Lec 17: Dislocation Geometry and Fabric Production 1. Crystal Geometry
|
|
|
- Dulcie Simmons
- 9 years ago
- Views:
Transcription
1 Lec 17: Dislocation Geometry and Fabric Production 1. Bibliography: Crystal Geometry Assigned Reading: [Poirier, 1985]Chapter 2, 4. General References: [Kelly and Groves, 1970] Chapter 1. [Hirth and Lothe, 1982] Hirth, J.P., and J. Lothe, Theory of dislocations, xii, 857 pp., Wiley, New York, Kelly, A., and G.W. Groves, Crystallography and Crystal Defects, 428 pp., Addison Wesley, N. Y., Poirier, J.-P., Creep of crystals: High-temperature deformation processes in metals, ceramics, and minerals, 260 pp., Cambridge, Lattice points, crystal basis, and crystal lattices: 1. Lattice point: Two equivalent lattice points are points in space for which the surroundings (atomic positions and identitities) are identical. Any point in space in the lattice may be chosen as the origin. 2. The chemical surroundings of each lattice point are identical with those of each and every other lattice point. 3. An ensemble of lattice points is a mesh in 2d or a lattice in 3d. In a 1 mm cube of NaCl (cubic lattice with lattice dimension of 5.64 angstroms), there are about 2 million lattice points in one direction, or about 8x10 18 lattice points in the cube! 4. The actual disposition of the atoms or ions around each lattice point is called the crystal basis. Depending on the details of the bonding and the crystal chemistry, the crystal basis may contain more that one stoichiometric unit. 5. The actual crystal itself is a combination of the crystal basis and the crystal lattice. The crystal structure is completely defined and represented by repeating the crystal basis at every lattice point. 6. Depending on the geometry and symmetry of the crystal, every crystal lattice can be included within one of seven crystal systems or one of 14 classes represented by unique Bravais crystal space lattices. 7. A vector connecting one lattice point to another is a lattice vector. Because each lattice point repeats at a fixed interval, three non-coplanar vectors are sufficient to span the space of all lattice points in three dimensions. The three smallest vectors are called primitive lattice vectors and define a unit cell, the primitive unit cell, that contains the smallest volume that can be stacked repeatedly to produce the entire crystal. By convention the unit cell is chosen so that the crystallographic axes contain an obtuse angle unless the axes are perpendicular to each other. 8. Every lattice vector may be expressed as a linear combination of an integral number of the primitive unit vectors. Remember that the lattice vectors do not
2 Lec 17: Dislocation Geometry and Fabric Production 2. necessarily form an orthonormal set, that is the lattice vectors are not all the same length and are not necessarily perpendicular to each other. 9. Rational directions are vectors that are composed of integral numbers of lattice vectors. Thus, rational directions always connect one lattice point to another. They are denoted by three numbers within brackets or carets, e.g. [1 5 9] or The latter refers to a set of directions that are symmetrically equivalent. The overscore indicates -1.
3 Lec 17: Dislocation Geometry and Fabric Production 3. Choice of the origin of the lattice vectors is arbitrary, but once chosen, the lengths and angles between the vectors are fixed by the crystal geometry. Lattice Coordinates The symmetry of each lattice point can be represented by one of space groups. The translational symmetry (i.e. the repetition structure of the lattice points) can be categorized as one of seven crystal systems: Table 1.3 The crystal systems (from Kelly and Grove, 1970) System Symmetry (Minimum) Conventional Cell Triclinic No axes of symmetry a b c; α β γ Monoclinic Single diad a b c; α = γ = 90 < β Orthorhombic Three diads a b c; D α = β = γ = 90 Trigonal (Rhombohedral) Single triad D a = b = c; α = β = γ < 120 Hexagonal One hexad D a = b = c; α = β = γ < 120 Cubic Four triads D a = b = c; α = β = γ = 90 Example I): CsCl structure: Cs is the smaller grey ion. Diagram is schematic and not necessarily to scale. If the origin is chosen as the center of the cesium ion, then the smallest lattice vectors that can be chosen are equal and mutually perpendicular. The crystal system is cubic. The internal coordinates of the Cl in the first choice of lattice vectors are [½ ½ ½]. The unit cell contains one stoichiometric unit, CsCl. Notice that the lattice vectors and their geometry do not change if the origin is changed. Example II) Graphite mesh Below is a mesh (a 2D array of lattice points). Clearly, the lattice points have hexagonal symmetry and are similar to the arrangement of atoms in a sheet of graphite.
4 Lec 17: Dislocation Geometry and Fabric Production 4. First, consider atoms, 1, 2 and 3. Are these positions equivalent allowing only translations? Now consider vectors a-g. Which of these vectors are lattice vectors? Outlined in blue is the primitive unit cell. The atoms on the corners and contained within the four vectors are the crystal basis. The entire mesh can be generated by translating the unit cell by linear combinations of the primitive unit lattice vectors. a b c f d e g Hexagonal system and Miller-Bravais Indices
5 Lec 17: Dislocation Geometry and Fabric Production 5. Hexagonal system and Miller-Bravais Indices a 3 a 2 Hexagonal lattice vectors are equal and at 120 to each other. The third axis extends out of the board [001] Can define a fourth lattice vector at 120 to the other two in the plane perpendicular to c. Can define a set of indices [u v t w] a 1 t is redundant since ua 1 +v a 2 =-t a 3 Result numbers are called the Miller-Bravais indices Complication is tolerated because the relation between symmetrical directions and planes is more readily apparent. Word about Relation between Rhombohedral and Hexagonal lattices. Two lattices are related: rhombohedral is a primitive unit cell in a degenerate hexagonal cell By stacking a hexagonal mesh in the BA order, we can construct a triply degenerate hexagonal cell. An example of this sort of chicanery is the rhombohedral and trigonal lattices of calcite. c axis in hexagonal system is parallel to three fold
6 Lec 17: Dislocation Geometry and Fabric Production 6. Summary: Lattices, Lattice Directions 1. Lattice points: Point in a crystal with specific arrangement of atoms, reproduced many times in the crystal 2. Crystal basis: Arrangement of atoms within the unit cell. 3. Lattice vectors connect two lattice points. There are 14 Bravais lattices included in seven crystal systems. (Triclinic, monoclinic, orthorhombic, tetragonal, rhombohedral-trigonal, hexagonal, and cubic). 4. Any lattice point may be reached from any other by the vector addition of an integral number of lattice vectors. 5. Unit cells are made by defining a set of coordinate axes composed of three noncoplanar, non-colinear lattice vectors. 6. A primitive unit cell contains one lattice point, but may contain many atoms. 7. The preferred unit cell is primitive, has lattice vectors as nearly equal in length as possible, and has an obtuse angle between two vectors, if possible. The preferred setting of the lattice often, but not always, has the symmetry element of greatest rank parallel with the c axis. (The monoclinic and trigonal-rhombohedral lattices are exceptions to this rule. 8. Non-integral combinations of the lattice vectors give the atomic positions of the crystal basis. 9. Lattice directions are specified by (integral) components of the lattice vectors. They are denoted by a triple of numbers contained in brackets like < u v w > for a single direction or [u v w] for a set of symmetrically equivalent directions. 10. Miller Bravais notation, i.e. [u v t w], is sometimes used for the hexagonal system. The third index, t, is redundant since u+v-t=0.
7 Lec 17: Dislocation Geometry and Fabric Production 7. Crystal plane and Miller indices Summary: Lattices Planes, Crystal Forms, and Reciprocal Lattice 1. Miller Indices arise from finding the plane intercepts, inverting, forming a vector and clearing fractions or common factors 2. The Miller indices are the components of the equation for the plane. 3. Each set of Miller indices represents a set of parallel planes. Indices that are integral multiples of another set are parallel planes with a smaller interplanar spacing e.g. (4 4 2) and (2 2 1). 4. In general a given direction is not parallel to the pole of a plane with the same Miller indices. 5. Equivalent planes may be discovered by examining a stereogram and considering the symmetry elements. 6. Some planes in the crystal (crystal forms) are common enough or important enough to be given special names. The naming can be by Miller indices, classical terminology, by pole symmetry, or be lower case letters. 7. Reciprocal vectors are formed by choosing a vector perpendicular to two lattice vectors and of reciprocal length to the third lattice vector. 8. The lattice formed from these reciprocal vectors has lattice vectors that are in the same direction as the poles to the corresponding planes. The lattice vector length is the reciprocal of the plane spacing.
Solid State Theory Physics 545
Solid State Theory Physics 545 CRYSTAL STRUCTURES Describing periodic structures Terminology Basic Structures Symmetry Operations Ionic crystals often have a definite habit which gives rise to particular
Chapters 2 and 6 in Waseda. Lesson 8 Lattice Planes and Directions. Suggested Reading
Analytical Methods for Materials Chapters 2 and 6 in Waseda Lesson 8 Lattice Planes and Directions Suggested Reading 192 Directions and Miller Indices Draw vector and define the tail as the origin. z Determine
LMB Crystallography Course, 2013. Crystals, Symmetry and Space Groups Andrew Leslie
LMB Crystallography Course, 2013 Crystals, Symmetry and Space Groups Andrew Leslie Many of the slides were kindly provided by Erhard Hohenester (Imperial College), several other illustrations are from
Chapter Outline. How do atoms arrange themselves to form solids?
Chapter Outline How do atoms arrange themselves to form solids? Fundamental concepts and language Unit cells Crystal structures Simple cubic Face-centered cubic Body-centered cubic Hexagonal close-packed
Chapter 3: Structure of Metals and Ceramics. Chapter 3: Structure of Metals and Ceramics. Learning Objective
Chapter 3: Structure of Metals and Ceramics Chapter 3: Structure of Metals and Ceramics Goals Define basic terms and give examples of each: Lattice Basis Atoms (Decorations or Motifs) Crystal Structure
rotation,, axis of rotoinversion,, center of symmetry, and mirror planes can be
Crystal Symmetry The external shape of a crystal reflects the presence or absence of translation-free symmetry y elements in its unit cell. While not always immediately obvious, in most well formed crystal
Crystal Structure Determination I
Crystal Structure Determination I Dr. Falak Sher Pakistan Institute of Engineering and Applied Sciences National Workshop on Crystal Structure Determination using Powder XRD, organized by the Khwarzimic
Crystalline Structures Crystal Lattice Structures
Jewelry Home Page Crystalline Structures Crystal Lattice Structures Crystal Habit Refractive Index Crystal Forms Mohs Scale Mineral Classification Crystal Healing Extensive information on healing crystals,
X-Ray Diffraction HOW IT WORKS WHAT IT CAN AND WHAT IT CANNOT TELL US. Hanno zur Loye
X-Ray Diffraction HOW IT WORKS WHAT IT CAN AND WHAT IT CANNOT TELL US Hanno zur Loye X-rays are electromagnetic radiation of wavelength about 1 Å (10-10 m), which is about the same size as an atom. The
Symmetry-operations, point groups, space groups and crystal structure
1 Symmetry-operations, point groups, space groups and crystal structure KJ/MV 210 Helmer Fjellvåg, Department of Chemistry, University of Oslo 1994 This compendium replaces chapter 5.3 and 6 in West. Sections
CRYSTALLINE SOLIDS IN 3D
CRYSTALLINE SOLIDS IN 3D Andrew Baczewski PHY 491, October 7th, 2011 OVERVIEW First - are there any questions from the previous lecture? Today, we will answer the following questions: Why should we care
Chapter 2: Crystal Structures and Symmetry
Chapter 2: Crystal Structures and Symmetry Laue, ravais December 28, 2001 Contents 1 Lattice Types and Symmetry 3 1.1 Two-Dimensional Lattices................. 3 1.2 Three-Dimensional Lattices................
The Structure of solids.
Chapter S. The Structure of solids. After having studied this chapter, the student will be able to: 1. Distinguish between a crystal structure and an amorphous structure. 2. Describe the concept of a unit
Relevant Reading for this Lecture... Pages 83-87.
LECTURE #06 Chapter 3: X-ray Diffraction and Crystal Structure Determination Learning Objectives To describe crystals in terms of the stacking of planes. How to use a dot product to solve for the angles
Theory of X-Ray Diffraction. Kingshuk Majumdar
Theory of X-Ray Diffraction Kingshuk Majumdar Contents Introduction to X-Rays Crystal Structures: Introduction to Lattices Different types of lattices Reciprocal Lattice Index Planes X-Ray Diffraction:
Chapter 3. 1. 3 types of materials- amorphous, crystalline, and polycrystalline. 5. Same as #3 for the ceramic and diamond crystal structures.
Chapter Highlights: Notes: 1. types of materials- amorphous, crystalline, and polycrystalline.. Understand the meaning of crystallinity, which refers to a regular lattice based on a repeating unit cell..
Charlesworth School Year Group Maths Targets
Charlesworth School Year Group Maths Targets Year One Maths Target Sheet Key Statement KS1 Maths Targets (Expected) These skills must be secure to move beyond expected. I can compare, describe and solve
Part 4-32 point groups
Part 4-32 point groups 4.1 Subgroups 4.2 32 point groups 4.2 Crystal forms The 32 point groups The point groups are made up from point symmetry operations and their combinations. A point group is defined
Crystal Optics of Visible Light
Crystal Optics of Visible Light This can be a very helpful aspect of minerals in understanding the petrographic history of a rock. The manner by which light is transferred through a mineral is a means
1.3. DOT PRODUCT 19. 6. If θ is the angle (between 0 and π) between two non-zero vectors u and v,
1.3. DOT PRODUCT 19 1.3 Dot Product 1.3.1 Definitions and Properties The dot product is the first way to multiply two vectors. The definition we will give below may appear arbitrary. But it is not. It
Chem 106 Thursday Feb. 3, 2011
Chem 106 Thursday Feb. 3, 2011 Chapter 13: -The Chemistry of Solids -Phase Diagrams - (no Born-Haber cycle) 2/3/2011 1 Approx surface area (Å 2 ) 253 258 Which C 5 H 12 alkane do you think has the highest
Introduction to Powder X-Ray Diffraction History Basic Principles
Introduction to Powder X-Ray Diffraction History Basic Principles Folie.1 History: Wilhelm Conrad Röntgen Wilhelm Conrad Röntgen discovered 1895 the X-rays. 1901 he was honoured by the Noble prize for
POWDER X-RAY DIFFRACTION: STRUCTURAL DETERMINATION OF ALKALI HALIDE SALTS
EXPERIMENT 4 POWDER X-RAY DIFFRACTION: STRUCTURAL DETERMINATION OF ALKALI HALIDE SALTS I. Introduction The determination of the chemical structure of molecules is indispensable to chemists in their effort
Experiment: Crystal Structure Analysis in Engineering Materials
Experiment: Crystal Structure Analysis in Engineering Materials Objective The purpose of this experiment is to introduce students to the use of X-ray diffraction techniques for investigating various types
Martensite in Steels
Materials Science & Metallurgy http://www.msm.cam.ac.uk/phase-trans/2002/martensite.html H. K. D. H. Bhadeshia Martensite in Steels The name martensite is after the German scientist Martens. It was used
α = u v. In other words, Orthogonal Projection
Orthogonal Projection Given any nonzero vector v, it is possible to decompose an arbitrary vector u into a component that points in the direction of v and one that points in a direction orthogonal to v
Unified Lecture # 4 Vectors
Fall 2005 Unified Lecture # 4 Vectors These notes were written by J. Peraire as a review of vectors for Dynamics 16.07. They have been adapted for Unified Engineering by R. Radovitzky. References [1] Feynmann,
Each grain is a single crystal with a specific orientation. Imperfections
Crystal Structure / Imperfections Almost all materials crystallize when they solidify; i.e., the atoms are arranged in an ordered, repeating, 3-dimensional pattern. These structures are called crystals
Equations, Inequalities & Partial Fractions
Contents Equations, Inequalities & Partial Fractions.1 Solving Linear Equations 2.2 Solving Quadratic Equations 1. Solving Polynomial Equations 1.4 Solving Simultaneous Linear Equations 42.5 Solving Inequalities
Largest Fixed-Aspect, Axis-Aligned Rectangle
Largest Fixed-Aspect, Axis-Aligned Rectangle David Eberly Geometric Tools, LLC http://www.geometrictools.com/ Copyright c 1998-2016. All Rights Reserved. Created: February 21, 2004 Last Modified: February
LECTURE SUMMARY September 30th 2009
LECTURE SUMMARY September 30 th 2009 Key Lecture Topics Crystal Structures in Relation to Slip Systems Resolved Shear Stress Using a Stereographic Projection to Determine the Active Slip System Slip Planes
X-ray Powder Diffraction Pattern Indexing for Pharmaceutical Applications
The published version of this manuscript may be found at the following webpage: http://www.pharmtech.com/pharmtech/peer-reviewed+research/x-ray-powder-diffraction-pattern-indexing-for- Phar/ArticleStandard/Article/detail/800851
Lecture L3 - Vectors, Matrices and Coordinate Transformations
S. Widnall 16.07 Dynamics Fall 2009 Lecture notes based on J. Peraire Version 2.0 Lecture L3 - Vectors, Matrices and Coordinate Transformations By using vectors and defining appropriate operations between
Vector Notation: AB represents the vector from point A to point B on a graph. The vector can be computed by B A.
1 Linear Transformations Prepared by: Robin Michelle King A transformation of an object is a change in position or dimension (or both) of the object. The resulting object after the transformation is called
Explain the ionic bonds, covalent bonds and metallic bonds and give one example for each type of bonds.
Problem 1 Explain the ionic bonds, covalent bonds and metallic bonds and give one example for each type of bonds. Ionic Bonds Two neutral atoms close to each can undergo an ionization process in order
Equations Involving Lines and Planes Standard equations for lines in space
Equations Involving Lines and Planes In this section we will collect various important formulas regarding equations of lines and planes in three dimensional space Reminder regarding notation: any quantity
Section 1.1 Linear Equations: Slope and Equations of Lines
Section. Linear Equations: Slope and Equations of Lines Slope The measure of the steepness of a line is called the slope of the line. It is the amount of change in y, the rise, divided by the amount of
9.4. The Scalar Product. Introduction. Prerequisites. Learning Style. Learning Outcomes
The Scalar Product 9.4 Introduction There are two kinds of multiplication involving vectors. The first is known as the scalar product or dot product. This is so-called because when the scalar product of
Quick Guide for Data Collection on the NIU Bruker Smart CCD
Quick Guide for Data Collection on the NIU Bruker Smart CCD 1. Create a new project 2. Optically align the crystal 3. Take rotation picture 4. Collect matrix to determine unit cell 5. Refine unit cell
Diffraction Course Series 2015
Diffraction Course Series 2015 Mark Wainwright Analytical Centre Kensington Campus, Chemical Sciences Building F10, Room G37 The Mark Wainwright Analytical Centre is offering a new series of courses covering
DCI for Electronegativity. Data Table:
DCI for Electronegativity Data Table: Substance Ionic/covalent EN value EN Value EN NaCl ionic (Na) 0.9 (Cl) 3.0 2.1 KBr (K) 0.8 (Br) 2.8 MgO (Mg) 1.2 (O) 3.5 HCl (H) 2.1 (Cl) 3.0 HF (H) 2.1 (F) 4.0 Cl
Geometry: Unit 1 Vocabulary TERM DEFINITION GEOMETRIC FIGURE. Cannot be defined by using other figures.
Geometry: Unit 1 Vocabulary 1.1 Undefined terms Cannot be defined by using other figures. Point A specific location. It has no dimension and is represented by a dot. Line Plane A connected straight path.
Geometry of Minerals
Geometry of Minerals Objectives Students will connect geometry and science Students will study 2 and 3 dimensional shapes Students will recognize numerical relationships and write algebraic expressions
Wafer Manufacturing. Reading Assignments: Plummer, Chap 3.1~3.4
Wafer Manufacturing Reading Assignments: Plummer, Chap 3.1~3.4 1 Periodic Table Roman letters give valence of the Elements 2 Why Silicon? First transistor, Shockley, Bardeen, Brattain1947 Made by Germanium
Group Theory and Chemistry
Group Theory and Chemistry Outline: Raman and infra-red spectroscopy Symmetry operations Point Groups and Schoenflies symbols Function space and matrix representation Reducible and irreducible representation
CHAPTER 7 DISLOCATIONS AND STRENGTHENING MECHANISMS PROBLEM SOLUTIONS
7-1 CHAPTER 7 DISLOCATIONS AND STRENGTHENING MECHANISMS PROBLEM SOLUTIONS Basic Concepts of Dislocations Characteristics of Dislocations 7.1 The dislocation density is just the total dislocation length
COMMON CORE STATE STANDARDS FOR MATHEMATICS 3-5 DOMAIN PROGRESSIONS
COMMON CORE STATE STANDARDS FOR MATHEMATICS 3-5 DOMAIN PROGRESSIONS Compiled by Dewey Gottlieb, Hawaii Department of Education June 2010 Operations and Algebraic Thinking Represent and solve problems involving
MAT 242 Test 3 SOLUTIONS, FORM A
MAT Test SOLUTIONS, FORM A. Let v =, v =, and v =. Note that B = { v, v, v } is an orthogonal set. Also, let W be the subspace spanned by { v, v, v }. A = 8 a. [5 points] Find the orthogonal projection
4. How many integers between 2004 and 4002 are perfect squares?
5 is 0% of what number? What is the value of + 3 4 + 99 00? (alternating signs) 3 A frog is at the bottom of a well 0 feet deep It climbs up 3 feet every day, but slides back feet each night If it started
X-ray Diffraction (XRD)
X-ray Diffraction (XRD) 1.0 What is X-ray Diffraction 2.0 Basics of Crystallography 3.0 Production of X-rays 4.0 Applications of XRD 5.0 Instrumental Sources of Error 6.0 Conclusions Bragg s Law n l =2dsinq
Chapter 9. Chemical reactivity of molecules depends on the nature of the bonds between the atoms as well on its 3D structure
Chapter 9 Molecular Geometry & Bonding Theories I) Molecular Geometry (Shapes) Chemical reactivity of molecules depends on the nature of the bonds between the atoms as well on its 3D structure Molecular
We shall first regard the dense sphere packing model. 1.1. Draw a two dimensional pattern of dense packing spheres. Identify the twodimensional
Set 3: Task 1 and 2 considers many of the examples that are given in the compendium. Crystal structures derived from sphere packing models may be used to describe metals (see task 2), ionical compounds
Method To Solve Linear, Polynomial, or Absolute Value Inequalities:
Solving Inequalities An inequality is the result of replacing the = sign in an equation with ,, or. For example, 3x 2 < 7 is a linear inequality. We call it linear because if the < were replaced with
Math 215 HW #6 Solutions
Math 5 HW #6 Solutions Problem 34 Show that x y is orthogonal to x + y if and only if x = y Proof First, suppose x y is orthogonal to x + y Then since x, y = y, x In other words, = x y, x + y = (x y) T
Vocabulary Words and Definitions for Algebra
Name: Period: Vocabulary Words and s for Algebra Absolute Value Additive Inverse Algebraic Expression Ascending Order Associative Property Axis of Symmetry Base Binomial Coefficient Combine Like Terms
ME 612 Metal Forming and Theory of Plasticity. 1. Introduction
Metal Forming and Theory of Plasticity Yrd.Doç. e mail: [email protected] Makine Mühendisliği Bölümü Gebze Yüksek Teknoloji Enstitüsü In general, it is possible to evaluate metal forming operations
DIRECTED-DISCOVERY OF CRYSTAL STRUCTURES USING BALL AND STICK MODELS
DIRECTED-DISCOVERY OF CRYSTAL STRUCTURES USING BALL AND STICK MODELS David W. Mogk Dept. of Earth Sciences Montana State University Bozeman, MT 59717 [email protected] INTRODUCTION Understanding
Introduction to Materials Science, Chapter 13, Structure and Properties of Ceramics. Chapter Outline: Ceramics
Chapter Outline: Ceramics Chapter 13: Structure and Properties of Ceramics Crystal Structures Silicate Ceramics Carbon Imperfections in Ceramics Optional reading: 13.6 13.10 Chapter 14: Applications and
ANSWER KEY. Energy Levels, Electrons and IONIC Bonding It s all about the Give and Take!
ANSWER KEY Energy Levels, Electrons and IONIC Bonding It s all about the Give and Take! From American Chemical Society Middle School Chemistry Unit: Chapter 4 Content Statements: Distinguish the difference
EQUATIONS and INEQUALITIES
EQUATIONS and INEQUALITIES Linear Equations and Slope 1. Slope a. Calculate the slope of a line given two points b. Calculate the slope of a line parallel to a given line. c. Calculate the slope of a line
Linear Algebra Notes for Marsden and Tromba Vector Calculus
Linear Algebra Notes for Marsden and Tromba Vector Calculus n-dimensional Euclidean Space and Matrices Definition of n space As was learned in Math b, a point in Euclidean three space can be thought of
Lecture Outline Crystallography
Lecture Outline Crystallography Short and long range Order Poly- and single crystals, anisotropy, polymorphy Allotropic and Polymorphic Transitions Lattice, Unit Cells, Basis, Packing, Density, and Crystal
COMPOSITION. SPACE GROUP AND UNIT CELL OF HANKSITE LBwrs S. RRusonr-r., Uni.aersity of Michigan, Ann Arbor, Michigan' Assrnecr
COMPOSITION. SPACE GROUP AND UNIT CELL OF HANKSITE LBwrs S. RRusonr-r., Uni.aersity of Michigan, Ann Arbor, Michigan' Assrnecr The composition of gnazsor'narcog'kcl for hanksite is verified. There are
Linear Algebra: Vectors
A Linear Algebra: Vectors A Appendix A: LINEAR ALGEBRA: VECTORS TABLE OF CONTENTS Page A Motivation A 3 A2 Vectors A 3 A2 Notational Conventions A 4 A22 Visualization A 5 A23 Special Vectors A 5 A3 Vector
(x- 3)3. (x- 3)3 =U. 3. Factor completely the given polynomial. ENHANCED
Student: Instructor: Vicky Kauffman Assignment: Final problems Date: Course: Kauffman's Math 12 1 1. A Norman window consists of a rectangle surmounted by a semicircle. Find the area of the Norman window
1 2 3 1 1 2 x = + x 2 + x 4 1 0 1
(d) If the vector b is the sum of the four columns of A, write down the complete solution to Ax = b. 1 2 3 1 1 2 x = + x 2 + x 4 1 0 0 1 0 1 2. (11 points) This problem finds the curve y = C + D 2 t which
Basics of X-ray diffraction: From symmetry to structure determination
Basics of X-ray diffraction: From symmetry to structure determination T. N. Guru Row Solid State and Structural Chemistry Unit Indian Institute of Science Bangalore-560012 Email: [email protected]
Questions. Strategies August/September Number Theory. What is meant by a number being evenly divisible by another number?
Content Skills Essential August/September Number Theory Identify factors List multiples of whole numbers Classify prime and composite numbers Analyze the rules of divisibility What is meant by a number
Ionic Bonding Pauling s Rules and the Bond Valence Method
Ionic Bonding Pauling s Rules and the Bond Valence Method Chemistry 754 Solid State Chemistry Dr. Patrick Woodward Lecture #14 Pauling Rules for Ionic Structures Linus Pauling,, J. Amer. Chem. Soc. 51,,
1 Symmetries of regular polyhedra
1230, notes 5 1 Symmetries of regular polyhedra Symmetry groups Recall: Group axioms: Suppose that (G, ) is a group and a, b, c are elements of G. Then (i) a b G (ii) (a b) c = a (b c) (iii) There is an
Graphing Linear Equations
Graphing Linear Equations I. Graphing Linear Equations a. The graphs of first degree (linear) equations will always be straight lines. b. Graphs of lines can have Positive Slope Negative Slope Zero slope
Mechanical Properties of Metals Mechanical Properties refers to the behavior of material when external forces are applied
Mechanical Properties of Metals Mechanical Properties refers to the behavior of material when external forces are applied Stress and strain fracture or engineering point of view: allows to predict the
Numeracy Targets. I can count at least 20 objects
Targets 1c I can read numbers up to 10 I can count up to 10 objects I can say the number names in order up to 20 I can write at least 4 numbers up to 10. When someone gives me a small number of objects
5. Structure, Geometry, and Polarity of Molecules
5. Structure, Geometry, and Polarity of Molecules What you will accomplish in this experiment This experiment will give you an opportunity to draw Lewis structures of covalent compounds, then use those
Biggar High School Mathematics Department. National 5 Learning Intentions & Success Criteria: Assessing My Progress
Biggar High School Mathematics Department National 5 Learning Intentions & Success Criteria: Assessing My Progress Expressions & Formulae Topic Learning Intention Success Criteria I understand this Approximation
Chapter 7: Basics of X-ray Diffraction
Providing Solutions To Your Diffraction Needs. Chapter 7: Basics of X-ray Diffraction Scintag has prepared this section for use by customers and authorized personnel. The information contained herein is
Algebra and Geometry Review (61 topics, no due date)
Course Name: Math 112 Credit Exam LA Tech University Course Code: ALEKS Course: Trigonometry Instructor: Course Dates: Course Content: 159 topics Algebra and Geometry Review (61 topics, no due date) Properties
Linear Equations. Find the domain and the range of the following set. {(4,5), (7,8), (-1,3), (3,3), (2,-3)}
Linear Equations Domain and Range Domain refers to the set of possible values of the x-component of a point in the form (x,y). Range refers to the set of possible values of the y-component of a point in
3/5/2014. iclicker Participation Question: A. MgS < AlP < NaCl B. MgS < NaCl < AlP C. NaCl < AlP < MgS D. NaCl < MgS < AlP
Today: Ionic Bonding vs. Covalent Bonding Strengths of Covalent Bonds: Bond Energy Diagrams Bond Polarities: Nonpolar Covalent vs. Polar Covalent vs. Ionic Electronegativity Differences Dipole Moments
Section 1.1. Introduction to R n
The Calculus of Functions of Several Variables Section. Introduction to R n Calculus is the study of functional relationships and how related quantities change with each other. In your first exposure to
discuss how to describe points, lines and planes in 3 space.
Chapter 2 3 Space: lines and planes In this chapter we discuss how to describe points, lines and planes in 3 space. introduce the language of vectors. discuss various matters concerning the relative position
MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS
MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS Systems of Equations and Matrices Representation of a linear system The general system of m equations in n unknowns can be written a x + a 2 x 2 + + a n x n b a
AP Physics - Vector Algrebra Tutorial
AP Physics - Vector Algrebra Tutorial Thomas Jefferson High School for Science and Technology AP Physics Team Summer 2013 1 CONTENTS CONTENTS Contents 1 Scalars and Vectors 3 2 Rectangular and Polar Form
Math 0980 Chapter Objectives. Chapter 1: Introduction to Algebra: The Integers.
Math 0980 Chapter Objectives Chapter 1: Introduction to Algebra: The Integers. 1. Identify the place value of a digit. 2. Write a number in words or digits. 3. Write positive and negative numbers used
is in plane V. However, it may be more convenient to introduce a plane coordinate system in V.
.4 COORDINATES EXAMPLE Let V be the plane in R with equation x +2x 2 +x 0, a two-dimensional subspace of R. We can describe a vector in this plane by its spatial (D)coordinates; for example, vector x 5
Grade 3 Core Standard III Assessment
Grade 3 Core Standard III Assessment Geometry and Measurement Name: Date: 3.3.1 Identify right angles in two-dimensional shapes and determine if angles are greater than or less than a right angle (obtuse
The quantum mechanics of particles in a periodic potential: Bloch s theorem
Handout 2 The quantum mechanics of particles in a periodic potential: Bloch s theorem 2.1 Introduction and health warning We are going to set up the formalism for dealing with a periodic potential; this
1.5 Equations of Lines and Planes in 3-D
40 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE Figure 1.16: Line through P 0 parallel to v 1.5 Equations of Lines and Planes in 3-D Recall that given a point P = (a, b, c), one can draw a vector from
Chapter 17. Orthogonal Matrices and Symmetries of Space
Chapter 17. Orthogonal Matrices and Symmetries of Space Take a random matrix, say 1 3 A = 4 5 6, 7 8 9 and compare the lengths of e 1 and Ae 1. The vector e 1 has length 1, while Ae 1 = (1, 4, 7) has length
Stress Analysis, Strain Analysis, and Shearing of Soils
C H A P T E R 4 Stress Analysis, Strain Analysis, and Shearing of Soils Ut tensio sic vis (strains and stresses are related linearly). Robert Hooke So I think we really have to, first, make some new kind
Introduction to Matrix Algebra
Psychology 7291: Multivariate Statistics (Carey) 8/27/98 Matrix Algebra - 1 Introduction to Matrix Algebra Definitions: A matrix is a collection of numbers ordered by rows and columns. It is customary
MAT 200, Midterm Exam Solution. a. (5 points) Compute the determinant of the matrix A =
MAT 200, Midterm Exam Solution. (0 points total) a. (5 points) Compute the determinant of the matrix 2 2 0 A = 0 3 0 3 0 Answer: det A = 3. The most efficient way is to develop the determinant along the
6. Vectors. 1 2009-2016 Scott Surgent ([email protected])
6. Vectors For purposes of applications in calculus and physics, a vector has both a direction and a magnitude (length), and is usually represented as an arrow. The start of the arrow is the vector s foot,
X-ray thin-film measurement techniques
Technical articles X-ray thin-film measurement techniques II. Out-of-plane diffraction measurements Toru Mitsunaga* 1. Introduction A thin-film sample is two-dimensionally formed on the surface of a substrate,
Solving Geometric Problems with the Rotating Calipers *
Solving Geometric Problems with the Rotating Calipers * Godfried Toussaint School of Computer Science McGill University Montreal, Quebec, Canada ABSTRACT Shamos [1] recently showed that the diameter of
Voyager Sopris Learning Vmath, Levels C-I, correlated to the South Carolina College- and Career-Ready Standards for Mathematics, Grades 2-8
Page 1 of 35 VMath, Level C Grade 2 Mathematical Process Standards 1. Make sense of problems and persevere in solving them. Module 3: Lesson 4: 156-159 Module 4: Lesson 7: 220-223 2. Reason both contextually
The purposes of this experiment are to test Faraday's Law qualitatively and to test Lenz's Law.
260 17-1 I. THEORY EXPERIMENT 17 QUALITATIVE STUDY OF INDUCED EMF Along the extended central axis of a bar magnet, the magnetic field vector B r, on the side nearer the North pole, points away from this
Chapter Outline Dislocations and Strengthening Mechanisms
Chapter Outline Dislocations and Strengthening Mechanisms What is happening in material during plastic deformation? Dislocations and Plastic Deformation Motion of dislocations in response to stress Slip
MATHS LEVEL DESCRIPTORS
MATHS LEVEL DESCRIPTORS Number Level 3 Understand the place value of numbers up to thousands. Order numbers up to 9999. Round numbers to the nearest 10 or 100. Understand the number line below zero, and
