complex Digests
Application Note: 386 Advantages of the LTQ Orbitrap for Protein Identification in Complex Digests Rosa Viner, Terry Zhang, Scott Peterman, and Vlad Zabrouskov, Thermo Fisher Scientific, San Jose, CA,
How To Use An Acquity Qda Detector
Mass-Directed Isolation of a Synthetic Peptide Using the ACQUITY QDa Detector Jo-Ann M. Jablonski and Andrew J. Aubin Waters Corporation, Milford, MA, USA APPLICATION BENEFITS The ACQUITY QDa Detector
Application Note # LCMS-92 Interlaboratory Tests Demonstrate the Robustness and Transferability of the Toxtyper Workflow
Application Note # LCMS-92 Interlaboratory Tests Demonstrate the Robustness and Transferability of the Toxtyper Workflow Abstract There is high demand in clinical research and forensic toxicology for comprehensive,
Electrospray Ion Trap Mass Spectrometry. Introduction
Electrospray Ion Source Electrospray Ion Trap Mass Spectrometry Introduction The key to using MS for solutions is the ability to transfer your analytes into the vacuum of the mass spectrometer as ionic
SCREENING FOR THE PRESENCE OF PARA-METHYLTHIOAMPHETAMINE IN URINE BY SOME COMMERCIAL IMMUNOASSAYS AND CONFIRMATION BY GC/MS
SCREENING FOR THE PRESENCE OF PARA-METHYLTHIOAMPHETAMINE IN URINE BY SOME COMMERCIAL IMMUNOASSAYS AND CONFIRMATION BY GC/MS Ingrid J. BOSMAN 1, Douwe DE BOER 2, Robert A. A. MAES 1 1 Department of Human
Making the Leap to LC/MS/MS: Enhancing and Accelerating Clinical Research and Forensic Toxicology Applications
TECHNICAL NOTE Toxicology Making the Leap to LC/MS/MS: Enhancing and Accelerating Clinical Research and Forensic Toxicology Applications Introduction The resolving power of chromatography combined with
A High Throughput Automated Sample Preparation and Analysis Workflow for Comprehensive Forensic Toxicology Screening using LC/MS/MS
A High Throughput Automated Sample Preparation and Analysis Workflow for Comprehensive Forensic Toxicology Screening using LC/MS/MS AB SCIEX QTRAP 4500 LC/MS/MS System and Gerstel, Inc. MultiPurpose Sampler
How To Test For Contamination In Large Volume Water
Automated Solid Phase Extraction (SPE) of EPA Method 1694 for Pharmaceuticals and Personal Care Products in Large Volume Water Samples Keywords Application Note ENV0212 This collaboration study was performed
Step-by-Step Analytical Methods Validation and Protocol in the Quality System Compliance Industry
Step-by-Step Analytical Methods Validation and Protocol in the Quality System Compliance Industry BY GHULAM A. SHABIR Introduction Methods Validation: Establishing documented evidence that provides a high
Analysis of Polyphenols in Fruit Juices Using ACQUITY UPLC H-Class with UV and MS Detection
Analysis of Polyphenols in Fruit Juices Using ACQUITY UPLC H-Class with UV and MS Detection Evelyn Goh, Antonietta Gledhill Waters Pacific, Singapore, Waters Corporation, Manchester, UK A P P L I C AT
Application Note # MS-14 Fast On-site Identification of Drugs with the mobile GC/MS system E²M
Bruker Daltonics Application Note # MS- Fast n-site Identification of Drugs with the mobile GC/MS system E²M For the detection of drugs a couple of quick tests are available which were used by the police
Ultra Fast UHPLC-LCMSMS Method Development in Clinical Drug Monitoring
PO-CON1359E Ultra Fast UHPLC-LCMSMS Method Development in HPLC 2013 MASS-09 Anja Grüning 1 ; Brigitte Richrath 1 ; Klaus Bollig 2 ; Sven Vedder 1 ; Robert Ludwig 1 1 Shimadzu Europa GmbH, Duisburg, Germany;
Opiates in Urine by SAMHSA GC/MS
application Note Gas Chromatography/ Mass Spectrometry Author Timothy D. Ruppel PerkinElmer, Inc. Shelton, CT 06484 USA Opiates in Urine by SAMHSA GC/MS Introduction The United States Department of Health
Quantitative analysis of anabolic steroids in control samples from food-producing animals using a column-switching LC-HESI-MS/MS assay
PO-CON1484E Quantitative analysis of anabolic steroids in control samples from food-producing animals using a column-switching ASMS 014 TP85 David R. Baker 1, John Warrander 1, Neil Loftus 1, Simon Hird
Thermo Scientific SOLAµ SPE Plates Technical Guide. Consistent excellence. for bioanalysis
Thermo Scientific SOLAµ SPE Plates Technical Guide Consistent excellence for bioanalysis SOLAµ - delivering reproducible low volume extractions. Everytime! Thermo Scientific SOLAµ plates are designed for
Method Development of LC-MS/MS Analysis of Aminoglycoside Drugs: Challenges and Solutions
Method Development of LC-MS/MS Analysis of Aminoglycoside Drugs: Challenges and Solutions authors Angela (Qi) Shen, Ling Morgan, Marcele L. Barroso, and Xin Zhang; Tandem Labs Tuyen Nguyen; Sepracor Inc.
A fully quantitative research method for the analysis of lead in whole blood using the Thermo Scientific icap Q ICP-MS
A fully quantitative research method for the analysis of lead in whole blood using the Thermo Scientific icap Q ICP-MS Kent W. Warnken, Thermo Fisher Scientific, USA Patrick Messina, Quest Diagnostics,
Application of Structure-Based LC/MS Database Management for Forensic Analysis
Cozette M. Cuppett and Michael P. Balogh Waters Corporation, Milford, MA USA Antony Williams, Vitaly Lashin and Ilya Troisky Advanced Chemistry Development, Toronto, ntario, Canada verview Application
HRMS in Clinical Research: from Targeted Quantification to Metabolomics
A sponsored whitepaper. HRMS in Clinical Research: from Targeted Quantification to Metabolomics By: Bertrand Rochat Ph. D., Research Project Leader, Faculté de Biologie et de Médecine of the Centre Hospitalier
Determination of Anabolic Steroids in Horse Urine by SPE and LC-MS/MS
Summary: Determination of Anabolic Steroids in Horse Urine by SPE and LC-MS/MS UCT Part Numbers: CUNAX226 - Clean-Up C8+NAX, 2mg/6mL BETA-GLUC- ml Beta-Glucuronidase Enzyme, liquid form SLAQ1ID21-3UM -
Request for Quotes Goods/Trade Services RFQ for Gas Chromatograph Mass Spectrometer (GCMS) (PCS# 600000-1621-RFQ)
Request for Quotes Goods/Trade Services RFQ for Gas Chromatograph Mass Spectrometer (GCMS) Closing Date and Time: Wednesday, April 13, 2016 at 5:00 p.m. (Pacific Time) Contact: Aaron Galloway Fax: 541-888-3250
Gas Chromatography Liner Selection Guide
Gas Chromatography Liner Selection Guide Peter Morgan, Thermo Fisher Scientific, Runcorn, Cheshire, UK Technical Note 20551 Key Words Liner, focus Abstract The liner serves an important function in allowing
UPLC-MS/MS Analysis of Aldosterone in Plasma for Clinical Research
UPLC-MS/MS Analysis of in Plasma for Clinical Research Dominic Foley and Lisa Calton Waters Corporation, Wilmslow, UK APPLICATION BENEFITS Analytical selectivity improves reproducibility through removal
Method development for analysis of formaldehyde in foodsimulant. melamine-ware by GC-MS and LC-MS/MS. Internal Technical Report
of melamine-ware by GC-MS and LC-MS/MS Page 1 of 15 Method development for analysis of formaldehyde in foodsimulant extracts of melamine-ware by GC-MS and LC-MS/MS December 2012 Contact Point: Chris Hopley
AppNote 1/2012. Rapid Cleanup and Comprehensive Screening of Pain Management Drugs in Urine using Automated Disposable Pipette Extraction and LC-MS/MS
AppNote 1/2012 Rapid Cleanup and Comprehensive Screening of Pain Management Drugs in Urine using Automated Disposable Pipette Extraction and LC-MS/MS Oscar G. Cabrices, Fred D. Foster, John R. Stuff, Edward
Application Note. Determination of Nitrite and Nitrate in Fruit Juices by UV Detection. Summary. Introduction. Experimental Sample Preparation
Application Note Determination of Nitrite and Nitrate in Fruit Juices by UV Detection Category Food Matrix Fruit Juice Method HPLC Keywords Ion pair chromatography, fruit juice, inorganic anions AZURA
The Theory of HPLC. Gradient HPLC
The Theory of HPLC Gradient HPLC i Wherever you see this symbol, it is important to access the on-line course as there is interactive material that cannot be fully shown in this reference manual. Aims
Online SPE-LC-APCI-MS/MS for the Determination of Steroidal Hormones in Drinking Water
Online SPE-LC-APCI-MS/MS for the Determination of Steroidal ormones in Drinking Water presented by Paul Fayad, Ph.D. Candidate under the supervision of Sébastien Sauvé, Ph.D. Department of Chemistry [email protected]
Analysis of Pesticides in Vegetables Using the Agilent 1260 Infinity Analytical SFC System with Triple Quadrupole MS Detection
Analysis of Pesticides in Vegetables Using the Agilent 1260 Infinity Analytical SFC System with Triple Quadrupole MS Detection Application Note Food Testing & Agriculture Authors Edgar Naegele and Thomas
