PROPERTIES OF N-SIDED REGULAR POLYGONS
|
|
|
- Caroline King
- 9 years ago
- Views:
Transcription
1 PROPERTIES OF N-SIDED REGULAR POLYGONS When students are first exposed to regular polygons in middle school, they learn their properties by looking at individual examples such as the equilateral triangles(n=3), squares(n=4), and hexagons(n=6). A generalization is usually not given, although it would be straight forward to do so with just a min imum of trigonometry and algebra. It also would help students by showing how one obtains generalization in mathematics. We show here how to carry out such a generalization for regular polynomials of side length s. Our starting point is the following schematic of an n sided polygon- We see from the figure that any regular n sided polygon can be constructed by looking at n isosceles triangles whose base angles are θ=(1-2/n)(π/2) since the vertex angle of the triangle is just ψ=2π/n, when expressed in radians. The area of the grey triangle in the above figure is- A Tr =sh/2=(s/2) 2 tan(θ)=(s/2) 2 tan[(1-2/n)(π/2)] so that the total area of any n sided regular convex polygon will be na Tr,, with s again being the side-length. With this generalized form we can construct the following table for some of the better known regular polygons- Name Number of Base Angle, Non-Dimensional sides, n θ=(π/2)(1-2/n) Area, 4nA Tr /s 2 =tan(θ) Triangle 3 π/6=30º 1/sqrt(3)
2 Square 4 π/4=45º 1 Pentagon 5 3π/10=54º sqrt(15+20φ) Hexagon 6 π/3=60º sqrt(3) Octagon 8 3π/8=67.5º 1+sqrt(2) Decagon 10 2π/5=72º 10sqrt(3+4φ) Dodecagon 12 5π/12=75º 144[2+sqrt(3)] Icosagon 20 9π/20=81º 20[2φ+sqrt(3+4φ)] Here φ=[1+sqrt(5)]/2= is the well known Golden Ratio. It is seen that the base angle heads toward π/2 as n goes to infinity. Also the area of the polygon approaches πr 2, where r is the radius of a circle centered in the polygon and passing through each of the polygon vertices. From the above diagram we have in addition that r=s/2cos(θ), so that for a regular convex polygon of an infinite number of sides the area is- A lim 2h n sin( r n because h r as n It is this limit which first allowed Archimedes to obtain good approximations for π. Note that in terms of the base angle θ, the area of any n sided regular polygon will be- A=n(s/2) 2 tan(θ)=n(s/2) 2 tan[(π/2)(1-2/n)] For each of the cases given in the above table, it is possible to construct the polygon using just a straight edge and a compass. Nineteen year old Karl Gauss showed in 1796 that one can always construct regular polygons if n satisfies the equality- m n 2 { f f 2 f3 1...} where m is a positive integer and f n are any of the five known Fermat Primes- f k n , 5,17, 257, and Note that starting with f 3 =17, all Fermat primes are of the form 8n+1 as deduced from our earlier discussion on the Integral Spiral. Thus the polygons which can be constructed by just straight edge and compass are in ascending order- n=3, 4, 5, 6, 8, 10,12, 15, 17, 20,24, etc Gauss s fame lies partially on the fact that he predicted the 17 sided heptadecagon could be constructed by using just a straight edge and compass. Note that 17 is the third Fermat Number. For this heptadecagon we have-
3 θ=15π/34rad= º and A=17(s/2) 2 tan(θ)=17(s 2 /4)tan(15π/34) Note also that one should be able to construct a 60 sided regular polygon with straight edge and straight edge since 60= Such a polygon would be referred to as a hexacontagon. Let us next demonstrate the procedure for constructing a pentagon(n=5) using only a straight edge and ruler. The procedure is shown in the following figure- Here is the construction described in words- (1)-Draw an x axis and place a circle x 2 +y 2 =1 upon it using a compass. The radius 1 can be any distance since unit lengths can be chosen at will. (2)-Draw a vertical line x=0 through the circle center established by connecting the intersections of two larger circles centered on the intersection of the original circle with the x axis. (3)-Bisect the x axis at x=1/2 to locate a new point [x,y[=[1/2,0] (4)-Draw a new circle about [1/2,0] whose radius equals the distance from [1/2,0] to [0,1]. This radius has value r=sqrt(5)/2=φ-1/2, where φ is the Golden Ratio.
4 (5)-The new circle will intersect the point [0,1] plus the negative x axis at [1-φ,0]=[ ,0]. Reset the compass to a new radius R=sqrt(3-φ) which equals the distance from [0,1] to [1-φ,0]. (6)-Draw a new circle centered on [0,1] having radius R=sqrt(3-φ). (7)-This produces two intersections of the original unit radius circle in the first and second quadrant given by [±sqrt(2+φ)/2,(φ-1)/2]. These are the next two vertexes of the pentagon. (8)-By centering the compass on these points and retaining the radius R, one can obtain the remaining two vertices. The remaining vertex points are located in the third and 4 th quadrant at[±sqrt(3-φ)/2,-φ/2]. (9)-Finally, connecting these five vertexes with straight lines produces the desired regular polygon with edges shown in blue. Note that the distance R between neighboring vertices represents essentially the side lengths for a pentagon. All its vertices lie on the unit radius circle. Since regular polygons have all their vertices lie an a given circle it suggests we can quickly determine the coordinates of these points in either polar or Cartesian coordinates The procedure for doing so starts with placing the first vertex at the polar coordinate location [r,ψ]=[r,c]. This vertex plus all the remaining ones are then located at- [r,ψ]=[r, c+2πk/n] with k=0,1,2,.,(n-1) In Cartesian coordinates we have the vertices of the n sided polygon located at- x=r cos(c+2πk/n) and y=r sin(c+2πk/n] The relation between the circle radius r and the side-length s remains as s=2rcos(2π/n). One can easily program these x and y locations to produce pointplots and listplots of any n sided polygon. The following is such a graph for the heptadecagon of Gauss-
5 The vertices are shown as red circles and the connecting lines, representing the edges of the polygon, are in blue. We have chosen to place the first vertex at r=1 and ψ=0 and hence the constant in the angle c has been set to zero. To magnify, rotate and translate any regular polygon is a straight forward procedure. We can write the transformed vertex coordinates as- x=a +mrcos(d+2πk/n) and y=b+mrsin(d+2πk/n) Here m is the magnification factor, d=(c+rotation angle) the rotation factor, and a and b the shift in x and y of the polygon center. By squaring and then adding the result, we get- (x-a) 2 +(y-b) 2 =(mr) 2 This is just the shifted guiding circle of radius mr on which the vertices of the transformed polygon lie. As an example of such a transformation we have taken a square originally centered on the origin and translated it to x=3/2 and y=2, rotated it by 45º, and doubled its side-length. Here is the resultant graph-
6 The MAPLE math program we used to generate this graph is- with(plots): A:=listplot([seq([3/2+cos(-Pi/2+2*Pi*n/4),2+sin(-Pi/2+2*Pi*n/4)],n=0..4)],color=red, numpoints=2000,view=[-1..3,-1..3],scaling=constrained,thickness=2): B:=listplot([seq([0.5*cos(Pi/4+2*Pi*n/4),0.5*sin(Pi/4+2*Pi*n/4)],n=0..4)],color=blue, numpoints=2000,view=[-1..3,-1..3],scaling=constrained,thickness=2): display(a,b,title=`magnification,rotation,and TRANSLATION OF A SQUARE`); April 24, 2013
Grade 7 & 8 Math Circles Circles, Circles, Circles March 19/20, 2013
Faculty of Mathematics Waterloo, Ontario N2L 3G Introduction Grade 7 & 8 Math Circles Circles, Circles, Circles March 9/20, 203 The circle is a very important shape. In fact of all shapes, the circle is
Target To know the properties of a rectangle
Target To know the properties of a rectangle (1) A rectangle is a 3-D shape. (2) A rectangle is the same as an oblong. (3) A rectangle is a quadrilateral. (4) Rectangles have four equal sides. (5) Rectangles
PERIMETER AND AREA. In this unit, we will develop and apply the formulas for the perimeter and area of various two-dimensional figures.
PERIMETER AND AREA In this unit, we will develop and apply the formulas for the perimeter and area of various two-dimensional figures. Perimeter Perimeter The perimeter of a polygon, denoted by P, is the
Number Sense and Operations
Number Sense and Operations representing as they: 6.N.1 6.N.2 6.N.3 6.N.4 6.N.5 6.N.6 6.N.7 6.N.8 6.N.9 6.N.10 6.N.11 6.N.12 6.N.13. 6.N.14 6.N.15 Demonstrate an understanding of positive integer exponents
Chapter 8 Geometry We will discuss following concepts in this chapter.
Mat College Mathematics Updated on Nov 5, 009 Chapter 8 Geometry We will discuss following concepts in this chapter. Two Dimensional Geometry: Straight lines (parallel and perpendicular), Rays, Angles
Angles that are between parallel lines, but on opposite sides of a transversal.
GLOSSARY Appendix A Appendix A: Glossary Acute Angle An angle that measures less than 90. Acute Triangle Alternate Angles A triangle that has three acute angles. Angles that are between parallel lines,
Shape Dictionary YR to Y6
Shape Dictionary YR to Y6 Guidance Notes The terms in this dictionary are taken from the booklet Mathematical Vocabulary produced by the National Numeracy Strategy. Children need to understand and use
Geometry Progress Ladder
Geometry Progress Ladder Maths Makes Sense Foundation End-of-year objectives page 2 Maths Makes Sense 1 2 End-of-block objectives page 3 Maths Makes Sense 3 4 End-of-block objectives page 4 Maths Makes
SAT Subject Math Level 2 Facts & Formulas
Numbers, Sequences, Factors Integers:..., -3, -2, -1, 0, 1, 2, 3,... Reals: integers plus fractions, decimals, and irrationals ( 2, 3, π, etc.) Order Of Operations: Arithmetic Sequences: PEMDAS (Parentheses
11.3 Curves, Polygons and Symmetry
11.3 Curves, Polygons and Symmetry Polygons Simple Definition A shape is simple if it doesn t cross itself, except maybe at the endpoints. Closed Definition A shape is closed if the endpoints meet. Polygon
UNIT H1 Angles and Symmetry Activities
UNIT H1 Angles and Symmetry Activities Activities H1.1 Lines of Symmetry H1.2 Rotational and Line Symmetry H1.3 Symmetry of Regular Polygons H1.4 Interior Angles in Polygons Notes and Solutions (1 page)
Applications for Triangles
Not drawn to scale Applications for Triangles 1. 36 in. 40 in. 33 in. 1188 in. 2 69 in. 2 138 in. 2 1440 in. 2 2. 188 in. 2 278 in. 2 322 in. 2 none of these Find the area of a parallelogram with the given
Area and Arc Length in Polar Coordinates
Area and Arc Length in Polar Coordinates The Cartesian Coordinate System (rectangular coordinates) is not always the most convenient way to describe points, or relations in the plane. There are certainly
Estimating Angle Measures
1 Estimating Angle Measures Compare and estimate angle measures. You will need a protractor. 1. Estimate the size of each angle. a) c) You can estimate the size of an angle by comparing it to an angle
56 questions (multiple choice, check all that apply, and fill in the blank) The exam is worth 224 points.
6.1.1 Review: Semester Review Study Sheet Geometry Core Sem 2 (S2495808) Semester Exam Preparation Look back at the unit quizzes and diagnostics. Use the unit quizzes and diagnostics to determine which
4. How many integers between 2004 and 4002 are perfect squares?
5 is 0% of what number? What is the value of + 3 4 + 99 00? (alternating signs) 3 A frog is at the bottom of a well 0 feet deep It climbs up 3 feet every day, but slides back feet each night If it started
ACT Math Vocabulary. Altitude The height of a triangle that makes a 90-degree angle with the base of the triangle. Altitude
ACT Math Vocabular Acute When referring to an angle acute means less than 90 degrees. When referring to a triangle, acute means that all angles are less than 90 degrees. For eample: Altitude The height
of surface, 569-571, 576-577, 578-581 of triangle, 548 Associative Property of addition, 12, 331 of multiplication, 18, 433
Absolute Value and arithmetic, 730-733 defined, 730 Acute angle, 477 Acute triangle, 497 Addend, 12 Addition associative property of, (see Commutative Property) carrying in, 11, 92 commutative property
ANALYTICAL METHODS FOR ENGINEERS
UNIT 1: Unit code: QCF Level: 4 Credit value: 15 ANALYTICAL METHODS FOR ENGINEERS A/601/1401 OUTCOME - TRIGONOMETRIC METHODS TUTORIAL 1 SINUSOIDAL FUNCTION Be able to analyse and model engineering situations
GEOMETRY. Constructions OBJECTIVE #: G.CO.12
GEOMETRY Constructions OBJECTIVE #: G.CO.12 OBJECTIVE Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic
INTERESTING PROOFS FOR THE CIRCUMFERENCE AND AREA OF A CIRCLE
INTERESTING PROOFS FOR THE CIRCUMFERENCE AND AREA OF A CIRCLE ABSTRACT:- Vignesh Palani University of Minnesota - Twin cities e-mail address - [email protected] In this brief work, the existing formulae
Roof Framing Geometry & Trigonometry for Polygons
Roof Framing Geometry & Trigonometry for Polygons section view polygon side length polygon center inscribed circle central angle plan angle working angle plan view plan view projection B angle B exterior
SAT Subject Math Level 1 Facts & Formulas
Numbers, Sequences, Factors Integers:..., -3, -2, -1, 0, 1, 2, 3,... Reals: integers plus fractions, decimals, and irrationals ( 2, 3, π, etc.) Order Of Operations: Aritmetic Sequences: PEMDAS (Parenteses
CIRCLE COORDINATE GEOMETRY
CIRCLE COORDINATE GEOMETRY (EXAM QUESTIONS) Question 1 (**) A circle has equation x + y = 2x + 8 Determine the radius and the coordinates of the centre of the circle. r = 3, ( 1,0 ) Question 2 (**) A circle
CAMI Education linked to CAPS: Mathematics
- 1 - TOPIC 1.1 Whole numbers _CAPS curriculum TERM 1 CONTENT Mental calculations Revise: Multiplication of whole numbers to at least 12 12 Ordering and comparing whole numbers Revise prime numbers to
Essential Mathematics for Computer Graphics fast
John Vince Essential Mathematics for Computer Graphics fast Springer Contents 1. MATHEMATICS 1 Is mathematics difficult? 3 Who should read this book? 4 Aims and objectives of this book 4 Assumptions made
Intermediate Math Circles October 10, 2012 Geometry I: Angles
Intermediate Math Circles October 10, 2012 Geometry I: Angles Over the next four weeks, we will look at several geometry topics. Some of the topics may be familiar to you while others, for most of you,
Basic Geometry Review For Trigonometry Students. 16 June 2010 Ventura College Mathematics Department 1
Basic Geometry Review For Trigonometry Students 16 June 2010 Ventura College Mathematics Department 1 Undefined Geometric Terms Point A Line AB Plane ABC 16 June 2010 Ventura College Mathematics Department
Geometry and Measurement
The student will be able to: Geometry and Measurement 1. Demonstrate an understanding of the principles of geometry and measurement and operations using measurements Use the US system of measurement for
Content. Chapter 4 Functions 61 4.1 Basic concepts on real functions 62. Credits 11
Content Credits 11 Chapter 1 Arithmetic Refresher 13 1.1 Algebra 14 Real Numbers 14 Real Polynomials 19 1.2 Equations in one variable 21 Linear Equations 21 Quadratic Equations 22 1.3 Exercises 28 Chapter
RADIUS OF CURVATURE AND EVOLUTE OF THE FUNCTION y=f(x)
RADIUS OF CURVATURE AND EVOLUTE OF THE FUNCTION y=f( In introductory calculus one learns about the curvature of a function y=f( also about the path (evolute that the center of curvature traces out as x
Triangle Trigonometry and Circles
Math Objectives Students will understand that trigonometric functions of an angle do not depend on the size of the triangle within which the angle is contained, but rather on the ratios of the sides of
Level 1 - Maths Targets TARGETS. With support, I can show my work using objects or pictures 12. I can order numbers to 10 3
Ma Data Hling: Interpreting Processing representing Ma Shape, space measures: position shape Written Mental method s Operations relationship s between them Fractio ns Number s the Ma1 Using Str Levels
Geometry Regents Review
Name: Class: Date: Geometry Regents Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. If MNP VWX and PM is the shortest side of MNP, what is the shortest
Geometry Course Summary Department: Math. Semester 1
Geometry Course Summary Department: Math Semester 1 Learning Objective #1 Geometry Basics Targets to Meet Learning Objective #1 Use inductive reasoning to make conclusions about mathematical patterns Give
FORM 3 MATHEMATICS SCHEME C TIME: 30 minutes Non Calculator Paper INSTRUCTIONS TO CANDIDATES
DIRECTORATE FOR QUALITY AND STANDARDS IN EDUCATION Department for Curriculum Management and elearning Educational Assessment Unit Annual Examinations for Secondary Schools 2011 C FORM 3 MATHEMATICS SCHEME
ACT Math Facts & Formulas
Numbers, Sequences, Factors Integers:..., -3, -2, -1, 0, 1, 2, 3,... Rationals: fractions, tat is, anyting expressable as a ratio of integers Reals: integers plus rationals plus special numbers suc as
7. 080207a, P.I. A.A.17
Math A Regents Exam 080 Page 1 1. 08001a, P.I. A.A.6 On a map, 1 centimeter represents 40 kilometers. How many kilometers are represented by 8 centimeters? [A] 48 [B] 30 [C] 5 [D] 80. 0800a, P.I. G.G.38
ALGEBRA. sequence, term, nth term, consecutive, rule, relationship, generate, predict, continue increase, decrease finite, infinite
ALGEBRA Pupils should be taught to: Generate and describe sequences As outcomes, Year 7 pupils should, for example: Use, read and write, spelling correctly: sequence, term, nth term, consecutive, rule,
Which two rectangles fit together, without overlapping, to make a square?
SHAPE level 4 questions 1. Here are six rectangles on a grid. A B C D E F Which two rectangles fit together, without overlapping, to make a square?... and... International School of Madrid 1 2. Emily has
39 Symmetry of Plane Figures
39 Symmetry of Plane Figures In this section, we are interested in the symmetric properties of plane figures. By a symmetry of a plane figure we mean a motion of the plane that moves the figure so that
Expression. Variable Equation Polynomial Monomial Add. Area. Volume Surface Space Length Width. Probability. Chance Random Likely Possibility Odds
Isosceles Triangle Congruent Leg Side Expression Equation Polynomial Monomial Radical Square Root Check Times Itself Function Relation One Domain Range Area Volume Surface Space Length Width Quantitative
Lesson 1.1 Building Blocks of Geometry
Lesson 1.1 Building Blocks of Geometry For Exercises 1 7, complete each statement. S 3 cm. 1. The midpoint of Q is. N S Q 2. NQ. 3. nother name for NS is. 4. S is the of SQ. 5. is the midpoint of. 6. NS.
2. If C is the midpoint of AB and B is the midpoint of AE, can you say that the measure of AC is 1/4 the measure of AE?
MATH 206 - Midterm Exam 2 Practice Exam Solutions 1. Show two rays in the same plane that intersect at more than one point. Rays AB and BA intersect at all points from A to B. 2. If C is the midpoint of
Solutions to Practice Problems
Higher Geometry Final Exam Tues Dec 11, 5-7:30 pm Practice Problems (1) Know the following definitions, statements of theorems, properties from the notes: congruent, triangle, quadrilateral, isosceles
Contents. 2 Lines and Circles 3 2.1 Cartesian Coordinates... 3 2.2 Distance and Midpoint Formulas... 3 2.3 Lines... 3 2.4 Circles...
Contents Lines and Circles 3.1 Cartesian Coordinates.......................... 3. Distance and Midpoint Formulas.................... 3.3 Lines.................................. 3.4 Circles..................................
Grade 8 Mathematics Geometry: Lesson 2
Grade 8 Mathematics Geometry: Lesson 2 Read aloud to the students the material that is printed in boldface type inside the boxes. Information in regular type inside the boxes and all information outside
Algebra Geometry Glossary. 90 angle
lgebra Geometry Glossary 1) acute angle an angle less than 90 acute angle 90 angle 2) acute triangle a triangle where all angles are less than 90 3) adjacent angles angles that share a common leg Example:
Additional Topics in Math
Chapter Additional Topics in Math In addition to the questions in Heart of Algebra, Problem Solving and Data Analysis, and Passport to Advanced Math, the SAT Math Test includes several questions that are
Dear Accelerated Pre-Calculus Student:
Dear Accelerated Pre-Calculus Student: I am very excited that you have decided to take this course in the upcoming school year! This is a fastpaced, college-preparatory mathematics course that will also
Geometry. Higher Mathematics Courses 69. Geometry
The fundamental purpose of the course is to formalize and extend students geometric experiences from the middle grades. This course includes standards from the conceptual categories of and Statistics and
6.1 Basic Right Triangle Trigonometry
6.1 Basic Right Triangle Trigonometry MEASURING ANGLES IN RADIANS First, let s introduce the units you will be using to measure angles, radians. A radian is a unit of measurement defined as the angle at
Biggar High School Mathematics Department. National 5 Learning Intentions & Success Criteria: Assessing My Progress
Biggar High School Mathematics Department National 5 Learning Intentions & Success Criteria: Assessing My Progress Expressions & Formulae Topic Learning Intention Success Criteria I understand this Approximation
GAP CLOSING. 2D Measurement. Intermediate / Senior Student Book
GAP CLOSING 2D Measurement Intermediate / Senior Student Book 2-D Measurement Diagnostic...3 Areas of Parallelograms, Triangles, and Trapezoids...6 Areas of Composite Shapes...14 Circumferences and Areas
Geometry of Minerals
Geometry of Minerals Objectives Students will connect geometry and science Students will study 2 and 3 dimensional shapes Students will recognize numerical relationships and write algebraic expressions
Trigonometric Functions and Triangles
Trigonometric Functions and Triangles Dr. Philippe B. Laval Kennesaw STate University August 27, 2010 Abstract This handout defines the trigonometric function of angles and discusses the relationship between
1. A student followed the given steps below to complete a construction. Which type of construction is best represented by the steps given above?
1. A student followed the given steps below to complete a construction. Step 1: Place the compass on one endpoint of the line segment. Step 2: Extend the compass from the chosen endpoint so that the width
9 Area, Perimeter and Volume
9 Area, Perimeter and Volume 9.1 2-D Shapes The following table gives the names of some 2-D shapes. In this section we will consider the properties of some of these shapes. Rectangle All angles are right
Answer: The relationship cannot be determined.
Question 1 Test 2, Second QR Section (version 3) In City X, the range of the daily low temperatures during... QA: The range of the daily low temperatures in City X... QB: 30 Fahrenheit Arithmetic: Ranges
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Wednesday, January 28, 2015 9:15 a.m. to 12:15 p.m.
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, January 28, 2015 9:15 a.m. to 12:15 p.m., only Student Name: School Name: The possession or use of any
8 Fractals: Cantor set, Sierpinski Triangle, Koch Snowflake, fractal dimension.
8 Fractals: Cantor set, Sierpinski Triangle, Koch Snowflake, fractal dimension. 8.1 Definitions Definition If every point in a set S has arbitrarily small neighborhoods whose boundaries do not intersect
Trigonometric Functions: The Unit Circle
Trigonometric Functions: The Unit Circle This chapter deals with the subject of trigonometry, which likely had its origins in the study of distances and angles by the ancient Greeks. The word trigonometry
Higher Education Math Placement
Higher Education Math Placement Placement Assessment Problem Types 1. Whole Numbers, Fractions, and Decimals 1.1 Operations with Whole Numbers Addition with carry Subtraction with borrowing Multiplication
www.mathsbox.org.uk ab = c a If the coefficients a,b and c are real then either α and β are real or α and β are complex conjugates
Further Pure Summary Notes. Roots of Quadratic Equations For a quadratic equation ax + bx + c = 0 with roots α and β Sum of the roots Product of roots a + b = b a ab = c a If the coefficients a,b and c
New York State Student Learning Objective: Regents Geometry
New York State Student Learning Objective: Regents Geometry All SLOs MUST include the following basic components: Population These are the students assigned to the course section(s) in this SLO all students
Grade 7/8 Math Circles February 10/11, 2015 Pi
Faculty of Mathematics Waterloo, Ontario N2L 3G1 Centre for Education in Mathematics and Computing The Best Tasting Number Grade 7/8 Math Circles February 10/11, 2015 Pi Today, we re going to talk about
Universal Law of Gravitation
Universal Law of Gravitation Law: Every body exerts a force of attraction on every other body. This force called, gravity, is relatively weak and decreases rapidly with the distance separating the bodies
POINT OF INTERSECTION OF TWO STRAIGHT LINES
POINT OF INTERSECTION OF TWO STRAIGHT LINES THEOREM The point of intersection of the two non parallel lines bc bc ca ca a x + b y + c = 0, a x + b y + c = 0 is,. ab ab ab ab Proof: The lines are not parallel
Exploring Geometric Figures Using Cabri Geometry II
Exploring Geometric Figures Using Cabri Geometry II Regular Polygons Developed by: Charles Bannister. Chambly County High School Linda Carre.. Chambly County High School Manon Charlebois Vaudreuil Catholic
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Tuesday, January 26, 2016 1:15 to 4:15 p.m., only.
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Tuesday, January 26, 2016 1:15 to 4:15 p.m., only Student Name: School Name: The possession or use of any communications
Area. Area Overview. Define: Area:
Define: Area: Area Overview Kite: Parallelogram: Rectangle: Rhombus: Square: Trapezoid: Postulates/Theorems: Every closed region has an area. If closed figures are congruent, then their areas are equal.
Possible Stage Two Mathematics Test Topics
Possible Stage Two Mathematics Test Topics The Stage Two Mathematics Test questions are designed to be answerable by a good problem-solver with a strong mathematics background. It is based mainly on material
n 2 + 4n + 3. The answer in decimal form (for the Blitz): 0, 75. Solution. (n + 1)(n + 3) = n + 3 2 lim m 2 1
. Calculate the sum of the series Answer: 3 4. n 2 + 4n + 3. The answer in decimal form (for the Blitz):, 75. Solution. n 2 + 4n + 3 = (n + )(n + 3) = (n + 3) (n + ) = 2 (n + )(n + 3) ( 2 n + ) = m ( n
11 th Annual Harvard-MIT Mathematics Tournament
11 th nnual Harvard-MIT Mathematics Tournament Saturday February 008 Individual Round: Geometry Test 1. [] How many different values can take, where,, are distinct vertices of a cube? nswer: 5. In a unit
Common Core Unit Summary Grades 6 to 8
Common Core Unit Summary Grades 6 to 8 Grade 8: Unit 1: Congruence and Similarity- 8G1-8G5 rotations reflections and translations,( RRT=congruence) understand congruence of 2 d figures after RRT Dilations
You must have: Ruler graduated in centimetres and millimetres, protractor, compasses, pen, HB pencil, eraser, calculator. Tracing paper may be used.
Write your name here Surname Other names Edexcel IGCSE Mathematics B Paper 1 Centre Number Candidate Number Monday 6 June 2011 Afternoon Time: 1 hour 30 minutes Paper Reference 4MB0/01 You must have: Ruler
Angle - a figure formed by two rays or two line segments with a common endpoint called the vertex of the angle; angles are measured in degrees
Angle - a figure formed by two rays or two line segments with a common endpoint called the vertex of the angle; angles are measured in degrees Apex in a pyramid or cone, the vertex opposite the base; in
Trigonometry Review with the Unit Circle: All the trig. you ll ever need to know in Calculus
Trigonometry Review with the Unit Circle: All the trig. you ll ever need to know in Calculus Objectives: This is your review of trigonometry: angles, six trig. functions, identities and formulas, graphs:
Equation of a Line. Chapter H2. The Gradient of a Line. m AB = Exercise H2 1
Chapter H2 Equation of a Line The Gradient of a Line The gradient of a line is simpl a measure of how steep the line is. It is defined as follows :- gradient = vertical horizontal horizontal A B vertical
SA B 1 p where is the slant height of the pyramid. V 1 3 Bh. 3D Solids Pyramids and Cones. Surface Area and Volume of a Pyramid
Accelerated AAG 3D Solids Pyramids and Cones Name & Date Surface Area and Volume of a Pyramid The surface area of a regular pyramid is given by the formula SA B 1 p where is the slant height of the pyramid.
Factoring Patterns in the Gaussian Plane
Factoring Patterns in the Gaussian Plane Steve Phelps Introduction This paper describes discoveries made at the Park City Mathematics Institute, 00, as well as some proofs. Before the summer I understood
Visualizing Triangle Centers Using Geogebra
Visualizing Triangle Centers Using Geogebra Sanjay Gulati Shri Shankaracharya Vidyalaya, Hudco, Bhilai India http://mathematicsbhilai.blogspot.com/ [email protected] ABSTRACT. In this paper, we will
Angles and Quadrants. Angle Relationships and Degree Measurement. Chapter 7: Trigonometry
Chapter 7: Trigonometry Trigonometry is the study of angles and how they can be used as a means of indirect measurement, that is, the measurement of a distance where it is not practical or even possible
EVERY DAY COUNTS CALENDAR MATH 2005 correlated to
EVERY DAY COUNTS CALENDAR MATH 2005 correlated to Illinois Mathematics Assessment Framework Grades 3-5 E D U C A T I O N G R O U P A Houghton Mifflin Company YOUR ILLINOIS GREAT SOURCE REPRESENTATIVES:
Three-Dimensional Figures or Space Figures. Rectangular Prism Cylinder Cone Sphere. Two-Dimensional Figures or Plane Figures
SHAPE NAMES Three-Dimensional Figures or Space Figures Rectangular Prism Cylinder Cone Sphere Two-Dimensional Figures or Plane Figures Square Rectangle Triangle Circle Name each shape. [triangle] [cone]
Tennessee Mathematics Standards 2009-2010 Implementation. Grade Six Mathematics. Standard 1 Mathematical Processes
Tennessee Mathematics Standards 2009-2010 Implementation Grade Six Mathematics Standard 1 Mathematical Processes GLE 0606.1.1 Use mathematical language, symbols, and definitions while developing mathematical
3D shapes. Level A. 1. Which of the following is a 3-D shape? A) Cylinder B) Octagon C) Kite. 2. What is another name for 3-D shapes?
Level A 1. Which of the following is a 3-D shape? A) Cylinder B) Octagon C) Kite 2. What is another name for 3-D shapes? A) Polygon B) Polyhedron C) Point 3. A 3-D shape has four sides and a triangular
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION MATHEMATICS A. Tuesday, August 13, 2002 8:30 to 11:30 a.m.
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION MATHEMATICS A Tuesday, August 13, 2002 8:30 to 11:30 a.m., only Print Your Name: Print Your School s Name: Print your name and the
THE COMPLEX EXPONENTIAL FUNCTION
Math 307 THE COMPLEX EXPONENTIAL FUNCTION (These notes assume you are already familiar with the basic properties of complex numbers.) We make the following definition e iθ = cos θ + i sin θ. (1) This formula
Cabri Geometry Application User Guide
Cabri Geometry Application User Guide Preview of Geometry... 2 Learning the Basics... 3 Managing File Operations... 12 Setting Application Preferences... 14 Selecting and Moving Objects... 17 Deleting
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Student Name:
GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, August 18, 2010 8:30 to 11:30 a.m., only Student Name: School Name: Print your name and the name of
Lesson 2: Circles, Chords, Diameters, and Their Relationships
Circles, Chords, Diameters, and Their Relationships Student Outcomes Identify the relationships between the diameters of a circle and other chords of the circle. Lesson Notes Students are asked to construct
Which shapes make floor tilings?
Which shapes make floor tilings? Suppose you are trying to tile your bathroom floor. You are allowed to pick only one shape and size of tile. The tile has to be a regular polygon (meaning all the same
MATHS LEVEL DESCRIPTORS
MATHS LEVEL DESCRIPTORS Number Level 3 Understand the place value of numbers up to thousands. Order numbers up to 9999. Round numbers to the nearest 10 or 100. Understand the number line below zero, and
Week 13 Trigonometric Form of Complex Numbers
Week Trigonometric Form of Complex Numbers Overview In this week of the course, which is the last week if you are not going to take calculus, we will look at how Trigonometry can sometimes help in working
( )( 10!12 ( 0.01) 2 2 = 624 ( ) Exam 1 Solutions. Phy 2049 Fall 2011
Phy 49 Fall 11 Solutions 1. Three charges form an equilateral triangle of side length d = 1 cm. The top charge is q = - 4 μc, while the bottom two are q1 = q = +1 μc. What is the magnitude of the net force
Vocabulary checklist. Year 7. Applying mathematics and solving problems. Numbers and the number system
Vocabulary checklist Year 7 This list contains the key words used in the Year 7 teaching programme and supplement of examples. Some words will be familiar to pupils in Year 7 from earlier work. For definitions
Numeracy Targets. I can count at least 20 objects
Targets 1c I can read numbers up to 10 I can count up to 10 objects I can say the number names in order up to 20 I can write at least 4 numbers up to 10. When someone gives me a small number of objects
MODERN APPLICATIONS OF PYTHAGORAS S THEOREM
UNIT SIX MODERN APPLICATIONS OF PYTHAGORAS S THEOREM Coordinate Systems 124 Distance Formula 127 Midpoint Formula 131 SUMMARY 134 Exercises 135 UNIT SIX: 124 COORDINATE GEOMETRY Geometry, as presented
Math 5th grade. Create your own number and explain how to use expanded form to show place value to the ten millions place.
Number Properties and Operations Whole number sense and addition and subtraction are key concepts and skills developed in early childhood. Students build on their number sense and counting sense to develop
