Confidence Intervals for the Difference Between Two Means
|
|
|
- Janel Warner
- 9 years ago
- Views:
Transcription
1 Chapter 47 Confidence Intervals for the Difference Between Two Means Introduction This procedure calculates the sample size necessary to achieve a specified distance from the difference in sample means to the confidence limit(s) at a stated confidence level for a confidence interval about the difference in means when the underlying data distribution is normal. Caution: This procedure assumes that the standard deviations of the future samples will be the same as the standard deviations that are specified. If the standard deviation to be used in the procedure is estimated from a previous sample or represents the population standard deviation, the Confidence Intervals for the Difference between Two Means with Tolerance Probability procedure should be considered. That procedure controls the probability that the distance from the difference in means to the confidence limits will be less than or equal to the value specified. Technical Details There are two formulas for calculating a confidence interval for the difference between two population means. The different formulas are based on whether the standard deviations are assumed to be equal or unequal. For each of the cases below, let the means of the two populations be represented by µ and µ, and let the standard deviations of the two populations be represented as σ and σ. Case Standard Deviations Assumed Equal When σ = σ = σ are unknown, the appropriate two-sided confidence interval for µ - µ is where X X ± t s α /, n + n p + n n ( n ) s + ( n ) s s p = n + n Upper and lower one-sided confidence intervals can be obtained by replacing α/ with α. 47-
2 The required sample size for a given precision, D, can be found by solving the following equation iteratively D = t α /, n + n s p + n n This equation can be used to solve for D or n or n based on the values of the remaining parameters. Case Standard Deviations Assumed Unequal When σ σ are unknown, the appropriate two-sided confidence interval for µ µ is where s s X X ± t α /, ν + n n ν = s s + n n 4 4 s s + n ( n ) n ( n ) In this case t is an approximate t and the method is known as the Welch-Satterthwaite method. Upper and lower one-sided confidence intervals can be obtained by replacing α/ with α. The required sample size for a given precision, D, can be found by solving the following equation iteratively s s D = t α /, ν + n n This equation can be used to solve for D or n or n based on the values of the remaining parameters. Confidence Level The confidence level, α, has the following interpretation. If thousands of samples of n and n items are drawn from populations using simple random sampling and a confidence interval is calculated for each sample, the proportion of those intervals that will include the true population mean difference is α. Notice that is a long term statement about many, many samples. 47-
3 Procedure Options This section describes the options that are specific to this procedure. These are located on the Design tab. For more information about the options of other tabs, go to the Procedure Window chapter. Design Tab The Design tab contains most of the parameters and options that you will be concerned with. Solve For Solve For This option specifies the parameter to be solved for from the other parameters. One-Sided or Two-Sided Interval Interval Type Specify whether the interval to be used will be a one-sided or a two-sided confidence interval. Confidence Confidence Level ( Alpha) The confidence level, α, has the following interpretation. If thousands of samples of n and n items are drawn from populations using simple random sampling and a confidence interval is calculated for each sample, the proportion of those intervals that will include the true population mean difference is α. Often, the values 0.95 or 0.99 are used. You can enter single values or a range of values such as 0.90, 0.95 or 0.90 to 0.99 by 0.0. Sample Size (When Solving for Sample Size) Group Allocation Select the option that describes the constraints on N or N or both. The options are Equal (N = N) This selection is used when you wish to have equal sample sizes in each group. Since you are solving for both sample sizes at once, no additional sample size parameters need to be entered. Enter N, solve for N Select this option when you wish to fix N at some value (or values), and then solve only for N. Please note that for some values of N, there may not be a value of N that is large enough to obtain the desired power. Enter N, solve for N Select this option when you wish to fix N at some value (or values), and then solve only for N. Please note that for some values of N, there may not be a value of N that is large enough to obtain the desired power. Enter R = N/N, solve for N and N For this choice, you set a value for the ratio of N to N, and then PASS determines the needed N and N, with this ratio, to obtain the desired power. An equivalent representation of the ratio, R, is 47-3
4 N = R * N. Enter percentage in Group, solve for N and N For this choice, you set a value for the percentage of the total sample size that is in Group, and then PASS determines the needed N and N with this percentage to obtain the desired power. N (Sample Size, Group ) This option is displayed if Group Allocation = Enter N, solve for N N is the number of items or individuals sampled from the Group population. N must be. You can enter a single value or a series of values. N (Sample Size, Group ) This option is displayed if Group Allocation = Enter N, solve for N N is the number of items or individuals sampled from the Group population. N must be. You can enter a single value or a series of values. R (Group Sample Size Ratio) This option is displayed only if Group Allocation = Enter R = N/N, solve for N and N. R is the ratio of N to N. That is, R = N / N. Use this value to fix the ratio of N to N while solving for N and N. Only sample size combinations with this ratio are considered. N is related to N by the formula: where the value [Y] is the next integer Y. N = [R N], For example, setting R =.0 results in a Group sample size that is double the sample size in Group (e.g., N = 0 and N = 0, or N = 50 and N = 00). R must be greater than 0. If R <, then N will be less than N; if R >, then N will be greater than N. You can enter a single or a series of values. Percent in Group This option is displayed only if Group Allocation = Enter percentage in Group, solve for N and N. Use this value to fix the percentage of the total sample size allocated to Group while solving for N and N. Only sample size combinations with this Group percentage are considered. Small variations from the specified percentage may occur due to the discrete nature of sample sizes. The Percent in Group must be greater than 0 and less than 00. You can enter a single or a series of values. Sample Size (When Not Solving for Sample Size) Group Allocation Select the option that describes how individuals in the study will be allocated to Group and to Group. The options are Equal (N = N) This selection is used when you wish to have equal sample sizes in each group. A single per group sample size will be entered. 47-4
5 Enter N and N individually This choice permits you to enter different values for N and N. Enter N and R, where N = R * N Choose this option to specify a value (or values) for N, and obtain N as a ratio (multiple) of N. Enter total sample size and percentage in Group Choose this option to specify a value (or values) for the total sample size (N), obtain N as a percentage of N, and then N as N - N. Sample Size Per Group This option is displayed only if Group Allocation = Equal (N = N). The Sample Size Per Group is the number of items or individuals sampled from each of the Group and Group populations. Since the sample sizes are the same in each group, this value is the value for N, and also the value for N. The Sample Size Per Group must be. You can enter a single value or a series of values. N (Sample Size, Group ) This option is displayed if Group Allocation = Enter N and N individually or Enter N and R, where N = R * N. N is the number of items or individuals sampled from the Group population. N must be. You can enter a single value or a series of values. N (Sample Size, Group ) This option is displayed only if Group Allocation = Enter N and N individually. N is the number of items or individuals sampled from the Group population. N must be. You can enter a single value or a series of values. R (Group Sample Size Ratio) This option is displayed only if Group Allocation = Enter N and R, where N = R * N. R is the ratio of N to N. That is, R = N/N Use this value to obtain N as a multiple (or proportion) of N. N is calculated from N using the formula: where the value [Y] is the next integer Y. N=[R x N], For example, setting R =.0 results in a Group sample size that is double the sample size in Group. R must be greater than 0. If R <, then N will be less than N; if R >, then N will be greater than N. You can enter a single value or a series of values. Total Sample Size (N) This option is displayed only if Group Allocation = Enter total sample size and percentage in Group. This is the total sample size, or the sum of the two group sample sizes. This value, along with the percentage of the total sample size in Group, implicitly defines N and N. 47-5
6 The total sample size must be greater than one, but practically, must be greater than 3, since each group sample size needs to be at least. You can enter a single value or a series of values. Percent in Group This option is displayed only if Group Allocation = Enter total sample size and percentage in Group. This value fixes the percentage of the total sample size allocated to Group. Small variations from the specified percentage may occur due to the discrete nature of sample sizes. The Percent in Group must be greater than 0 and less than 00. You can enter a single value or a series of values. Precision Distance from Mean Difference to Limit(s) This is the distance from the confidence limit(s) to the difference in means. For two-sided intervals, it is also known as the precision, half-width, or margin of error. You can enter a single value or a list of values. The value(s) must be greater than zero. Standard Deviations S and S (Standard Deviations) Enter an estimate of the standard deviation of group or. The standard deviation must be a positive number. Caution: The sample size estimates for this procedure assume that the standard deviation that is achieved when the confidence interval is produced is the same as the standard deviation entered here. Press the 'Standard Deviation Estimator' button to obtain help on estimating the standard deviation. You can enter a range of values such as,, 3 or to 0 by. Standard Deviation Equality Assumption Specify whether the standard deviations are assumed to be the same or different. The choice will determine which of the two common confidence interval formulas for estimating the difference in population means will be used. Assume S and S are Unequal When the standard deviations are assumed to be unequal, the variances are not pooled and an approximate method is used for the confidence interval formula. This approximate method is sometimes called the Welch- Satterthwaite method. Assume S and S are Equal When the standard deviations are assumed to be equal, the pooled variance formula is used in the calculation of the confidence interval. The degrees of freedom are N + N. Recommendation: Because the standard deviations of two populations are rarely equal, it is recommended that the standard deviations are assumed to be unequal. The Welch-Satterthwaite confidence interval calculation is generally accepted and commonly used. 47-6
7 Example Calculating Sample Size Suppose a study is planned in which the researcher wishes to construct a two-sided 95% confidence interval for the difference between two population means such that the width of the interval is no wider than 0 units. The confidence level is set at 0.95, but 0.99 is included for comparative purposes. The standard deviation estimates, based on the range of data values, are 3 for Population and 38 for Population. Instead of examining only the interval half-width of 0, a series of half-widths from 5 to 5 will also be considered. The goal is to determine the necessary sample size for each group. Setup This section presents the values of each of the parameters needed to run this example. First, from the PASS Home window, load the procedure window by expanding Means, then Two Independent Means, then clicking on Confidence Interval, and then clicking on. You may then make the appropriate entries as listed below, or open Example by going to the File menu and choosing Open Example Template. Option Value Design Tab Solve For... Sample Size Interval Type... Two-Sided Confidence Level Group Allocation... Equal (N = N) Distance from Mean Diff to Limit(s)... 5 to 5 by S (Standard Deviation Group )... 3 S (Standard Deviation Group ) Std. Dev. Equality Assumption... Assume S and S are Unequal Annotated Output Click the Calculate button to perform the calculations and generate the following output. Numeric Results Numeric Results for Two-Sided Confidence Intervals for the Difference in Means The standard deviations are assumed to be Unknown and Unequal. Target Actual Dist from Dist from Confidence Mean Diff Mean Diff Level N N N to Limits to Limits S S (report continues) 47-7
8 References Ostle, B. and Malone, L.C Statistics in Research. Iowa State University Press. Ames, Iowa. Zar, Jerrold H Biostatistical Analysis (Second Edition). Prentice-Hall. Englewood Cliffs, New Jersey. Report Definitions Confidence level is the proportion of confidence intervals (constructed with this same confidence level, sample size, etc.) that would contain the true difference in population means. N and N are the number of items sampled from each population. N is the total sample size, N + N. Target Dist from Mean Diff to Limit is the value of the distance that is entered into the procedure. Actual Dist from Mean Diff to Limit is the value of the distance that is obtained from the procedure. S and S are the standard deviations upon which the distance from mean difference to limit calculations are based. Summary Statements Group sample sizes of 380 and 380 produce a two-sided 95% confidence interval with a distance from the difference in means to the limits that is equal to when the estimated standard deviations are 3.00 and This report shows the calculated sample size for each of the scenarios. Plots Section These plots show the sample size of each group versus the precision for the two confidence levels. 47-8
9 Example Validation using Ostle and Malone Ostle and Malone (988) page 50 give an example of a precision calculation for a confidence interval for the difference between two means when the confidence level is 95%, the two standard deviations are 6.85 and , and the sample sizes are 7 and 6. The precision is (when df = 6.57, not 6). Setup This section presents the values of each of the parameters needed to run this example. First, from the PASS Home window, load the procedure window by expanding Means, then Two Independent Means, then clicking on Confidence Interval, and then clicking on. You may then make the appropriate entries as listed below, or open Example by going to the File menu and choosing Open Example Template. Option Value Design Tab Solve For... Sample Size Interval Type... Two-Sided Confidence Level Group Allocation... Enter N, solve for N N... 6 Distance from Mean Diff to Limit(s) S (Standard Deviation Group ) S (Standard Deviation Group ) Std. Dev. Equality Assumption... Assume S and S are Unequal Output Click the Calculate button to perform the calculations and generate the following output. Numeric Results Numeric Results for Two-Sided Confidence Intervals for the Difference in Means The standard deviations are assumed to be Unknown and Unequal. Target Actual Dist from Dist from Confidence Mean Diff Mean Diff Level N N N to Limits to Limits S S PASS also calculated the sample size in Group to be
10 Example 3 Validation using Zar Zar (984) page 3 gives an example of a precision calculation for a confidence interval for the difference between two means when the confidence level is 95%, the pooled standard deviation estimate is 0.706, and the sample sizes are 6 and 7. The precision is Setup This section presents the values of each of the parameters needed to run this example. First, from the PASS Home window, load the procedure window by expanding Means, then Two Independent Means, then clicking on Confidence Interval, and then clicking on. You may then make the appropriate entries as listed below, or open Example 3 by going to the File menu and choosing Open Example Template. Option Value Design Tab Solve For... Distance from Mean Difference to Limit Interval Type... Two-Sided Confidence Level Group Allocation... Enter N and N individually N (Sample Size Group )... 6 N (Sample Size Group )... 7 S (Standard Deviation Group ) S (Standard Deviation Group )... S Std. Dev. Equality Assumption... Assume S and S are Equal Output Click the Calculate button to perform the calculations and generate the following output. Numeric Results Numeric Results for Two-Sided Confidence Intervals for the Difference in Means The standard deviations are assumed to be Unknown and Equal. Dist from Confidence Mean Diff Level N N N to Limits S S PASS also calculates the precision to be
Confidence Intervals for One Standard Deviation Using Standard Deviation
Chapter 640 Confidence Intervals for One Standard Deviation Using Standard Deviation Introduction This routine calculates the sample size necessary to achieve a specified interval width or distance from
Confidence Intervals for Spearman s Rank Correlation
Chapter 808 Confidence Intervals for Spearman s Rank Correlation Introduction This routine calculates the sample size needed to obtain a specified width of Spearman s rank correlation coefficient confidence
Two-Sample T-Tests Allowing Unequal Variance (Enter Difference)
Chapter 45 Two-Sample T-Tests Allowing Unequal Variance (Enter Difference) Introduction This procedure provides sample size and power calculations for one- or two-sided two-sample t-tests when no assumption
Confidence Intervals for Cp
Chapter 296 Confidence Intervals for Cp Introduction This routine calculates the sample size needed to obtain a specified width of a Cp confidence interval at a stated confidence level. Cp is a process
Two-Sample T-Tests Assuming Equal Variance (Enter Means)
Chapter 4 Two-Sample T-Tests Assuming Equal Variance (Enter Means) Introduction This procedure provides sample size and power calculations for one- or two-sided two-sample t-tests when the variances of
Confidence Intervals for Cpk
Chapter 297 Confidence Intervals for Cpk Introduction This routine calculates the sample size needed to obtain a specified width of a Cpk confidence interval at a stated confidence level. Cpk is a process
Non-Inferiority Tests for Two Means using Differences
Chapter 450 on-inferiority Tests for Two Means using Differences Introduction This procedure computes power and sample size for non-inferiority tests in two-sample designs in which the outcome is a continuous
Confidence Intervals for Exponential Reliability
Chapter 408 Confidence Intervals for Exponential Reliability Introduction This routine calculates the number of events needed to obtain a specified width of a confidence interval for the reliability (proportion
Tests for Two Survival Curves Using Cox s Proportional Hazards Model
Chapter 730 Tests for Two Survival Curves Using Cox s Proportional Hazards Model Introduction A clinical trial is often employed to test the equality of survival distributions of two treatment groups.
NCSS Statistical Software
Chapter 06 Introduction This procedure provides several reports for the comparison of two distributions, including confidence intervals for the difference in means, two-sample t-tests, the z-test, the
Tests for Two Proportions
Chapter 200 Tests for Two Proportions Introduction This module computes power and sample size for hypothesis tests of the difference, ratio, or odds ratio of two independent proportions. The test statistics
Tests for One Proportion
Chapter 100 Tests for One Proportion Introduction The One-Sample Proportion Test is used to assess whether a population proportion (P1) is significantly different from a hypothesized value (P0). This is
Pearson's Correlation Tests
Chapter 800 Pearson's Correlation Tests Introduction The correlation coefficient, ρ (rho), is a popular statistic for describing the strength of the relationship between two variables. The correlation
Randomized Block Analysis of Variance
Chapter 565 Randomized Block Analysis of Variance Introduction This module analyzes a randomized block analysis of variance with up to two treatment factors and their interaction. It provides tables of
Point Biserial Correlation Tests
Chapter 807 Point Biserial Correlation Tests Introduction The point biserial correlation coefficient (ρ in this chapter) is the product-moment correlation calculated between a continuous random variable
Lesson 1: Comparison of Population Means Part c: Comparison of Two- Means
Lesson : Comparison of Population Means Part c: Comparison of Two- Means Welcome to lesson c. This third lesson of lesson will discuss hypothesis testing for two independent means. Steps in Hypothesis
Unit 26 Estimation with Confidence Intervals
Unit 26 Estimation with Confidence Intervals Objectives: To see how confidence intervals are used to estimate a population proportion, a population mean, a difference in population proportions, or a difference
Non-Inferiority Tests for Two Proportions
Chapter 0 Non-Inferiority Tests for Two Proportions Introduction This module provides power analysis and sample size calculation for non-inferiority and superiority tests in twosample designs in which
LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING
LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING In this lab you will explore the concept of a confidence interval and hypothesis testing through a simulation problem in engineering setting.
General Method: Difference of Means. 3. Calculate df: either Welch-Satterthwaite formula or simpler df = min(n 1, n 2 ) 1.
General Method: Difference of Means 1. Calculate x 1, x 2, SE 1, SE 2. 2. Combined SE = SE1 2 + SE2 2. ASSUMES INDEPENDENT SAMPLES. 3. Calculate df: either Welch-Satterthwaite formula or simpler df = min(n
NCSS Statistical Software
Chapter 06 Introduction This procedure provides several reports for the comparison of two distributions, including confidence intervals for the difference in means, two-sample t-tests, the z-test, the
3.4 Statistical inference for 2 populations based on two samples
3.4 Statistical inference for 2 populations based on two samples Tests for a difference between two population means The first sample will be denoted as X 1, X 2,..., X m. The second sample will be denoted
NCSS Statistical Software. One-Sample T-Test
Chapter 205 Introduction This procedure provides several reports for making inference about a population mean based on a single sample. These reports include confidence intervals of the mean or median,
Data Analysis Tools. Tools for Summarizing Data
Data Analysis Tools This section of the notes is meant to introduce you to many of the tools that are provided by Excel under the Tools/Data Analysis menu item. If your computer does not have that tool
Non-Inferiority Tests for One Mean
Chapter 45 Non-Inferiority ests for One Mean Introduction his module computes power and sample size for non-inferiority tests in one-sample designs in which the outcome is distributed as a normal random
Two Related Samples t Test
Two Related Samples t Test In this example 1 students saw five pictures of attractive people and five pictures of unattractive people. For each picture, the students rated the friendliness of the person
INTERPRETING THE ONE-WAY ANALYSIS OF VARIANCE (ANOVA)
INTERPRETING THE ONE-WAY ANALYSIS OF VARIANCE (ANOVA) As with other parametric statistics, we begin the one-way ANOVA with a test of the underlying assumptions. Our first assumption is the assumption of
Lecture Notes Module 1
Lecture Notes Module 1 Study Populations A study population is a clearly defined collection of people, animals, plants, or objects. In psychological research, a study population usually consists of a specific
1. What is the critical value for this 95% confidence interval? CV = z.025 = invnorm(0.025) = 1.96
1 Final Review 2 Review 2.1 CI 1-propZint Scenario 1 A TV manufacturer claims in its warranty brochure that in the past not more than 10 percent of its TV sets needed any repair during the first two years
Need for Sampling. Very large populations Destructive testing Continuous production process
Chapter 4 Sampling and Estimation Need for Sampling Very large populations Destructive testing Continuous production process The objective of sampling is to draw a valid inference about a population. 4-
BA 275 Review Problems - Week 6 (10/30/06-11/3/06) CD Lessons: 53, 54, 55, 56 Textbook: pp. 394-398, 404-408, 410-420
BA 275 Review Problems - Week 6 (10/30/06-11/3/06) CD Lessons: 53, 54, 55, 56 Textbook: pp. 394-398, 404-408, 410-420 1. Which of the following will increase the value of the power in a statistical test
t Tests in Excel The Excel Statistical Master By Mark Harmon Copyright 2011 Mark Harmon
t-tests in Excel By Mark Harmon Copyright 2011 Mark Harmon No part of this publication may be reproduced or distributed without the express permission of the author. [email protected] www.excelmasterseries.com
Independent t- Test (Comparing Two Means)
Independent t- Test (Comparing Two Means) The objectives of this lesson are to learn: the definition/purpose of independent t-test when to use the independent t-test the use of SPSS to complete an independent
12.5: CHI-SQUARE GOODNESS OF FIT TESTS
125: Chi-Square Goodness of Fit Tests CD12-1 125: CHI-SQUARE GOODNESS OF FIT TESTS In this section, the χ 2 distribution is used for testing the goodness of fit of a set of data to a specific probability
Chapter 7 Notes - Inference for Single Samples. You know already for a large sample, you can invoke the CLT so:
Chapter 7 Notes - Inference for Single Samples You know already for a large sample, you can invoke the CLT so: X N(µ, ). Also for a large sample, you can replace an unknown σ by s. You know how to do a
Lin s Concordance Correlation Coefficient
NSS Statistical Software NSS.com hapter 30 Lin s oncordance orrelation oefficient Introduction This procedure calculates Lin s concordance correlation coefficient ( ) from a set of bivariate data. The
Introduction. Hypothesis Testing. Hypothesis Testing. Significance Testing
Introduction Hypothesis Testing Mark Lunt Arthritis Research UK Centre for Ecellence in Epidemiology University of Manchester 13/10/2015 We saw last week that we can never know the population parameters
Paired T-Test. Chapter 208. Introduction. Technical Details. Research Questions
Chapter 208 Introduction This procedure provides several reports for making inference about the difference between two population means based on a paired sample. These reports include confidence intervals
Part 2: Analysis of Relationship Between Two Variables
Part 2: Analysis of Relationship Between Two Variables Linear Regression Linear correlation Significance Tests Multiple regression Linear Regression Y = a X + b Dependent Variable Independent Variable
HYPOTHESIS TESTING (ONE SAMPLE) - CHAPTER 7 1. used confidence intervals to answer questions such as...
HYPOTHESIS TESTING (ONE SAMPLE) - CHAPTER 7 1 PREVIOUSLY used confidence intervals to answer questions such as... You know that 0.25% of women have red/green color blindness. You conduct a study of men
Biostatistics: DESCRIPTIVE STATISTICS: 2, VARIABILITY
Biostatistics: DESCRIPTIVE STATISTICS: 2, VARIABILITY 1. Introduction Besides arriving at an appropriate expression of an average or consensus value for observations of a population, it is important to
HYPOTHESIS TESTING: POWER OF THE TEST
HYPOTHESIS TESTING: POWER OF THE TEST The first 6 steps of the 9-step test of hypothesis are called "the test". These steps are not dependent on the observed data values. When planning a research project,
THE FIRST SET OF EXAMPLES USE SUMMARY DATA... EXAMPLE 7.2, PAGE 227 DESCRIBES A PROBLEM AND A HYPOTHESIS TEST IS PERFORMED IN EXAMPLE 7.
THERE ARE TWO WAYS TO DO HYPOTHESIS TESTING WITH STATCRUNCH: WITH SUMMARY DATA (AS IN EXAMPLE 7.17, PAGE 236, IN ROSNER); WITH THE ORIGINAL DATA (AS IN EXAMPLE 8.5, PAGE 301 IN ROSNER THAT USES DATA FROM
Sampling Strategies for Error Rate Estimation and Quality Control
Project Number: JPA0703 Sampling Strategies for Error Rate Estimation and Quality Control A Major Qualifying Project Report Submitted to the faculty of the Worcester Polytechnic Institute in partial fulfillment
Standard Deviation Estimator
CSS.com Chapter 905 Standard Deviation Estimator Introduction Even though it is not of primary interest, an estimate of the standard deviation (SD) is needed when calculating the power or sample size of
HYPOTHESIS TESTING (ONE SAMPLE) - CHAPTER 7 1. used confidence intervals to answer questions such as...
HYPOTHESIS TESTING (ONE SAMPLE) - CHAPTER 7 1 PREVIOUSLY used confidence intervals to answer questions such as... You know that 0.25% of women have red/green color blindness. You conduct a study of men
Experimental Design. Power and Sample Size Determination. Proportions. Proportions. Confidence Interval for p. The Binomial Test
Experimental Design Power and Sample Size Determination Bret Hanlon and Bret Larget Department of Statistics University of Wisconsin Madison November 3 8, 2011 To this point in the semester, we have largely
1.5 Oneway Analysis of Variance
Statistics: Rosie Cornish. 200. 1.5 Oneway Analysis of Variance 1 Introduction Oneway analysis of variance (ANOVA) is used to compare several means. This method is often used in scientific or medical experiments
Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression
Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression Objectives: To perform a hypothesis test concerning the slope of a least squares line To recognize that testing for a
5.1 Identifying the Target Parameter
University of California, Davis Department of Statistics Summer Session II Statistics 13 August 20, 2012 Date of latest update: August 20 Lecture 5: Estimation with Confidence intervals 5.1 Identifying
Two Correlated Proportions (McNemar Test)
Chapter 50 Two Correlated Proportions (Mcemar Test) Introduction This procedure computes confidence intervals and hypothesis tests for the comparison of the marginal frequencies of two factors (each with
Hypothesis Testing for Beginners
Hypothesis Testing for Beginners Michele Piffer LSE August, 2011 Michele Piffer (LSE) Hypothesis Testing for Beginners August, 2011 1 / 53 One year ago a friend asked me to put down some easy-to-read notes
Difference of Means and ANOVA Problems
Difference of Means and Problems Dr. Tom Ilvento FREC 408 Accounting Firm Study An accounting firm specializes in auditing the financial records of large firm It is interested in evaluating its fee structure,particularly
An Introduction to Statistics Course (ECOE 1302) Spring Semester 2011 Chapter 10- TWO-SAMPLE TESTS
The Islamic University of Gaza Faculty of Commerce Department of Economics and Political Sciences An Introduction to Statistics Course (ECOE 130) Spring Semester 011 Chapter 10- TWO-SAMPLE TESTS Practice
12: Analysis of Variance. Introduction
1: Analysis of Variance Introduction EDA Hypothesis Test Introduction In Chapter 8 and again in Chapter 11 we compared means from two independent groups. In this chapter we extend the procedure to consider
Syntax Menu Description Options Remarks and examples Stored results Methods and formulas References Also see. level(#) , options2
Title stata.com ttest t tests (mean-comparison tests) Syntax Syntax Menu Description Options Remarks and examples Stored results Methods and formulas References Also see One-sample t test ttest varname
Simple Linear Regression Inference
Simple Linear Regression Inference 1 Inference requirements The Normality assumption of the stochastic term e is needed for inference even if it is not a OLS requirement. Therefore we have: Interpretation
MBA 611 STATISTICS AND QUANTITATIVE METHODS
MBA 611 STATISTICS AND QUANTITATIVE METHODS Part I. Review of Basic Statistics (Chapters 1-11) A. Introduction (Chapter 1) Uncertainty: Decisions are often based on incomplete information from uncertain
Practice problems for Homework 12 - confidence intervals and hypothesis testing. Open the Homework Assignment 12 and solve the problems.
Practice problems for Homework 1 - confidence intervals and hypothesis testing. Read sections 10..3 and 10.3 of the text. Solve the practice problems below. Open the Homework Assignment 1 and solve the
Two-sample t-tests. - Independent samples - Pooled standard devation - The equal variance assumption
Two-sample t-tests. - Independent samples - Pooled standard devation - The equal variance assumption Last time, we used the mean of one sample to test against the hypothesis that the true mean was a particular
BA 275 Review Problems - Week 5 (10/23/06-10/27/06) CD Lessons: 48, 49, 50, 51, 52 Textbook: pp. 380-394
BA 275 Review Problems - Week 5 (10/23/06-10/27/06) CD Lessons: 48, 49, 50, 51, 52 Textbook: pp. 380-394 1. Does vigorous exercise affect concentration? In general, the time needed for people to complete
Coefficient of Determination
Coefficient of Determination The coefficient of determination R 2 (or sometimes r 2 ) is another measure of how well the least squares equation ŷ = b 0 + b 1 x performs as a predictor of y. R 2 is computed
KSTAT MINI-MANUAL. Decision Sciences 434 Kellogg Graduate School of Management
KSTAT MINI-MANUAL Decision Sciences 434 Kellogg Graduate School of Management Kstat is a set of macros added to Excel and it will enable you to do the statistics required for this course very easily. To
Chapter 5 Analysis of variance SPSS Analysis of variance
Chapter 5 Analysis of variance SPSS Analysis of variance Data file used: gss.sav How to get there: Analyze Compare Means One-way ANOVA To test the null hypothesis that several population means are equal,
Confidence intervals
Confidence intervals Today, we re going to start talking about confidence intervals. We use confidence intervals as a tool in inferential statistics. What this means is that given some sample statistics,
Fixed-Effect Versus Random-Effects Models
CHAPTER 13 Fixed-Effect Versus Random-Effects Models Introduction Definition of a summary effect Estimating the summary effect Extreme effect size in a large study or a small study Confidence interval
NCSS Statistical Software Principal Components Regression. In ordinary least squares, the regression coefficients are estimated using the formula ( )
Chapter 340 Principal Components Regression Introduction is a technique for analyzing multiple regression data that suffer from multicollinearity. When multicollinearity occurs, least squares estimates
UNDERSTANDING THE DEPENDENT-SAMPLES t TEST
UNDERSTANDING THE DEPENDENT-SAMPLES t TEST A dependent-samples t test (a.k.a. matched or paired-samples, matched-pairs, samples, or subjects, simple repeated-measures or within-groups, or correlated groups)
4. Continuous Random Variables, the Pareto and Normal Distributions
4. Continuous Random Variables, the Pareto and Normal Distributions A continuous random variable X can take any value in a given range (e.g. height, weight, age). The distribution of a continuous random
How To Check For Differences In The One Way Anova
MINITAB ASSISTANT WHITE PAPER This paper explains the research conducted by Minitab statisticians to develop the methods and data checks used in the Assistant in Minitab 17 Statistical Software. One-Way
Gamma Distribution Fitting
Chapter 552 Gamma Distribution Fitting Introduction This module fits the gamma probability distributions to a complete or censored set of individual or grouped data values. It outputs various statistics
Hypothesis testing - Steps
Hypothesis testing - Steps Steps to do a two-tailed test of the hypothesis that β 1 0: 1. Set up the hypotheses: H 0 : β 1 = 0 H a : β 1 0. 2. Compute the test statistic: t = b 1 0 Std. error of b 1 =
Chapter 7 - Practice Problems 1
Chapter 7 - Practice Problems 1 SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Provide an appropriate response. 1) Define a point estimate. What is the
Odds ratio, Odds ratio test for independence, chi-squared statistic.
Odds ratio, Odds ratio test for independence, chi-squared statistic. Announcements: Assignment 5 is live on webpage. Due Wed Aug 1 at 4:30pm. (9 days, 1 hour, 58.5 minutes ) Final exam is Aug 9. Review
Week 4: Standard Error and Confidence Intervals
Health Sciences M.Sc. Programme Applied Biostatistics Week 4: Standard Error and Confidence Intervals Sampling Most research data come from subjects we think of as samples drawn from a larger population.
Adverse Impact Ratio for Females (0/ 1) = 0 (5/ 17) = 0.2941 Adverse impact as defined by the 4/5ths rule was not found in the above data.
1 of 9 12/8/2014 12:57 PM (an On-Line Internet based application) Instructions: Please fill out the information into the form below. Once you have entered your data below, you may select the types of analysis
STRUTS: Statistical Rules of Thumb. Seattle, WA
STRUTS: Statistical Rules of Thumb Gerald van Belle Departments of Environmental Health and Biostatistics University ofwashington Seattle, WA 98195-4691 Steven P. Millard Probability, Statistics and Information
Chapter 7 Section 1 Homework Set A
Chapter 7 Section 1 Homework Set A 7.15 Finding the critical value t *. What critical value t * from Table D (use software, go to the web and type t distribution applet) should be used to calculate the
Two-sample hypothesis testing, II 9.07 3/16/2004
Two-sample hypothesis testing, II 9.07 3/16/004 Small sample tests for the difference between two independent means For two-sample tests of the difference in mean, things get a little confusing, here,
Final Exam Practice Problem Answers
Final Exam Practice Problem Answers The following data set consists of data gathered from 77 popular breakfast cereals. The variables in the data set are as follows: Brand: The brand name of the cereal
Comparing Means in Two Populations
Comparing Means in Two Populations Overview The previous section discussed hypothesis testing when sampling from a single population (either a single mean or two means from the same population). Now we
Statistics. One-two sided test, Parametric and non-parametric test statistics: one group, two groups, and more than two groups samples
Statistics One-two sided test, Parametric and non-parametric test statistics: one group, two groups, and more than two groups samples February 3, 00 Jobayer Hossain, Ph.D. & Tim Bunnell, Ph.D. Nemours
Study Guide for the Final Exam
Study Guide for the Final Exam When studying, remember that the computational portion of the exam will only involve new material (covered after the second midterm), that material from Exam 1 will make
1 Simple Linear Regression I Least Squares Estimation
Simple Linear Regression I Least Squares Estimation Textbook Sections: 8. 8.3 Previously, we have worked with a random variable x that comes from a population that is normally distributed with mean µ and
One-Way ANOVA using SPSS 11.0. SPSS ANOVA procedures found in the Compare Means analyses. Specifically, we demonstrate
1 One-Way ANOVA using SPSS 11.0 This section covers steps for testing the difference between three or more group means using the SPSS ANOVA procedures found in the Compare Means analyses. Specifically,
CHI-SQUARE: TESTING FOR GOODNESS OF FIT
CHI-SQUARE: TESTING FOR GOODNESS OF FIT In the previous chapter we discussed procedures for fitting a hypothesized function to a set of experimental data points. Such procedures involve minimizing a quantity
Scatter Plots with Error Bars
Chapter 165 Scatter Plots with Error Bars Introduction The procedure extends the capability of the basic scatter plot by allowing you to plot the variability in Y and X corresponding to each point. Each
Chapter 2. Hypothesis testing in one population
Chapter 2. Hypothesis testing in one population Contents Introduction, the null and alternative hypotheses Hypothesis testing process Type I and Type II errors, power Test statistic, level of significance
Normality Testing in Excel
Normality Testing in Excel By Mark Harmon Copyright 2011 Mark Harmon No part of this publication may be reproduced or distributed without the express permission of the author. [email protected]
Comparing Two Groups. Standard Error of ȳ 1 ȳ 2. Setting. Two Independent Samples
Comparing Two Groups Chapter 7 describes two ways to compare two populations on the basis of independent samples: a confidence interval for the difference in population means and a hypothesis test. The
The normal approximation to the binomial
The normal approximation to the binomial The binomial probability function is not useful for calculating probabilities when the number of trials n is large, as it involves multiplying a potentially very
Estimation and Confidence Intervals
Estimation and Confidence Intervals Fall 2001 Professor Paul Glasserman B6014: Managerial Statistics 403 Uris Hall Properties of Point Estimates 1 We have already encountered two point estimators: th e
Simple linear regression
Simple linear regression Introduction Simple linear regression is a statistical method for obtaining a formula to predict values of one variable from another where there is a causal relationship between
Chapter 3 RANDOM VARIATE GENERATION
Chapter 3 RANDOM VARIATE GENERATION In order to do a Monte Carlo simulation either by hand or by computer, techniques must be developed for generating values of random variables having known distributions.
HYPOTHESIS TESTING: CONFIDENCE INTERVALS, T-TESTS, ANOVAS, AND REGRESSION
HYPOTHESIS TESTING: CONFIDENCE INTERVALS, T-TESTS, ANOVAS, AND REGRESSION HOD 2990 10 November 2010 Lecture Background This is a lightning speed summary of introductory statistical methods for senior undergraduate
Calculating P-Values. Parkland College. Isela Guerra Parkland College. Recommended Citation
Parkland College A with Honors Projects Honors Program 2014 Calculating P-Values Isela Guerra Parkland College Recommended Citation Guerra, Isela, "Calculating P-Values" (2014). A with Honors Projects.
Inference for two Population Means
Inference for two Population Means Bret Hanlon and Bret Larget Department of Statistics University of Wisconsin Madison October 27 November 1, 2011 Two Population Means 1 / 65 Case Study Case Study Example
Chicago Booth BUSINESS STATISTICS 41000 Final Exam Fall 2011
Chicago Booth BUSINESS STATISTICS 41000 Final Exam Fall 2011 Name: Section: I pledge my honor that I have not violated the Honor Code Signature: This exam has 34 pages. You have 3 hours to complete this
Descriptive Statistics
Descriptive Statistics Suppose following data have been collected (heights of 99 five-year-old boys) 117.9 11.2 112.9 115.9 18. 14.6 17.1 117.9 111.8 16.3 111. 1.4 112.1 19.2 11. 15.4 99.4 11.1 13.3 16.9
