8 Fractals: Cantor set, Sierpinski Triangle, Koch Snowflake, fractal dimension.
|
|
|
- Christopher Pierce
- 9 years ago
- Views:
Transcription
1 8 Fractals: Cantor set, Sierpinski Triangle, Koch Snowflake, fractal dimension. 8.1 Definitions Definition If every point in a set S has arbitrarily small neighborhoods whose boundaries do not intersect S, then S has topological dimension 0. The topological dimension of a subset S of R is the least non-negative integer k such that each point of S has arbitrarily small neighborhoods whose boundaries meet S in a set of dimension k 1. Examples Find the topological dimension of the following sets: 1. A finite collection of points. 2. S = { 1 n = 1, 2,...}. A line segment. 4. The unit circle S The unit disk. 6. The unit sphere S The unit ball. Definition A set S is self-similar if it can be divided into N congruent subsets, each of which when magnified by a constant factor M yields the entire set S. The fractal dimension of a self-similar set S is D = log(n) log(m). A fractal is a set whose fractal dimension exceeds its topological dimension. There are many sets which are self-similar that are not fractals. Find the fractal dimension of the following sets: 1. A line segment. 2. A (filled) square. A (filled) cube 4. The unit sphere S 2.
2 8.2 Standard examples of Fractals The middle thirds Cantor set. Since the Cantor set is totally disconnected, it has topological dimension 0. The Cantor set is self-similar, consisting of N = 2 congruent subsets, each when magnified by a factor of M = yields the original set. Hence the fractal dimension of the Cantor set is D = log(2) In general, the Cantor set consists of 2 subsets, each log() with magnification factor. So the fractal dimenstion is D = log(2 ) log( ) = n log(2) n log() The Box Fractal is a higher-dimensional analog to the middle thirds cantor set. Starting with the closed (filled) unit square, at the first stage remove 4 open squares of size 1. At the second stage, remove 4 5 open squares of size 1. At the nth stage, remove open squares of size 1 9. Arbitrarily small neighborhoods intersect the box fractal at a finite set of points, so it has topological dimension 1. The box fractal is self-similar. At each stage, there are 5 subsets, each with magnification factor, so the fractal dimension is D = log(5 ) log( ) = n log(5) n log()
3 The Sierpinski Triangle is constructed like the box fractal, but using a triangles instead. Start with a closed (filled) unit equilateral triangle, at the first stage remove 1 open triangle of size 1. At the second stage, remove open 2 triangles of size 1. At the nth stage, remove 1 open triangles of size After n, we are left with a self-similar set with topological dimension 1. The Sierpinski Triangle consists of subsets with magnification factor 2. So the fractal dimension is D = log( ) log(2 ) = n log() n log(2)
4 The Koch Curve is constructed very differently. Start with a closed unit interval. At the first stage remove the middle third of the interval and replace it with two line segments of length 1/ to make a tent. The resulting set consists of 4 line segments of length 1/. At the next stage, repeat this procedure on all of the existing line segments, resulting in a set that contains 16 line segments of length 1/9. At each stage there are 4 line segments of length. 1 When n, the resulting set is called the Koch curve. The set is self-similar, with 4 subsets with magnification factor, so the fractal dimension is D = log(4 ) log( ) = n log() n log(4) One amazing feature of the Koch curve is that it has infinite length. At each stage of the contruction, there are 4 line segments of length, 1 for a total length of ( 4 ) as n.
5 8. Create your own fractal: Iterated Function Systems. We will now explore a new way of creating fractals, as the attracting set of an iterated function system. Let x 0 be any point in the interval [0,1. Define two functions: F 0 (x) = 1 x, and F 1 (x) = 1 (x 1) 1 = 1 x 2. The function F 0 will move the point x 0 two-thirds of the way towards 0, while the function F 1 will move the point x 0 two-thirds of the way towards 1. 0 is the only fixed point for F 0, while 1 is the only fixed point for F 1. Let s explore the orbit of the intitial condition x 0 under the system of functions F 0 and F 1, where at each step, we choose to apply either F 0 or F 1 randomly with equal probability. Where can the orbit of x 0 end up? First note that if x 0 is in the interval (1/, 2/), both F 0 or F 1 will map x 0 outside of this interval. Also, F 0 maps the interval [0,1/ to [0,1/9, and the interval [2/,1 to [2/9,1/. Similarly, F 1 maps the interval [0,1/ to [2/,7/9, and the interval [2/,1 to [8/9,1. Thus x 1 cannot be in (1/, 2/), and in fact, no iterates may be in this interval. Also x 2 cannot be in either (1/9,2/9) or (7/9,8/9), and in fact, no iterates may be in these intervals. Continuing this analyis, we see that the orbit of any initial condition x 0 can only be atttracted to the middle thirds cantor set. To be more precise, represent sequence of iterations applied to x 0 by a sequence (s 1 s 2 s...), where s = 0 if we apply F 0, and s = 1 if we apply F 1. Then the orbit of an initial condition x 0 is given by: x 1 = x 0 2s 1 x 2 = 1 ( x0 2s ) 1 2s 2 = x 0 2s 1 2 2s 2 2 x = 1 ( x0 2s 1 2 2s ) 2 2s 2 = x 0 2s 1 2s 2 2s 2. =. x = x 0 2s 1 2s 2 1 2s 2...
6 t 8 FRACTALS: CANTOR SET, SIERPINSKI TRIANGLE, KOCH SNOWFLAKE, FRACTAL DIMENSI Now as n, the first term goes to zero, so we have:, lim x = =1 where each t is either 0 or 2. As we saw in a previous section, these are precisely the points in the middle thirds Cantor set. Also notice that the result is independent of the intitial condition x 0, and only depends on the sequence of functions applied. This gives us a new way of contructing the middle thirds Cantor set, as the attractor of the iterated function system {F 0, F 1 }. We may implement this experimentally by fixing some initial condition in [0,1, and iterate, choosing F 0 and F 1 at each iteration with equal probability, and we know the orbit will be attracted to a point in the middle thirds Cantor set. We can iterate for say 1000 iterations, then plot x as being very very close to a point in the Cantor set. Then we can start over (with the same initial condition) and iterate another 1000 times. This sequence of iterations will be attracted to another point in the cantor set.
7 Let s try this same approach to create some other fractals: To create the box fractal, we start with any initial condition x 0 = [ x0 the unit square [0, 1 [0, 1, and iterate with the following set of functions: y 0 in [ x F 0 = 1 y F 1 = 1 [ [ x 1 1 = 1 [ [ x 2/ y 0 y 0 F 2 = 1 [ [ x 0 = 1 [ [ x 0 y 1 1 y 2/ F = 1 [ [ x 1 1 = 1 [ [ x 2/ y 1 1 y 2/ F 4 = 1 [ [ x 1/2 1/2 = 1 [ [ x 1/ y 1/2 1/2 y 1/ What are the fixed points for each of the F? The Sierpinski Triangle is the attractor of the following iterated function system: F 0 = 1 [ x 2 y F 1 = 1 [ x 2 y F 2 = 1 [ x 2 y [ 1 0 [ 1/4 /4 In our above examples, each function is a contraction by a factor of β < 1 towards some fixed point (x 0, y 0 ). We can also introduce a rotation by an angle of θ. So we can write a function in an iterated function system (IFS) in following form: [ [ [ x cos θ sin θ x x0 x0 F [ = β y sin θ cos θ y y 0 y 0 or in general: F [ x y = [ a b c d [ x y [ e f
Patterns in Pascal s Triangle
Pascal s Triangle Pascal s Triangle is an infinite triangular array of numbers beginning with a at the top. Pascal s Triangle can be constructed starting with just the on the top by following one easy
Content. Chapter 4 Functions 61 4.1 Basic concepts on real functions 62. Credits 11
Content Credits 11 Chapter 1 Arithmetic Refresher 13 1.1 Algebra 14 Real Numbers 14 Real Polynomials 19 1.2 Equations in one variable 21 Linear Equations 21 Quadratic Equations 22 1.3 Exercises 28 Chapter
10.2 Series and Convergence
10.2 Series and Convergence Write sums using sigma notation Find the partial sums of series and determine convergence or divergence of infinite series Find the N th partial sums of geometric series and
Inner Product Spaces
Math 571 Inner Product Spaces 1. Preliminaries An inner product space is a vector space V along with a function, called an inner product which associates each pair of vectors u, v with a scalar u, v, and
Evaluating trigonometric functions
MATH 1110 009-09-06 Evaluating trigonometric functions Remark. Throughout this document, remember the angle measurement convention, which states that if the measurement of an angle appears without units,
FRACTAL GEOMETRY. Introduction to Fractal Geometry
Introduction to Fractal Geometry FRACTAL GEOMETRY Fractal geometry is based on the idea of self-similar forms. To be selfsimilar, a shape must be able to be divided into parts that are smaller copies which
Homework 2 Solutions
Homework Solutions 1. (a) Find the area of a regular heagon inscribed in a circle of radius 1. Then, find the area of a regular heagon circumscribed about a circle of radius 1. Use these calculations to
4. How many integers between 2004 and 4002 are perfect squares?
5 is 0% of what number? What is the value of + 3 4 + 99 00? (alternating signs) 3 A frog is at the bottom of a well 0 feet deep It climbs up 3 feet every day, but slides back feet each night If it started
Metric Spaces. Chapter 7. 7.1. Metrics
Chapter 7 Metric Spaces A metric space is a set X that has a notion of the distance d(x, y) between every pair of points x, y X. The purpose of this chapter is to introduce metric spaces and give some
The Math Circle, Spring 2004
The Math Circle, Spring 2004 (Talks by Gordon Ritter) What is Non-Euclidean Geometry? Most geometries on the plane R 2 are non-euclidean. Let s denote arc length. Then Euclidean geometry arises from the
Metric Spaces Joseph Muscat 2003 (Last revised May 2009)
1 Distance J Muscat 1 Metric Spaces Joseph Muscat 2003 (Last revised May 2009) (A revised and expanded version of these notes are now published by Springer.) 1 Distance A metric space can be thought of
Practice with Proofs
Practice with Proofs October 6, 2014 Recall the following Definition 0.1. A function f is increasing if for every x, y in the domain of f, x < y = f(x) < f(y) 1. Prove that h(x) = x 3 is increasing, using
To discuss this topic fully, let us define some terms used in this and the following sets of supplemental notes.
INFINITE SERIES SERIES AND PARTIAL SUMS What if we wanted to sum up the terms of this sequence, how many terms would I have to use? 1, 2, 3,... 10,...? Well, we could start creating sums of a finite number
Grade 7/8 Math Circles Sequences and Series
Faculty of Mathematics Waterloo, Ontario N2L 3G1 Centre for Education in Mathematics and Computing Grade 7/8 Math Circles Sequences and Series November 30, 2012 What are sequences? A sequence is an ordered
Section 1.3 P 1 = 1 2. = 1 4 2 8. P n = 1 P 3 = Continuing in this fashion, it should seem reasonable that, for any n = 1, 2, 3,..., = 1 2 4.
Difference Equations to Differential Equations Section. The Sum of a Sequence This section considers the problem of adding together the terms of a sequence. Of course, this is a problem only if more than
1 if 1 x 0 1 if 0 x 1
Chapter 3 Continuity In this chapter we begin by defining the fundamental notion of continuity for real valued functions of a single real variable. When trying to decide whether a given function is or
BALTIC OLYMPIAD IN INFORMATICS Stockholm, April 18-22, 2009 Page 1 of?? ENG rectangle. Rectangle
Page 1 of?? ENG rectangle Rectangle Spoiler Solution of SQUARE For start, let s solve a similar looking easier task: find the area of the largest square. All we have to do is pick two points A and B and
Stanford Math Circle: Sunday, May 9, 2010 Square-Triangular Numbers, Pell s Equation, and Continued Fractions
Stanford Math Circle: Sunday, May 9, 00 Square-Triangular Numbers, Pell s Equation, and Continued Fractions Recall that triangular numbers are numbers of the form T m = numbers that can be arranged in
Algebra. Exponents. Absolute Value. Simplify each of the following as much as possible. 2x y x + y y. xxx 3. x x x xx x. 1. Evaluate 5 and 123
Algebra Eponents Simplify each of the following as much as possible. 1 4 9 4 y + y y. 1 5. 1 5 4. y + y 4 5 6 5. + 1 4 9 10 1 7 9 0 Absolute Value Evaluate 5 and 1. Eliminate the absolute value bars from
88 CHAPTER 2. VECTOR FUNCTIONS. . First, we need to compute T (s). a By definition, r (s) T (s) = 1 a sin s a. sin s a, cos s a
88 CHAPTER. VECTOR FUNCTIONS.4 Curvature.4.1 Definitions and Examples The notion of curvature measures how sharply a curve bends. We would expect the curvature to be 0 for a straight line, to be very small
THE BANACH CONTRACTION PRINCIPLE. Contents
THE BANACH CONTRACTION PRINCIPLE ALEX PONIECKI Abstract. This paper will study contractions of metric spaces. To do this, we will mainly use tools from topology. We will give some examples of contractions,
Tilings of the sphere with right triangles III: the asymptotically obtuse families
Tilings of the sphere with right triangles III: the asymptotically obtuse families Robert J. MacG. Dawson Department of Mathematics and Computing Science Saint Mary s University Halifax, Nova Scotia, Canada
MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES
MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES Contents 1. Random variables and measurable functions 2. Cumulative distribution functions 3. Discrete
Trigonometric Functions and Triangles
Trigonometric Functions and Triangles Dr. Philippe B. Laval Kennesaw STate University August 27, 2010 Abstract This handout defines the trigonometric function of angles and discusses the relationship between
ACT Math Facts & Formulas
Numbers, Sequences, Factors Integers:..., -3, -2, -1, 0, 1, 2, 3,... Rationals: fractions, tat is, anyting expressable as a ratio of integers Reals: integers plus rationals plus special numbers suc as
5.1 Radical Notation and Rational Exponents
Section 5.1 Radical Notation and Rational Exponents 1 5.1 Radical Notation and Rational Exponents We now review how exponents can be used to describe not only powers (such as 5 2 and 2 3 ), but also roots
The sample space for a pair of die rolls is the set. The sample space for a random number between 0 and 1 is the interval [0, 1].
Probability Theory Probability Spaces and Events Consider a random experiment with several possible outcomes. For example, we might roll a pair of dice, flip a coin three times, or choose a random real
Introduction to Topology
Introduction to Topology Tomoo Matsumura November 30, 2010 Contents 1 Topological spaces 3 1.1 Basis of a Topology......................................... 3 1.2 Comparing Topologies.......................................
Differentiation of vectors
Chapter 4 Differentiation of vectors 4.1 Vector-valued functions In the previous chapters we have considered real functions of several (usually two) variables f : D R, where D is a subset of R n, where
Core Maths C2. Revision Notes
Core Maths C Revision Notes November 0 Core Maths C Algebra... Polnomials: +,,,.... Factorising... Long division... Remainder theorem... Factor theorem... 4 Choosing a suitable factor... 5 Cubic equations...
Algebraic and Transcendental Numbers
Pondicherry University July 2000 Algebraic and Transcendental Numbers Stéphane Fischler This text is meant to be an introduction to algebraic and transcendental numbers. For a detailed (though elementary)
2. Length and distance in hyperbolic geometry
2. Length and distance in hyperbolic geometry 2.1 The upper half-plane There are several different ways of constructing hyperbolic geometry. These different constructions are called models. In this lecture
INDISTINGUISHABILITY OF ABSOLUTELY CONTINUOUS AND SINGULAR DISTRIBUTIONS
INDISTINGUISHABILITY OF ABSOLUTELY CONTINUOUS AND SINGULAR DISTRIBUTIONS STEVEN P. LALLEY AND ANDREW NOBEL Abstract. It is shown that there are no consistent decision rules for the hypothesis testing problem
Mathematical Induction
Mathematical Induction (Handout March 8, 01) The Principle of Mathematical Induction provides a means to prove infinitely many statements all at once The principle is logical rather than strictly mathematical,
Cubes and Cube Roots
CUBES AND CUBE ROOTS 109 Cubes and Cube Roots CHAPTER 7 7.1 Introduction This is a story about one of India s great mathematical geniuses, S. Ramanujan. Once another famous mathematician Prof. G.H. Hardy
Solutions to Practice Problems
Higher Geometry Final Exam Tues Dec 11, 5-7:30 pm Practice Problems (1) Know the following definitions, statements of theorems, properties from the notes: congruent, triangle, quadrilateral, isosceles
Largest Fixed-Aspect, Axis-Aligned Rectangle
Largest Fixed-Aspect, Axis-Aligned Rectangle David Eberly Geometric Tools, LLC http://www.geometrictools.com/ Copyright c 1998-2016. All Rights Reserved. Created: February 21, 2004 Last Modified: February
4. Expanding dynamical systems
4.1. Metric definition. 4. Expanding dynamical systems Definition 4.1. Let X be a compact metric space. A map f : X X is said to be expanding if there exist ɛ > 0 and L > 1 such that d(f(x), f(y)) Ld(x,
ELECTRIC FIELD LINES AND EQUIPOTENTIAL SURFACES
ELECTRIC FIELD LINES AND EQUIPOTENTIAL SURFACES The purpose of this lab session is to experimentally investigate the relation between electric field lines of force and equipotential surfaces in two dimensions.
AN INTRODUCTION TO DIMENSION THEORY AND FRACTAL GEOMETRY: FRACTAL DIMENSIONS AND MEASURES
AN INTRODUCTION TO DIMENSION THEORY AND FRACTAL GEOMETRY: FRACTAL DIMENSIONS AND MEASURES ERIN PEARSE 1. Historical context and motivation Poincaré s topological reinterpretation of Euclid s initial concept
www.mathsbox.org.uk ab = c a If the coefficients a,b and c are real then either α and β are real or α and β are complex conjugates
Further Pure Summary Notes. Roots of Quadratic Equations For a quadratic equation ax + bx + c = 0 with roots α and β Sum of the roots Product of roots a + b = b a ab = c a If the coefficients a,b and c
x a x 2 (1 + x 2 ) n.
Limits and continuity Suppose that we have a function f : R R. Let a R. We say that f(x) tends to the limit l as x tends to a; lim f(x) = l ; x a if, given any real number ɛ > 0, there exists a real number
Shape Dictionary YR to Y6
Shape Dictionary YR to Y6 Guidance Notes The terms in this dictionary are taken from the booklet Mathematical Vocabulary produced by the National Numeracy Strategy. Children need to understand and use
3. Reaction Diffusion Equations Consider the following ODE model for population growth
3. Reaction Diffusion Equations Consider the following ODE model for population growth u t a u t u t, u 0 u 0 where u t denotes the population size at time t, and a u plays the role of the population dependent
1. Prove that the empty set is a subset of every set.
1. Prove that the empty set is a subset of every set. Basic Topology Written by Men-Gen Tsai email: [email protected] Proof: For any element x of the empty set, x is also an element of every set since
SOLUTIONS TO EXERCISES FOR. MATHEMATICS 205A Part 3. Spaces with special properties
SOLUTIONS TO EXERCISES FOR MATHEMATICS 205A Part 3 Fall 2008 III. Spaces with special properties III.1 : Compact spaces I Problems from Munkres, 26, pp. 170 172 3. Show that a finite union of compact subspaces
PROBLEM SET. Practice Problems for Exam #1. Math 1352, Fall 2004. Oct. 1, 2004 ANSWERS
PROBLEM SET Practice Problems for Exam # Math 352, Fall 24 Oct., 24 ANSWERS i Problem. vlet R be the region bounded by the curves x = y 2 and y = x. A. Find the volume of the solid generated by revolving
Biggar High School Mathematics Department. National 5 Learning Intentions & Success Criteria: Assessing My Progress
Biggar High School Mathematics Department National 5 Learning Intentions & Success Criteria: Assessing My Progress Expressions & Formulae Topic Learning Intention Success Criteria I understand this Approximation
7 Relations and Functions
7 Relations and Functions In this section, we introduce the concept of relations and functions. Relations A relation R from a set A to a set B is a set of ordered pairs (a, b), where a is a member of A,
6.1 Basic Right Triangle Trigonometry
6.1 Basic Right Triangle Trigonometry MEASURING ANGLES IN RADIANS First, let s introduce the units you will be using to measure angles, radians. A radian is a unit of measurement defined as the angle at
4/1/2017. PS. Sequences and Series FROM 9.2 AND 9.3 IN THE BOOK AS WELL AS FROM OTHER SOURCES. TODAY IS NATIONAL MANATEE APPRECIATION DAY
PS. Sequences and Series FROM 9.2 AND 9.3 IN THE BOOK AS WELL AS FROM OTHER SOURCES. TODAY IS NATIONAL MANATEE APPRECIATION DAY 1 Oh the things you should learn How to recognize and write arithmetic sequences
n 2 + 4n + 3. The answer in decimal form (for the Blitz): 0, 75. Solution. (n + 1)(n + 3) = n + 3 2 lim m 2 1
. Calculate the sum of the series Answer: 3 4. n 2 + 4n + 3. The answer in decimal form (for the Blitz):, 75. Solution. n 2 + 4n + 3 = (n + )(n + 3) = (n + 3) (n + ) = 2 (n + )(n + 3) ( 2 n + ) = m ( n
SAT Subject Math Level 2 Facts & Formulas
Numbers, Sequences, Factors Integers:..., -3, -2, -1, 0, 1, 2, 3,... Reals: integers plus fractions, decimals, and irrationals ( 2, 3, π, etc.) Order Of Operations: Arithmetic Sequences: PEMDAS (Parentheses
Unified Lecture # 4 Vectors
Fall 2005 Unified Lecture # 4 Vectors These notes were written by J. Peraire as a review of vectors for Dynamics 16.07. They have been adapted for Unified Engineering by R. Radovitzky. References [1] Feynmann,
G. GRAPHING FUNCTIONS
G. GRAPHING FUNCTIONS To get a quick insight int o how the graph of a function looks, it is very helpful to know how certain simple operations on the graph are related to the way the function epression
Computing Euler angles from a rotation matrix
Computing Euler angles from a rotation matrix Gregory G. Slabaugh Abstract This document discusses a simple technique to find all possible Euler angles from a rotation matrix. Determination of Euler angles
Georgia Standards of Excellence Curriculum Map. Mathematics. GSE 8 th Grade
Georgia Standards of Excellence Curriculum Map Mathematics GSE 8 th Grade These materials are for nonprofit educational purposes only. Any other use may constitute copyright infringement. GSE Eighth Grade
Lecture L6 - Intrinsic Coordinates
S. Widnall, J. Peraire 16.07 Dynamics Fall 2009 Version 2.0 Lecture L6 - Intrinsic Coordinates In lecture L4, we introduced the position, velocity and acceleration vectors and referred them to a fixed
Reflection and Refraction
Equipment Reflection and Refraction Acrylic block set, plane-concave-convex universal mirror, cork board, cork board stand, pins, flashlight, protractor, ruler, mirror worksheet, rectangular block worksheet,
CHAPTER 1 BASIC TOPOLOGY
CHAPTER 1 BASIC TOPOLOGY Topology, sometimes referred to as the mathematics of continuity, or rubber sheet geometry, or the theory of abstract topological spaces, is all of these, but, above all, it is
k, then n = p2α 1 1 pα k
Powers of Integers An integer n is a perfect square if n = m for some integer m. Taking into account the prime factorization, if m = p α 1 1 pα k k, then n = pα 1 1 p α k k. That is, n is a perfect square
Solutions to Homework 10
Solutions to Homework 1 Section 7., exercise # 1 (b,d): (b) Compute the value of R f dv, where f(x, y) = y/x and R = [1, 3] [, 4]. Solution: Since f is continuous over R, f is integrable over R. Let x
x 2 + y 2 = 1 y 1 = x 2 + 2x y = x 2 + 2x + 1
Implicit Functions Defining Implicit Functions Up until now in this course, we have only talked about functions, which assign to every real number x in their domain exactly one real number f(x). The graphs
Solutions to Practice Problems for Test 4
olutions to Practice Problems for Test 4 1. Let be the line segmentfrom the point (, 1, 1) to the point (,, 3). Evaluate the line integral y ds. Answer: First, we parametrize the line segment from (, 1,
Geometric Transformations
Geometric Transformations Definitions Def: f is a mapping (function) of a set A into a set B if for every element a of A there exists a unique element b of B that is paired with a; this pairing is denoted
Mathematics. (www.tiwariacademy.com : Focus on free Education) (Chapter 5) (Complex Numbers and Quadratic Equations) (Class XI)
( : Focus on free Education) Miscellaneous Exercise on chapter 5 Question 1: Evaluate: Answer 1: 1 ( : Focus on free Education) Question 2: For any two complex numbers z1 and z2, prove that Re (z1z2) =
Estimating the Average Value of a Function
Estimating the Average Value of a Function Problem: Determine the average value of the function f(x) over the interval [a, b]. Strategy: Choose sample points a = x 0 < x 1 < x 2 < < x n 1 < x n = b and
Shortest Inspection-Path. Queries in Simple Polygons
Shortest Inspection-Path Queries in Simple Polygons Christian Knauer, Günter Rote B 05-05 April 2005 Shortest Inspection-Path Queries in Simple Polygons Christian Knauer, Günter Rote Institut für Informatik,
Math Placement Test Practice Problems
Math Placement Test Practice Problems The following problems cover material that is used on the math placement test to place students into Math 1111 College Algebra, Math 1113 Precalculus, and Math 2211
Arithmetic Progression
Worksheet 3.6 Arithmetic and Geometric Progressions Section 1 Arithmetic Progression An arithmetic progression is a list of numbers where the difference between successive numbers is constant. The terms
The Method of Least Squares. Lectures INF2320 p. 1/80
The Method of Least Squares Lectures INF2320 p. 1/80 Lectures INF2320 p. 2/80 The method of least squares We study the following problem: Given n points (t i,y i ) for i = 1,...,n in the (t,y)-plane. How
Fundamental Theorems of Vector Calculus
Fundamental Theorems of Vector Calculus We have studied the techniques for evaluating integrals over curves and surfaces. In the case of integrating over an interval on the real line, we were able to use
1. Introduction sine, cosine, tangent, cotangent, secant, and cosecant periodic
1. Introduction There are six trigonometric functions: sine, cosine, tangent, cotangent, secant, and cosecant; abbreviated as sin, cos, tan, cot, sec, and csc respectively. These are functions of a single
Graphs of Polar Equations
Graphs of Polar Equations In the last section, we learned how to graph a point with polar coordinates (r, θ). We will now look at graphing polar equations. Just as a quick review, the polar coordinate
Core Maths C1. Revision Notes
Core Maths C Revision Notes November 0 Core Maths C Algebra... Indices... Rules of indices... Surds... 4 Simplifying surds... 4 Rationalising the denominator... 4 Quadratic functions... 4 Completing the
I. Pointwise convergence
MATH 40 - NOTES Sequences of functions Pointwise and Uniform Convergence Fall 2005 Previously, we have studied sequences of real numbers. Now we discuss the topic of sequences of real valued functions.
Surface bundles over S 1, the Thurston norm, and the Whitehead link
Surface bundles over S 1, the Thurston norm, and the Whitehead link Michael Landry August 16, 2014 The Thurston norm is a powerful tool for studying the ways a 3-manifold can fiber over the circle. In
Follow links for Class Use and other Permissions. For more information send email to: [email protected]
COPYRIGHT NOTICE: Ariel Rubinstein: Lecture Notes in Microeconomic Theory is published by Princeton University Press and copyrighted, c 2006, by Princeton University Press. All rights reserved. No part
Factoring Patterns in the Gaussian Plane
Factoring Patterns in the Gaussian Plane Steve Phelps Introduction This paper describes discoveries made at the Park City Mathematics Institute, 00, as well as some proofs. Before the summer I understood
Mathematical Conventions Large Print (18 point) Edition
GRADUATE RECORD EXAMINATIONS Mathematical Conventions Large Print (18 point) Edition Copyright 2010 by Educational Testing Service. All rights reserved. ETS, the ETS logo, GRADUATE RECORD EXAMINATIONS,
Mathematical Conventions. for the Quantitative Reasoning Measure of the GRE revised General Test
Mathematical Conventions for the Quantitative Reasoning Measure of the GRE revised General Test www.ets.org Overview The mathematical symbols and terminology used in the Quantitative Reasoning measure
About the Gamma Function
About the Gamma Function Notes for Honors Calculus II, Originally Prepared in Spring 995 Basic Facts about the Gamma Function The Gamma function is defined by the improper integral Γ) = The integral is
Instructions. Information. Advice
Instructions Use black ink or ball-point pen. Fill in the boxes at the top of this page with your name, centre number and candidate number. Answer all questions. Answer the questions in the spaces provided
Math 1B, lecture 5: area and volume
Math B, lecture 5: area and volume Nathan Pflueger 6 September 2 Introduction This lecture and the next will be concerned with the computation of areas of regions in the plane, and volumes of regions in
with functions, expressions and equations which follow in units 3 and 4.
Grade 8 Overview View unit yearlong overview here The unit design was created in line with the areas of focus for grade 8 Mathematics as identified by the Common Core State Standards and the PARCC Model
Notes on metric spaces
Notes on metric spaces 1 Introduction The purpose of these notes is to quickly review some of the basic concepts from Real Analysis, Metric Spaces and some related results that will be used in this course.
Double Integrals in Polar Coordinates
Double Integrals in Polar Coordinates. A flat plate is in the shape of the region in the first quadrant ling between the circles + and +. The densit of the plate at point, is + kilograms per square meter
39 Symmetry of Plane Figures
39 Symmetry of Plane Figures In this section, we are interested in the symmetric properties of plane figures. By a symmetry of a plane figure we mean a motion of the plane that moves the figure so that
Slope and Rate of Change
Chapter 1 Slope and Rate of Change Chapter Summary and Goal This chapter will start with a discussion of slopes and the tangent line. This will rapidly lead to heuristic developments of limits and the
TWO-DIMENSIONAL TRANSFORMATION
CHAPTER 2 TWO-DIMENSIONAL TRANSFORMATION 2.1 Introduction As stated earlier, Computer Aided Design consists of three components, namely, Design (Geometric Modeling), Analysis (FEA, etc), and Visualization
HOMEWORK 5 SOLUTIONS. n!f n (1) lim. ln x n! + xn x. 1 = G n 1 (x). (2) k + 1 n. (n 1)!
Math 7 Fall 205 HOMEWORK 5 SOLUTIONS Problem. 2008 B2 Let F 0 x = ln x. For n 0 and x > 0, let F n+ x = 0 F ntdt. Evaluate n!f n lim n ln n. By directly computing F n x for small n s, we obtain the following
1 3 4 = 8i + 20j 13k. x + w. y + w
) Find the point of intersection of the lines x = t +, y = 3t + 4, z = 4t + 5, and x = 6s + 3, y = 5s +, z = 4s + 9, and then find the plane containing these two lines. Solution. Solve the system of equations
PROPERTIES OF N-SIDED REGULAR POLYGONS
PROPERTIES OF N-SIDED REGULAR POLYGONS When students are first exposed to regular polygons in middle school, they learn their properties by looking at individual examples such as the equilateral triangles(n=3),
MA4001 Engineering Mathematics 1 Lecture 10 Limits and Continuity
MA4001 Engineering Mathematics 1 Lecture 10 Limits and Dr. Sarah Mitchell Autumn 2014 Infinite limits If f(x) grows arbitrarily large as x a we say that f(x) has an infinite limit. Example: f(x) = 1 x
ON FIBONACCI NUMBERS WITH FEW PRIME DIVISORS
ON FIBONACCI NUMBERS WITH FEW PRIME DIVISORS YANN BUGEAUD, FLORIAN LUCA, MAURICE MIGNOTTE, SAMIR SIKSEK Abstract If n is a positive integer, write F n for the nth Fibonacci number, and ω(n) for the number
Trigonometry Review with the Unit Circle: All the trig. you ll ever need to know in Calculus
Trigonometry Review with the Unit Circle: All the trig. you ll ever need to know in Calculus Objectives: This is your review of trigonometry: angles, six trig. functions, identities and formulas, graphs:
Math 319 Problem Set #3 Solution 21 February 2002
Math 319 Problem Set #3 Solution 21 February 2002 1. ( 2.1, problem 15) Find integers a 1, a 2, a 3, a 4, a 5 such that every integer x satisfies at least one of the congruences x a 1 (mod 2), x a 2 (mod
The Use of Dynamic Geometry Software in the Teaching and Learning of Geometry through Transformations
The Use of Dynamic Geometry Software in the Teaching and Learning of Geometry through Transformations Dynamic geometry technology should be used to maximize student learning in geometry. Such technology
What is Linear Programming?
Chapter 1 What is Linear Programming? An optimization problem usually has three essential ingredients: a variable vector x consisting of a set of unknowns to be determined, an objective function of x to
