How To Understand The Theory Of Differential Geometry
|
|
|
- Harvey Townsend
- 5 years ago
- Views:
Transcription
1 Chapter 23 Fiber bundles Consider a manifold M with the tangent bundle T M = P M T P M. Let us look at this more closely. T M can be thought of as the original manifold M with a tangent space stuck at each point P M. Thus there is a projection map π : T M M, T P M P, which associates the point P M with T P M. Then we can say that T M consists of pooints P M and vectors v T P M as an ordered pair (P, v P ). Then in the neighbourhood of any point P, we can think of T M as a product manifold, i.e. as the set of ordered pairs (P, v P ). This is generalized to the definition of a fiber bundle. Locally a fiber bundle is a product manifold E = B F with the following properties. B is a manifold called the base manifold, and F is another manifold called the typical fiber or the standard fiber. There is a projection map π : E B, and if P B, the preimage π 1 (P ) is homeomorphic, i.e. bicontinuously isomorphic, to the standard fiber. E is called the total space, but usually it is also called the bundle, even though the bundle is actually the triple (E, π, B). E is locally a product space. We express this in the following way. Given an open set U i of B, the pre-image π 1 (U i ) is homeomorphic to U i F, or in other words there is a bicontinuous isomorphism ϕ i : π 1 (U i ) U i F. The set {U i, ϕ i } is called a local trivializa tion of the bundle. If E can be written globally as a product space, i.e. E = B F, it is called a trivial bundle. 89
2 90 Chapter 23. Fiber bundles This description includes a homeomorphism π 1 (P ) F for each P U i. Let us denote this map by h i (P ). Then in some overlap U i U j the fiber on P, π 1 (P ), has homeomorphisms h i (P ) and h j (P ) onto F. It follows that h j (P ) h i (P ) 1 is a homeomorphism F F. These are called transition functions. The transition functions F F form a group, called the structure group of F. Let us consider an example. Suppose B = S 1. Then the tangent bundle E = T S 1 has F = R and π(p, v) P, where P S 1, v T S 1. Consider a covering of S 1 by open sets U i, and let the coordinates of U i S 1 be denoted by λ i. Then any vector at T P S 1 d can be written as v = a i (no sum) for P U i. dλ i So we can define a homeomorphism h i (P ) : T P S 1 R, v a i (fixed i). If P U i U j there are two such homeomorphisms T S 1 R, and since λ i and λ j are independent, a i and a j are also independent. Then h i (P ) h j (P ) 1 : F F (or R R) maps a j to a i. The homeomorphism, which in this case relates the component of the vector in two coordinate systems, is simply multiplication by the number r ij = a i R\{0}. So the structure group is R\{0} with a j multiplication. For an n-dimensional manifold M, the structure group of T M is GL(n, R). A fiber bundle where the standard fiber is a vector space is called a vector bundle. A cylinder can be made by glueing two opposite edges of a flat strip of paper. This is then a Cartesian product of acircle S 1 with a line segment I. So B = S 1, F = I and this is a trivial bundle, i.e. globally a product space. On the other hand, a Möbius strip is obtained by twisting the strip and then glueing. Locally for some open set U S 1 we can still write a segment of the Möbius strip as U I, but the total space is no longer a product space. As a bundle, the Möbius strip is non-trivial. Given two bundles (E 1, π 1, B 1 ) and (E 2, π 2, B 2 ), the relevant or useful maps between these are those which preserve the bundle structure locally, i.e. those which map fibers into fibers. They are called bundle morphisms. A bundle morphism is a pair of maps (F, f), F : E 1 E 2, f :
3 91 B 1 B 2, such that π 2 F = f π 1. (This is of course better understood in terms of a commutative diagram.) Not all systems of coordinates are appropriate for a bundle. But it is possible to define a set of fiber coordinates in the following way. Given a differentiable fiber bundle with n-dimensional base manifold B and p-dimensional fiber F, the coordinates of the bundle are given by bundle morphisms onto open sets of R n R p. Given a manifold M the tangent space T P M, consider A P = (e 1,, e n ), a set of n linearly independent vectors at P. A P is a basis in T P M. The typical fiber in the frame bundle is the set of all bases, F = {A P }. Given a particular basis A P = (e 1,, e n ), any basis A P may be expressed as e i = a j i e j. (23.1) The numbers a j i can be thought of as the components of a matrix, which must be invertible so that we can recover the original basis from the new one. Thus, starting from any one basis, any other basis can be reached by an n n invertible matrix, and any n n invertible matrix produces a new basis. So there is a bijection between the set of all frames in T P M and GL(n, R). Clearly the structure group of the typical fiber of the frame bundle is also GL(n, R). A fiber bundle in which the typical fiber F is identical (or homeomorphic) to the structure group G, and G acts on F by left translation is called a principal fiber bundle. Example: 1. Typical fiber = S 1, structure group U(1). 2. Typical fiber = S 3, structure group SU(2). 3. Bundle of frames, for which the typical fiber is GL(n, R), as is the structure group. A section of a fiber bundle (E, π, B) is a mapping s : B E, p s(p), where p B, s(p) π 1 (p). So we can also say π s = identity. Example: A vector field is a section of the tangent bundle, v : P v P. Example: A function on M is a section of the bundle which locally looks like M R (or M C if we are talking about complex functions).
4 92 Chapter 23. Fiber bundles Starting from the tangent bundle we can define the cotangent bundle, in which the typical fiber is the dual space of the tangent space. This is written as T M. As we have seen before, a section of T M is a 1-form field on M. Remember that a vector bundle F E π B is a bundle in which the typical fiber F is a vector space. A vector bundle (E, π, B, F, G) with typical fiber F and structure group G is said to be associated to the principal bundle (P, π, B, G) by the representation {D(g)} of G on F if its transition functions are the images under D of the transition functions of P. That is, suppose we have a covering {U i } of B, and local trivialization of P with respect to this covering is Φ i : π 1 (U i ) U i G, which is essentially the same as writing Φ i,x : π 1 (x) G, x U i. Then the transition functions of P are of the form g ij = Φ i Φ j 1 : U i U j G. (23.2) The transition functions of E corresponding to the same covering of B are given by φ i : π 1 (U i ) U i F with φ i φ j 1 = D(g ij ). That is, if v i and v j are images of the same vector v x F x under overlapping trivializations φ i and φ j, we must have v i = D (g ij (x)) v j. (23.3) A more physical way of saying this is that if two observers look at the same vector at the same point, their observations are relatted by a group transformation (p, v) (p, D(g ij v). These relations are what are called gauge transformations in physics, and G is called the gauge group. Usually G is a Lie group for reasons of continuity. Fields appearing in various physical theories are sections of vector bundles, which in some trivialization look like U α V where U α is some open neighborhood of the point we are interested in, and V is a vector space. V carries a representation of some group G, usually a Lie group, which characterizes the theory. To discuss this a little more concretely, let us consider an associated vector bundle (E, π, B, F, G) of a principal bundle (P, π, B, G). Then the transition functions are in some representation of the group G. Because the fiber carries a representation {D(g)} of G, there are
5 93 always linear transformations T x : E x E x which are members of the representation {D(g)}. Let us write the space of all sections of this bundle as Γ(E). An element of Γ(E) is a map from the base spacce to the bundle. Such a map assigns an element of V to each point of the base space. We say that a linear map T : Γ(E) Γ(E) is a gauge trans formation if at each point x of the base space, T x {D(g)} for some g, i.e. if T x : (x, v) α (x, D(g)v) α, (23.4) for some g G and for (x, v) α U α F. In other words, a gauge transformation is a representation-valued linear transformation of the sections at each point of the base space. The right hand side is often written as (x, gv) α. This definition is independent of the choice of U α. To see this, consider a point x U α U β. Then (x, v) α = (x, g βα v) β. (23.5) In the other notation we have been using, v α and v β are images of the same vector v x V x, and v β = D(g βα )v α. A gauge transformation T acts as But we also have using Eq. (23.5). So it is also true that T x : (x, v) α (x, gv) α. (23.6) (x, gv) α = (x, g βα gv) β (23.7) T x : (x, g βα v) β (x, g βα gv) β. (23.8) Since F carries a representation of G, we can think of gv as a change of variables, i.e. define v = g βα v. Then Eq. (23.8) can be written also as T x : (x, v ) β (x, g v ) β, (23.9) where now g = g βα gg βα 1. So T is a gauge transformation in U β as well. The definition of a gauge transformation is independent of the
6 94 Chapter 23. Fiber bundles choice of U α, but T itself is not. The set of all gauge transformations G is a group, with (gh)(x) = g(x)h(x), (g 1 )(x) = (g(x)) 1. (23.10) The groups G and G arre both called the gauge group by different people.
Fiber Bundles. 4.1 Product Manifolds: A Visual Picture
4 Fiber Bundles In the discussion of topological manifolds, one often comes across the useful concept of starting with two manifolds M ₁ and M ₂, and building from them a new manifold, using the product
Mathematics Course 111: Algebra I Part IV: Vector Spaces
Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 1996-7 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are
CONNECTIONS ON PRINCIPAL G-BUNDLES
CONNECTIONS ON PRINCIPAL G-BUNDLES RAHUL SHAH Abstract. We will describe connections on principal G-bundles via two perspectives: that of distributions and that of connection 1-forms. We will show that
The Tangent Bundle. Jimmie Lawson Department of Mathematics Louisiana State University. Spring, 2006
The Tangent Bundle Jimmie Lawson Department of Mathematics Louisiana State University Spring, 2006 1 The Tangent Bundle on R n The tangent bundle gives a manifold structure to the set of tangent vectors
A CONSTRUCTION OF THE UNIVERSAL COVER AS A FIBER BUNDLE
A CONSTRUCTION OF THE UNIVERSAL COVER AS A FIBER BUNDLE DANIEL A. RAMRAS In these notes we present a construction of the universal cover of a path connected, locally path connected, and semi-locally simply
Fiber Bundles and Connections. Norbert Poncin
Fiber Bundles and Connections Norbert Poncin 2012 1 N. Poncin, Fiber bundles and connections 2 Contents 1 Introduction 4 2 Fiber bundles 5 2.1 Definition and first remarks........................ 5 2.2
SOME PROPERTIES OF FIBER PRODUCT PRESERVING BUNDLE FUNCTORS
SOME PROPERTIES OF FIBER PRODUCT PRESERVING BUNDLE FUNCTORS Ivan Kolář Abstract. Let F be a fiber product preserving bundle functor on the category FM m of the proper base order r. We deduce that the r-th
α = u v. In other words, Orthogonal Projection
Orthogonal Projection Given any nonzero vector v, it is possible to decompose an arbitrary vector u into a component that points in the direction of v and one that points in a direction orthogonal to v
FIBER BUNDLES AND UNIVALENCE
FIBER BUNDLES AND UNIVALENCE TALK BY IEKE MOERDIJK; NOTES BY CHRIS KAPULKIN This talk presents a proof that a universal Kan fibration is univalent. The talk was given by Ieke Moerdijk during the conference
Fiber bundles and non-abelian cohomology
Fiber bundles and non-abelian cohomology Nicolas Addington April 22, 2007 Abstract The transition maps of a fiber bundle are often said to satisfy the cocycle condition. If we take this terminology seriously
FIXED POINT SETS OF FIBER-PRESERVING MAPS
FIXED POINT SETS OF FIBER-PRESERVING MAPS Robert F. Brown Department of Mathematics University of California Los Angeles, CA 90095 e-mail: [email protected] Christina L. Soderlund Department of Mathematics
5.3 The Cross Product in R 3
53 The Cross Product in R 3 Definition 531 Let u = [u 1, u 2, u 3 ] and v = [v 1, v 2, v 3 ] Then the vector given by [u 2 v 3 u 3 v 2, u 3 v 1 u 1 v 3, u 1 v 2 u 2 v 1 ] is called the cross product (or
Mathematical Physics, Lecture 9
Mathematical Physics, Lecture 9 Hoshang Heydari Fysikum April 25, 2012 Hoshang Heydari (Fysikum) Mathematical Physics, Lecture 9 April 25, 2012 1 / 42 Table of contents 1 Differentiable manifolds 2 Differential
LECTURE 1: DIFFERENTIAL FORMS. 1. 1-forms on R n
LECTURE 1: DIFFERENTIAL FORMS 1. 1-forms on R n In calculus, you may have seen the differential or exterior derivative df of a function f(x, y, z) defined to be df = f f f dx + dy + x y z dz. The expression
Matrix Representations of Linear Transformations and Changes of Coordinates
Matrix Representations of Linear Transformations and Changes of Coordinates 01 Subspaces and Bases 011 Definitions A subspace V of R n is a subset of R n that contains the zero element and is closed under
Table of Contents. Introduction... 1 Chapter 1. Vector Bundles... 4. Chapter 2. K Theory... 38. Chapter 3. Characteristic Classes...
Table of Contents Introduction.............................. 1 Chapter 1. Vector Bundles.................... 4 1.1. Basic Definitions and Constructions............ 6 Sections 7. Direct Sums 9. Inner Products
Let H and J be as in the above lemma. The result of the lemma shows that the integral
Let and be as in the above lemma. The result of the lemma shows that the integral ( f(x, y)dy) dx is well defined; we denote it by f(x, y)dydx. By symmetry, also the integral ( f(x, y)dx) dy is well defined;
Mathematical Research Letters 1, 249 255 (1994) MAPPING CLASS GROUPS ARE AUTOMATIC. Lee Mosher
Mathematical Research Letters 1, 249 255 (1994) MAPPING CLASS GROUPS ARE AUTOMATIC Lee Mosher Let S be a compact surface, possibly with the extra structure of an orientation or a finite set of distinguished
The Topology of Fiber Bundles Lecture Notes. Ralph L. Cohen Dept. of Mathematics Stanford University
The Topology of Fiber Bundles Lecture Notes Ralph L. Cohen Dept. of Mathematics Stanford University Contents Introduction v Chapter 1. Locally Trival Fibrations 1 1. Definitions and examples 1 1.1. Vector
Comments on Quotient Spaces and Quotient Maps
22M:132 Fall 07 J. Simon Comments on Quotient Spaces and Quotient Maps There are many situations in topology where we build a topological space by starting with some (often simpler) space[s] and doing
FIBER PRODUCTS AND ZARISKI SHEAVES
FIBER PRODUCTS AND ZARISKI SHEAVES BRIAN OSSERMAN 1. Fiber products and Zariski sheaves We recall the definition of a fiber product: Definition 1.1. Let C be a category, and X, Y, Z objects of C. Fix also
FIBRATION SEQUENCES AND PULLBACK SQUARES. Contents. 2. Connectivity and fiber sequences. 3
FIRTION SEQUENES ND PULLK SQURES RY MLKIEWIH bstract. We lay out some foundational facts about fibration sequences and pullback squares of topological spaces. We pay careful attention to connectivity ranges
Sets of Fibre Homotopy Classes and Twisted Order Parameter Spaces
Communications in Mathematical Physics Manuscript-Nr. (will be inserted by hand later) Sets of Fibre Homotopy Classes and Twisted Order Parameter Spaces Stefan Bechtluft-Sachs, Marco Hien Naturwissenschaftliche
BUNDLES, CLASSIFYING SPACES AND CHARACTERISTIC CLASSES
BUNDLES, CLASSIFYING SPACES AND CHARACTERISTIC CLASSES CHRIS KOTTKE Contents Introduction 1 1. Bundles 2 1.1. Pullback 2 1.2. Sections 3 1.3. Fiber bundles as fibrations 4 2. Vector bundles 4 2.1. Whitney
GROUP ALGEBRAS. ANDREI YAFAEV
GROUP ALGEBRAS. ANDREI YAFAEV We will associate a certain algebra to a finite group and prove that it is semisimple. Then we will apply Wedderburn s theory to its study. Definition 0.1. Let G be a finite
ORIENTATIONS. Contents
ORIENTATIONS Contents 1. Generators for H n R n, R n p 1 1. Generators for H n R n, R n p We ended last time by constructing explicit generators for H n D n, S n 1 by using an explicit n-simplex which
Classification of Fiber Bundles over the Riemann Sphere
Classification of Fiber Bundles over the Riemann Sphere João Pedro Correia Matias Dissertação para obtenção do Grau de Mestre em Matemática e Aplicações Júri Presidente: Professor Doutor Miguel Abreu Orientador:
Fiber sums of genus 2 Lefschetz fibrations
Proceedings of 9 th Gökova Geometry-Topology Conference, pp, 1 10 Fiber sums of genus 2 Lefschetz fibrations Denis Auroux Abstract. Using the recent results of Siebert and Tian about the holomorphicity
Classification of Bundles
CHAPTER 2 Classification of Bundles In this chapter we prove Steenrod s classification theorem of principal G - bundles, and the corresponding classification theorem of vector bundles. This theorem states
TOPOLOGY OF SINGULAR FIBERS OF GENERIC MAPS
TOPOLOGY OF SINGULAR FIBERS OF GENERIC MAPS OSAMU SAEKI Dedicated to Professor Yukio Matsumoto on the occasion of his 60th birthday Abstract. We classify singular fibers of C stable maps of orientable
1 Sets and Set Notation.
LINEAR ALGEBRA MATH 27.6 SPRING 23 (COHEN) LECTURE NOTES Sets and Set Notation. Definition (Naive Definition of a Set). A set is any collection of objects, called the elements of that set. We will most
INTRODUCTION TO ALGEBRAIC GEOMETRY, CLASS 24
INTRODUCTION TO ALGEBRAIC GEOMETRY, CLASS 24 RAVI VAKIL Contents 1. Degree of a line bundle / invertible sheaf 1 1.1. Last time 1 1.2. New material 2 2. The sheaf of differentials of a nonsingular curve
NOTES ON CATEGORIES AND FUNCTORS
NOTES ON CATEGORIES AND FUNCTORS These notes collect basic definitions and facts about categories and functors that have been mentioned in the Homological Algebra course. For further reading about category
the points are called control points approximating curve
Chapter 4 Spline Curves A spline curve is a mathematical representation for which it is easy to build an interface that will allow a user to design and control the shape of complex curves and surfaces.
CHAPTER 1 BASIC TOPOLOGY
CHAPTER 1 BASIC TOPOLOGY Topology, sometimes referred to as the mathematics of continuity, or rubber sheet geometry, or the theory of abstract topological spaces, is all of these, but, above all, it is
Metrics on SO(3) and Inverse Kinematics
Mathematical Foundations of Computer Graphics and Vision Metrics on SO(3) and Inverse Kinematics Luca Ballan Institute of Visual Computing Optimization on Manifolds Descent approach d is a ascent direction
Lecture 18 - Clifford Algebras and Spin groups
Lecture 18 - Clifford Algebras and Spin groups April 5, 2013 Reference: Lawson and Michelsohn, Spin Geometry. 1 Universal Property If V is a vector space over R or C, let q be any quadratic form, meaning
University of Lille I PC first year list of exercises n 7. Review
University of Lille I PC first year list of exercises n 7 Review Exercise Solve the following systems in 4 different ways (by substitution, by the Gauss method, by inverting the matrix of coefficients
The cover SU(2) SO(3) and related topics
The cover SU(2) SO(3) and related topics Iordan Ganev December 2011 Abstract The subgroup U of unit quaternions is isomorphic to SU(2) and is a double cover of SO(3). This allows a simple computation of
DATA ANALYSIS II. Matrix Algorithms
DATA ANALYSIS II Matrix Algorithms Similarity Matrix Given a dataset D = {x i }, i=1,..,n consisting of n points in R d, let A denote the n n symmetric similarity matrix between the points, given as where
9 MATRICES AND TRANSFORMATIONS
9 MATRICES AND TRANSFORMATIONS Chapter 9 Matrices and Transformations Objectives After studying this chapter you should be able to handle matrix (and vector) algebra with confidence, and understand the
Surface bundles over S 1, the Thurston norm, and the Whitehead link
Surface bundles over S 1, the Thurston norm, and the Whitehead link Michael Landry August 16, 2014 The Thurston norm is a powerful tool for studying the ways a 3-manifold can fiber over the circle. In
NOTES ON LINEAR TRANSFORMATIONS
NOTES ON LINEAR TRANSFORMATIONS Definition 1. Let V and W be vector spaces. A function T : V W is a linear transformation from V to W if the following two properties hold. i T v + v = T v + T v for all
9.4. The Scalar Product. Introduction. Prerequisites. Learning Style. Learning Outcomes
The Scalar Product 9.4 Introduction There are two kinds of multiplication involving vectors. The first is known as the scalar product or dot product. This is so-called because when the scalar product of
Orthogonal Projections
Orthogonal Projections and Reflections (with exercises) by D. Klain Version.. Corrections and comments are welcome! Orthogonal Projections Let X,..., X k be a family of linearly independent (column) vectors
Rotation Matrices and Homogeneous Transformations
Rotation Matrices and Homogeneous Transformations A coordinate frame in an n-dimensional space is defined by n mutually orthogonal unit vectors. In particular, for a two-dimensional (2D) space, i.e., n
Structure of the Root Spaces for Simple Lie Algebras
Structure of the Root Spaces for Simple Lie Algebras I. Introduction A Cartan subalgebra, H, of a Lie algebra, G, is a subalgebra, H G, such that a. H is nilpotent, i.e., there is some n such that (H)
JUST THE MATHS UNIT NUMBER 8.5. VECTORS 5 (Vector equations of straight lines) A.J.Hobson
JUST THE MATHS UNIT NUMBER 8.5 VECTORS 5 (Vector equations of straight lines) by A.J.Hobson 8.5.1 Introduction 8.5. The straight line passing through a given point and parallel to a given vector 8.5.3
Introduction to Characteristic Classes
UNIVERSITY OF COPENHAGEN Faculty of Science Department of Mathematical Sciences Mauricio Esteban Gómez López Introduction to Characteristic Classes Supervisors: Jesper Michael Møller, Ryszard Nest 1 Abstract
ON TORI TRIANGULATIONS ASSOCIATED WITH TWO-DIMENSIONAL CONTINUED FRACTIONS OF CUBIC IRRATIONALITIES.
ON TORI TRIANGULATIONS ASSOCIATED WITH TWO-DIMENSIONAL CONTINUED FRACTIONS OF CUBIC IRRATIONALITIES. O. N. KARPENKOV Introduction. A series of properties for ordinary continued fractions possesses multidimensional
Curves and Surfaces. Goals. How do we draw surfaces? How do we specify a surface? How do we approximate a surface?
Curves and Surfaces Parametric Representations Cubic Polynomial Forms Hermite Curves Bezier Curves and Surfaces [Angel 10.1-10.6] Goals How do we draw surfaces? Approximate with polygons Draw polygons
Algebraic Geometry. Keerthi Madapusi
Algebraic Geometry Keerthi Madapusi Contents Chapter 1. Schemes 5 1. Spec of a Ring 5 2. Schemes 11 3. The Affine Communication Lemma 13 4. A Criterion for Affineness 15 5. Irreducibility and Connectedness
Parametric Domain-theoretic models of Linear Abadi & Plotkin Logic
Parametric Domain-theoretic models of Linear Abadi & Plotkin Logic Lars Birkedal Rasmus Ejlers Møgelberg Rasmus Lerchedahl Petersen IT University Technical Report Series TR-00-7 ISSN 600 600 February 00
Section 1.7 22 Continued
Section 1.5 23 A homogeneous equation is always consistent. TRUE - The trivial solution is always a solution. The equation Ax = 0 gives an explicit descriptions of its solution set. FALSE - The equation
1 Symmetries of regular polyhedra
1230, notes 5 1 Symmetries of regular polyhedra Symmetry groups Recall: Group axioms: Suppose that (G, ) is a group and a, b, c are elements of G. Then (i) a b G (ii) (a b) c = a (b c) (iii) There is an
LINEAR ALGEBRA W W L CHEN
LINEAR ALGEBRA W W L CHEN c W W L Chen, 1997, 2008 This chapter is available free to all individuals, on understanding that it is not to be used for financial gain, and may be downloaded and/or photocopied,
GROUP ACTIONS KEITH CONRAD
GROUP ACTIONS KEITH CONRAD 1. Introduction The symmetric groups S n, alternating groups A n, and (for n 3) dihedral groups D n behave, by their very definition, as permutations on certain sets. The groups
8.1 Examples, definitions, and basic properties
8 De Rham cohomology Last updated: May 21, 211. 8.1 Examples, definitions, and basic properties A k-form ω Ω k (M) is closed if dω =. It is exact if there is a (k 1)-form σ Ω k 1 (M) such that dσ = ω.
Linear Algebra Notes for Marsden and Tromba Vector Calculus
Linear Algebra Notes for Marsden and Tromba Vector Calculus n-dimensional Euclidean Space and Matrices Definition of n space As was learned in Math b, a point in Euclidean three space can be thought of
Almost Quaternionic Structures on Quaternionic Kaehler Manifolds. F. Özdemir
Almost Quaternionic Structures on Quaternionic Kaehler Manifolds F. Özdemir Department of Mathematics, Faculty of Arts and Sciences Istanbul Technical University, 34469 Maslak-Istanbul, TURKEY [email protected]
Geometry: Unit 1 Vocabulary TERM DEFINITION GEOMETRIC FIGURE. Cannot be defined by using other figures.
Geometry: Unit 1 Vocabulary 1.1 Undefined terms Cannot be defined by using other figures. Point A specific location. It has no dimension and is represented by a dot. Line Plane A connected straight path.
MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m
MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS 1. SYSTEMS OF EQUATIONS AND MATRICES 1.1. Representation of a linear system. The general system of m equations in n unknowns can be written a 11 x 1 + a 12 x 2 +
DEFORMATION OF DIRAC STRUCTURES ALONG ISOTROPIC SUBBUNDLES. and MARCO ZAMBON
Vol. 65 (2010) REPORTS ON MATHEMATICAL PHYSICS No. 2 DEFORMATION OF DIRAC STRUCTURES ALONG ISOTROPIC SUBBUNDLES IVÁN CALVO Laboratorio Nacional de Fusión, Asociación EURATOM-CIEMAT, E-28040 Madrid, Spain
CLUSTER ALGEBRAS AND CATEGORIFICATION TALKS: QUIVERS AND AUSLANDER-REITEN THEORY
CLUSTER ALGEBRAS AND CATEGORIFICATION TALKS: QUIVERS AND AUSLANDER-REITEN THEORY ANDREW T. CARROLL Notes for this talk come primarily from two sources: M. Barot, ICTP Notes Representations of Quivers,
Chapter 6. Linear Transformation. 6.1 Intro. to Linear Transformation
Chapter 6 Linear Transformation 6 Intro to Linear Transformation Homework: Textbook, 6 Ex, 5, 9,, 5,, 7, 9,5, 55, 57, 6(a,b), 6; page 7- In this section, we discuss linear transformations 89 9 CHAPTER
Singular fibers of stable maps and signatures of 4 manifolds
359 399 359 arxiv version: fonts, pagination and layout may vary from GT published version Singular fibers of stable maps and signatures of 4 manifolds OSAMU SAEKI TAKAHIRO YAMAMOTO We show that for a
On the existence of G-equivariant maps
CADERNOS DE MATEMÁTICA 12, 69 76 May (2011) ARTIGO NÚMERO SMA# 345 On the existence of G-equivariant maps Denise de Mattos * Departamento de Matemática, Instituto de Ciências Matemáticas e de Computação,
A numerable cover of a topological space X is one which possesses a partition of unity.
Chapter 1 I. Fibre Bundles 1.1 Definitions Definition 1.1.1 Let X be a topological space and let {U j } j J be an open cover of X. A partition of unity relative to the cover {U j } j J consists of a set
BILINEAR FORMS KEITH CONRAD
BILINEAR FORMS KEITH CONRAD The geometry of R n is controlled algebraically by the dot product. We will abstract the dot product on R n to a bilinear form on a vector space and study algebraic and geometric
Row Ideals and Fibers of Morphisms
Michigan Math. J. 57 (2008) Row Ideals and Fibers of Morphisms David Eisenbud & Bernd Ulrich Affectionately dedicated to Mel Hochster, who has been an inspiration to us for many years, on the occasion
A QUICK GUIDE TO THE FORMULAS OF MULTIVARIABLE CALCULUS
A QUIK GUIDE TO THE FOMULAS OF MULTIVAIABLE ALULUS ontents 1. Analytic Geometry 2 1.1. Definition of a Vector 2 1.2. Scalar Product 2 1.3. Properties of the Scalar Product 2 1.4. Length and Unit Vectors
Nonzero degree tangential maps between dual symmetric spaces
ISSN 1472-2739 (on-line) 1472-2747 (printed) 709 Algebraic & Geometric Topology Volume 1 (2001) 709 718 Published: 30 November 2001 ATG Nonzero degree tangential maps between dual symmetric spaces Boris
Dot product and vector projections (Sect. 12.3) There are two main ways to introduce the dot product
Dot product and vector projections (Sect. 12.3) Two definitions for the dot product. Geometric definition of dot product. Orthogonal vectors. Dot product and orthogonal projections. Properties of the dot
Lecture 4 Cohomological operations on theories of rational type.
Lecture 4 Cohomological operations on theories of rational type. 4.1 Main Theorem The Main Result which permits to describe operations from a theory of rational type elsewhere is the following: Theorem
You know from calculus that functions play a fundamental role in mathematics.
CHPTER 12 Functions You know from calculus that functions play a fundamental role in mathematics. You likely view a function as a kind of formula that describes a relationship between two (or more) quantities.
x1 x 2 x 3 y 1 y 2 y 3 x 1 y 2 x 2 y 1 0.
Cross product 1 Chapter 7 Cross product We are getting ready to study integration in several variables. Until now we have been doing only differential calculus. One outcome of this study will be our ability
4: EIGENVALUES, EIGENVECTORS, DIAGONALIZATION
4: EIGENVALUES, EIGENVECTORS, DIAGONALIZATION STEVEN HEILMAN Contents 1. Review 1 2. Diagonal Matrices 1 3. Eigenvectors and Eigenvalues 2 4. Characteristic Polynomial 4 5. Diagonalizability 6 6. Appendix:
Section 1.1. Introduction to R n
The Calculus of Functions of Several Variables Section. Introduction to R n Calculus is the study of functional relationships and how related quantities change with each other. In your first exposure to
Manifold Learning Examples PCA, LLE and ISOMAP
Manifold Learning Examples PCA, LLE and ISOMAP Dan Ventura October 14, 28 Abstract We try to give a helpful concrete example that demonstrates how to use PCA, LLE and Isomap, attempts to provide some intuition
Turing Degrees and Definability of the Jump. Theodore A. Slaman. University of California, Berkeley. CJuly, 2005
Turing Degrees and Definability of the Jump Theodore A. Slaman University of California, Berkeley CJuly, 2005 Outline Lecture 1 Forcing in arithmetic Coding and decoding theorems Automorphisms of countable
December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS
December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B KITCHENS The equation 1 Lines in two-dimensional space (1) 2x y = 3 describes a line in two-dimensional space The coefficients of x and y in the equation
Group Theory and the Rubik s Cube. Janet Chen
Group Theory and the Rubik s Cube Janet Chen A Note to the Reader These notes are based on a 2-week course that I taught for high school students at the Texas State Honors Summer Math Camp. All of the
RIGIDITY OF HOLOMORPHIC MAPS BETWEEN FIBER SPACES
RIGIDITY OF HOLOMORPHIC MAPS BETWEEN FIBER SPACES GAUTAM BHARALI AND INDRANIL BISWAS Abstract. In the study of holomorphic maps, the term rigidity refers to certain types of results that give us very specific
(Q, ), (R, ), (C, ), where the star means without 0, (Q +, ), (R +, ), where the plus-sign means just positive numbers, and (U, ),
2 Examples of Groups 21 Some infinite abelian groups It is easy to see that the following are infinite abelian groups: Z, +), Q, +), R, +), C, +), where R is the set of real numbers and C is the set of
Linear Maps. Isaiah Lankham, Bruno Nachtergaele, Anne Schilling (February 5, 2007)
MAT067 University of California, Davis Winter 2007 Linear Maps Isaiah Lankham, Bruno Nachtergaele, Anne Schilling (February 5, 2007) As we have discussed in the lecture on What is Linear Algebra? one of
Vector Spaces; the Space R n
Vector Spaces; the Space R n Vector Spaces A vector space (over the real numbers) is a set V of mathematical entities, called vectors, U, V, W, etc, in which an addition operation + is defined and in which
Section 6.1 - Inner Products and Norms
Section 6.1 - Inner Products and Norms Definition. Let V be a vector space over F {R, C}. An inner product on V is a function that assigns, to every ordered pair of vectors x and y in V, a scalar in F,
( ) which must be a vector
MATH 37 Linear Transformations from Rn to Rm Dr. Neal, WKU Let T : R n R m be a function which maps vectors from R n to R m. Then T is called a linear transformation if the following two properties are
CHAPTER SIX IRREDUCIBILITY AND FACTORIZATION 1. BASIC DIVISIBILITY THEORY
January 10, 2010 CHAPTER SIX IRREDUCIBILITY AND FACTORIZATION 1. BASIC DIVISIBILITY THEORY The set of polynomials over a field F is a ring, whose structure shares with the ring of integers many characteristics.
SECTION 6: FIBER BUNDLES
SECTION 6: FIBER BUNDLES In this section we will introduce the interesting class o ibrations given by iber bundles. Fiber bundles lay an imortant role in many geometric contexts. For examle, the Grassmaniann
Least-Squares Intersection of Lines
Least-Squares Intersection of Lines Johannes Traa - UIUC 2013 This write-up derives the least-squares solution for the intersection of lines. In the general case, a set of lines will not intersect at a
INTRODUCTORY SET THEORY
M.Sc. program in mathematics INTRODUCTORY SET THEORY Katalin Károlyi Department of Applied Analysis, Eötvös Loránd University H-1088 Budapest, Múzeum krt. 6-8. CONTENTS 1. SETS Set, equal sets, subset,
Vector Notation: AB represents the vector from point A to point B on a graph. The vector can be computed by B A.
1 Linear Transformations Prepared by: Robin Michelle King A transformation of an object is a change in position or dimension (or both) of the object. The resulting object after the transformation is called
1 VECTOR SPACES AND SUBSPACES
1 VECTOR SPACES AND SUBSPACES What is a vector? Many are familiar with the concept of a vector as: Something which has magnitude and direction. an ordered pair or triple. a description for quantities such
it is easy to see that α = a
21. Polynomial rings Let us now turn out attention to determining the prime elements of a polynomial ring, where the coefficient ring is a field. We already know that such a polynomial ring is a UF. Therefore
Lectures notes on orthogonal matrices (with exercises) 92.222 - Linear Algebra II - Spring 2004 by D. Klain
Lectures notes on orthogonal matrices (with exercises) 92.222 - Linear Algebra II - Spring 2004 by D. Klain 1. Orthogonal matrices and orthonormal sets An n n real-valued matrix A is said to be an orthogonal
Vector Math Computer Graphics Scott D. Anderson
Vector Math Computer Graphics Scott D. Anderson 1 Dot Product The notation v w means the dot product or scalar product or inner product of two vectors, v and w. In abstract mathematics, we can talk about
Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm.
Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm. We begin by defining the ring of polynomials with coefficients in a ring R. After some preliminary results, we specialize
9. Quotient Groups Given a group G and a subgroup H, under what circumstances can we find a homomorphism φ: G G ', such that H is the kernel of φ?
9. Quotient Groups Given a group G and a subgroup H, under what circumstances can we find a homomorphism φ: G G ', such that H is the kernel of φ? Clearly a necessary condition is that H is normal in G.
GENERATING SETS KEITH CONRAD
GENERATING SETS KEITH CONRAD 1 Introduction In R n, every vector can be written as a unique linear combination of the standard basis e 1,, e n A notion weaker than a basis is a spanning set: a set of vectors
