Processing of ground based GNSS data to produce near real time (NRT) tropospheric zenith

Size: px
Start display at page:

Download "Processing of ground based GNSS data to produce near real time (NRT) tropospheric zenith"

Transcription

1 Processing of ground based GNSS data to produce near real time (NRT) tropospheric zenith path delays (ZTD) Jan Douša Geodetic Observatory Pecný, Research Institute of Geodesy, Topography and Cartography, The Czech Republic E GVAP Workshop November 6, 2008

2 Outline introduction to GNSS the concept of GNSS contribution to meteorology different GNSS processing approaches (PPP x Network) general aspects of the network processing (in brief) the requirements and features of near real time (NRT) solution some results and comparisons historical view 2

3 GNSS Global Navigation Satellite Systems GPS NAVSTAR NAVigation System using Timing And Ranging The United States military service (1972, fully operational since 1994) GLONASS GLO GLObalnaja NAvigacionnaja Sputnikovaja Sistema Russian (the Soviet Union ) military service (1978, scheduled for restoration by 2010) GALILEO European Space Agency (ESA) European commercial service (1999, scheduled to be fully operational by 2013) DORIS (France), COMPASS or Beidou (China), QZSS (Japan), IRNSS (India) 3

4 Satellite tracks projected onto the surface GPS 31 (32) satellites / 6 orbital planes / 11h 58min GLONASS 21 (24) satellites / 3 orbital planes / 11h 15min Galileo 27 (30) satellites / 3 planes 4

5 basic GNSS observables GPS oscillator with fundamental frequency MHz multiplied by 154x > MHz (L1) 120x > MHz (L2) code pseudorange the measure of the transit time from satellite to receiver using autocorrelation of received and replicated signal (the time is coded in signal) observables: C1 = L1 C/A, P1 = L1 P(Y), P2 = L2 P(Y) and many others in future 1m absolute positioning for civil usage phase pseudorange the measure of the phase difference btw. received and replicated carrier frequency observables: L1, L2 and others in future subcentimeter level relative positioning doppler data the measure of doppler shift due to a mutual motion of satellite and receiver 5

6 Error sources for GNSS Satellites: ephemeris, clocks, differencial code biases (AS antispoofing, S/A selective availability before 2000) Receivers: clocks, phase center offsets and variations, differencial code biases Environment: troposphere, ionosphere, multipath, Earth s kinematics Processing: cycle slips in phases, model errors Elimination by observable differences by introducing precise models and products 6

7 Parameters in GNSS mathematical model thus we have to handle somehow these parameters in GNSS processing: satellite and receiver position satellite and receiver clock corrections Earth orientation parameters and geocenter coordinates satellite and receiver code differential bias satellite and receiver phase center offsets and patterns troposphere effect ionosphere effect ambiguities 7

8 Observable differences to eliminate some of the errors in mathematical GPS model, we often create and use differences from the original observables: single difference (SD) difference between two stations difference between two stations (baseline generation), which eliminates the satellite clock errors observed at both stations double difference (DD) difference between two SDs (measurement to two satellites from the single baseline), which eliminates reciever clock errors tripple difference (TD) diferences between two DD in different epochs, which is useful to detect the phase skips (e.g. when signal from satellite was discontinued) the original observables we often call as zero difference (ZD) 8

9 GPS meteorology concept we know precise receiver and orbit positions, we eliminate ionosphere effect (receiver and satellite clock error), we introduce (PCVs, OCTIDE,...) (PCVs, OCTIDE,...) we estimate: zenith path tropospheric delay (receiver and satellite clocks) GPS x NWP 9

10 GPS observation equation Basic GPS carrier phase observable (scale to distance): Lrecsat = σrecsat + c*δsat + c*δrec + λ*nrecsat + ION + TRP + εrecsat σrecsat.. receiver satellite distance in vacuum (receiver and satellite coordinates) c.. speed of light δsat, δrec.. satellite and receiver clock errors λ.. wavelength of the carrier phase nrecsat.. unknown initial phase ambiguities ION.. ionospheric (slant) delay TRP satellite and receiver position need to be accurately known eliminated using double-differences (estimated in PPP!!!) need to be resolved integer or float first-order eliminated in the ionosphere-free combination.. tropospheric (slant) path delay TRP = mf (z) * ZHD + mf (z) * ZWD h w (z = zenith distance) ZTD = ZHD + ZWD ZTD [m] Zenith Total Delay (usually site & time dependent parameters) mfw / h mapping function (wet / hydrostatic) Lklij = Lkli Lklj = ( Lki Lli ) ( Lkj L lj ) double differences in network sol. 10

11 Least Squares Adjustment Observations: GPS distance measurements residuals (code and/or phase) unknown parameters stochastic information coordinates ambiguities ztd s after linearization user usually knows the models for the orbits, tides, etc. 11

12 Normal Equations (NEQs) minimizing the residuals: e P e min. normal equation parameters of interest (coordinates, troposphere,...) parameters to be eliminated (ambiguities) parameter estimation 12

13 Sequential Adjustment: Idea often applied in two ways: - time domain (sequential solutions) - space domain (network clusters) time Processing of sequential solutions : identical with processing all observations in a common adjustment, if there are no correlations of the original observations 13

14 Processing strategies & software Precise Point positioning (PPP) Advantages Small NEQ Keeping CPU with increasing number of sites / parameters (e.g. ZTD every 15 min, estimation of gradients) Disadvantages Network using double differences Correlations between parameters of all stations are taken into account Investigations of site dependent effect Independence of external products (except for small networks) Correlations btw stations are ignored Large NEQ Use of external products (orbits, clocks) Increasing CPU with incr. number of sites/parameters PPP approach: Epos - GFZ Gipsy - NGAA Network approach: Gipsy - ASI Bernese - BKG, GOP, KNMI, LTP, ROB, METO, SGN 14

15 PPP processing strategy (example GFZ) GFZ EPOS Software Part 1 - Network orbit improvement: Adjustment of precise orbits & clocks Global network : ~20 IGS+German sites Input orbits: GFZ 3h Ultra-rapid (pred.) CPU (Linux PC): ~6 to 8 minutes Part 2 - PPP Analysis: Estimation of trop. parameters Large set of parameters possible (high sampling rate, trop. gradients) NEW: slant delays estimation CPU (Linux PC): <5 min for 220 sites courtesy of Galina Dick (GFZ) 15

16 General network processing steps creating data batches (x hourly or sliding window) data quality check single point positioning for rough receiver clock synchronization network design by double differencing (clusters possible) data screening for phase cycle slips, ambiguities set up iterative site & satellite quality check and outliers rejection ionosphere product & ambiguity resolution reference frame realization & coordinate estimation ZTD product generation 16

17 Network processing strategy (example GOP) pre processing is based on two hours data batches 1 hour redundancy with the previous run easier ambiguity resolution, coordinates also for regularly late RINEX ( > 30min ) normal equations (NEQ) 1h for ZTD and 2h for coordinates processing in clusters of the network coordinates are combined from last 28 days using 2h NEQs with ambiguity fixed, free network solution, IGS05 reference frame ZTD product based on last 12h stacking of 1h NEQs ionosphere product for ambiguity resolution 17

18 GOP processing scheme 18

19 Ambiguity resolution in near real time initial phase ambiguities represent a huge number ( > 90%!) of necessarilly estimated parameters in mathematical GPS model in network solution, they can be resolved for integer numbers, which has strong impact for the coordinate estimation in short time data span ambituity resolution depends on time window and baseline lenght in GOP solution, for example, the ambiguities are resolved for 70% in total within two hour data batch applying two step approach (wide lane ambiguities at Melbourne Wubbenna phase+code linear combination resolved in 80 90% and narrow lane ambiguities at ionosphere free phase linear combination resolved with 70% success) resolved ambiguities are introduced as known at least for the official coordinate estimation (North/East/Up coordinate repeatability improved from 10/10/25mm to 6/6/16mm) a positive bias of aprox. 1mm observed in ZTD solutions btw ambituity free and fix solution! 19

20 NRT coordinate solutions The coordinates, which are fixed or tightly constrained in NRT ZTD solution should be as good as possible ( 3:1 for CRD:ZTD) example: GOP solution for the coordinates the coordinates are based on ambiguity fixed solution using last 28 days of two hourly NEQs, the solution is updated every hour. the coordinates are expressed in local datum close to the last ITRF realization by IGS (currently IGS05) by applying the Helmert transformation (fidutial stations are iteratively checked) 20

21 Troposphere model Bernese GPS software Slant tropospheric path delays = wet + dry (hydrostatic) are mapped into zenith using a mapping function (mf) SPD = mfh(z) ZHD + mfw(z) ZWD [z = zenith distance] where ZHD can be well a priori estimated if atmospheric pressure and station heiht+latitude are known (e.g. Saastamoinen, 1972) Because its variability, ZWD should be estimated for baselines > 20km Extended model could apply additionally the azimuthal dependency expressed as horizontal tropospheric gradients (GN north, GE easth): SPD = mfh(z) ZHD + mfw(z) ZWD + mfw/ z [ GN cos(a) + GE sin(a)] [A = azimuth] Constant or piece wise linear function is applied for ZTD Standard atmosphere (or in situ atm. pres. measurement) for a priori ZHD Dry and wet Niell mf ( Global or Vienna mf in future) 21

22 Troposphere model impact study example Some impacts in past using older models: no a priori model (zero value) and dry Niell mapping function used for the total zenith delay estimated (used until May 2005). 3. a priori ZHD based on standard atmosphere and wet Niell mapping function estimating ZTD (hopefully most of the ZWD). bias variable in time and space 2. Another site dependent bias was introduced in 2006 due to changing relative absolute Phase Center Variations and Offsets model used (upto 5mm) 22

23 Tropospheric product (GOP example) ZTDs for every hour (HH:00 + HH:59) a linear trend is considered between the values coordinates are heavily constrained to our estimated values realizing the IGb00 reference frame and written to the COST 716 format. ZTD product filtering: Sites with less than 4 hours of data in ZTD solution are excluded from the product Sites with less than 2 days of data in coordinate solution are excluded. ambiguity free (AF) and ambiguity fixed (AX) ZTD solutions are provided (officially AF), both using the same a priori coordinates values (ambiguity fixed). 23

24 Near real time aspects of ZTD estimation Requirements: hourly GNSS data (IGS, EPN, national,...) last hour precise orbits (IGS ultra rapids,...) for PPP: precise satellite clocks, DCB bias Features: processing started every hour usually ZTD at the edge of the processing window correlation with respect to previous estimates (physical, via processing, possible constraints depends on time resolution) Other important models: ocean and Earth tides (station coordinate, geocentr, satellite orbits) receiver and satellite phase center offsets and variations troposphere mapping function 2 nd, 3 rd order ionosphere many others especially in precise orbit determination 24

25 GNSS hourly data availability 25

26 Requirements on predicted orbits for ZTD predominantly IGS ultra rapid orbits used errors in ZTD Synthetic error in orbit position 1m in along track 1m in cross track 1m in radial (mostly eliminated in DD) 26

27 ZTD results PPP vs Network ZIMM and GOPE one of the 12 supersites 27

28 Some ZTD/PWV comparison at GOP comparison NRT x post processing StdDev : 4 7mm Bias : 1 3mm 28

29 ZTD comparison NRT GOP HIRLAM (NWP) weekly Sdev and Bias GPS ZTD from GOP near real time NWM Hirlam from DMI StdDev: 8 16mm (28mm) Bias: upto 16mm (25mm) (strong seasonal variation) 29

30 AC s NRT ZTD x post GOP ztd differences freqency & distribution functions (2004/2005) ACRI ASI BKG GFZ GOP IEEC LPT NKG NKGS B O R 1 G O P E H E R S P O T S W T Z R O N S A M A R 6 C A G L M A T E 30

31 Hour x day plots (ztd differences) NRT x post processing 31

32 Ground based GPS meteorology (Europe) COST-716 Action ( ): "Exploitation of Ground-Based GPS for Operational Numerical Weather Prediction and Climate Applications 15 Institutions 7 ACs > 200 GPS sites TOUGH ( ): Targeting Optimal Use of GPS Humidity Measurements in Meteorology 15 Institutions (Coordinator DMI) 12 ACs > 400 GPS sites E-GVAP ( ): The EUMETNET GPS Water Vapor Programme 13 Institutions 10 ACs > 800 GPS sites 32

Towards Real-time GNSS Troposphere Delay Monitoring Service for Poland

Towards Real-time GNSS Troposphere Delay Monitoring Service for Poland Towards Real-time GNSS Troposphere Delay Monitoring Service for Poland Tomasz Hadas, Kaplon Jan, Bosy Jaroslaw Institute of Geodesy and Geoinformatics Wroclaw University of Environmental and Life Sciences

More information

GOP LOCAL Analysis Centre Centre Report (2010-2013)

GOP LOCAL Analysis Centre Centre Report (2010-2013) GOP LOCAL Analysis Centre Centre Report (2010-2013) 1 J. Douša, P. Václavovic (jan.dousa@pecny.cz) Geodetic Observatory Pecný Research Institute of Geodesy, Topography and Czech Republic EUREF LAC Workshop

More information

Global Positioning System

Global Positioning System B. Hofmann-Wellenhof, H. Lichtenegger, and J. Collins Global Positioning System Theory and Practice Third, revised edition Springer-Verlag Wien New York Contents Abbreviations Numerical constants xix xxiii

More information

Non-parametric estimation of seasonal variations in GNSS-derived time series

Non-parametric estimation of seasonal variations in GNSS-derived time series Military University of Technology, Poland (marta.gruszczynska@wat.edu.pl) Seasonal variations in the frame sites can bias the frame realization. I would like to invite you to click on each of the four

More information

GFZ prototype for GPS-based realtime deformation monitoring

GFZ prototype for GPS-based realtime deformation monitoring GFZ prototype for GPS-based realtime deformation monitoring Junping Chen, Maorong Ge, Markus Vennebusch, Gerd Gendt, Markus Rothacher Department of Geodesy and Remote Sensing, GeoForschungsZentrum, Postdam

More information

GNSS and Heighting, Practical Considerations. A Parker National Geo-spatial Information Department of Rural Development and Land Reform

GNSS and Heighting, Practical Considerations. A Parker National Geo-spatial Information Department of Rural Development and Land Reform GNSS and Heighting, Practical Considerations A Parker National Geo-spatial Information Department of Rural Development and Land Reform GNSS Global Navigation Satellite Systems (GNSS) Global Positioning

More information

The Evolution of the Global Navigation Satellite System (GNSS) Spectrum Use

The Evolution of the Global Navigation Satellite System (GNSS) Spectrum Use The Evolution of the Global Navigation Satellite System (GNSS) Spectrum Use Spectrum Management 2012 National Spectrum Management Association Scott Pace (with thanks to Chris Hegerty, MITRE) Space Policy

More information

GPS Precise Point Positioning as a Method to Evaluate Global TanDEM-X Digital Elevation Model

GPS Precise Point Positioning as a Method to Evaluate Global TanDEM-X Digital Elevation Model GPS Precise Point Positioning as a Method to Evaluate Global TanDEM-X Digital Elevation Model 7 th FIG Regional Conference TS 1C Advances in GNSS Positioning and Applications I Volker Schwieger 1, Jürgen

More information

Prof. Ludovico Biagi. Satellite Navigation and Monitoring

Prof. Ludovico Biagi. Satellite Navigation and Monitoring Prof. Ludovico Biagi Satellite Navigation and Monitoring Navigation: trajectories control positions estimations in real time, at high frequency popular applications: low accuracy (10 m) required specific

More information

Radio Technical Commission for Maritime Services. GPS Update. Bob Markle RTCM Arlington, VA USA. NMEA Convention & Expo 2010

Radio Technical Commission for Maritime Services. GPS Update. Bob Markle RTCM Arlington, VA USA. NMEA Convention & Expo 2010 Radio Technical Commission for Maritime Services GPS Update NMEA Convention & Expo 2010 Bob Markle RTCM Arlington, VA USA What is RTCM? International non-profit scientific, professional and membership

More information

Günter Seeber. Satellite Geodesy 2nd completely revised and extended edition

Günter Seeber. Satellite Geodesy 2nd completely revised and extended edition Günter Seeber Satellite Geodesy 2nd completely revised and extended edition Walter de Gruyter Berlin New York 2003 Contents Preface Abbreviations vii xvii 1 Introduction 1 1.1 Subject of Satellite Geodesy...

More information

Recent Activities of the SGO Local Analysis Centre

Recent Activities of the SGO Local Analysis Centre Recent Activities of the SGO Local Analysis Centre Tamás Jambor jambor@sgo.fomi.hu, Ambrus Kenyeres kenyeres@sgo.fomi.hu Satellite Geodetic Observatory, Institute of Geodesy, Cartography and Remote Sensing

More information

Greg Keel P.Eng. Parallel Geo Services gkeel@nanaimo.ark.com

Greg Keel P.Eng. Parallel Geo Services gkeel@nanaimo.ark.com Greg Keel P.Eng. Parallel Geo Services gkeel@nanaimo.ark.com Presentation Outline GNSS: Global Navigation Satellite System GPS: overview, current signals, modernization GLONASS: history (rise fall rise),

More information

GPS Receiver Test. Conducted by the Department of Mathematical Geodesy and Positioning Delft University of Technology

GPS Receiver Test. Conducted by the Department of Mathematical Geodesy and Positioning Delft University of Technology GPS Receiver Test Conducted by the Department of Mathematical Geodesy and Positioning Delft University of Technology A. Amiri-Simkooei R. Kremers C. Tiberius May 24 Preface For the purpose of a receiver

More information

Post Processing Service

Post Processing Service Post Processing Service The delay of propagation of the signal due to the ionosphere is the main source of generation of positioning errors. This problem can be bypassed using a dual-frequency receivers

More information

SURVEYING WITH GPS. GPS has become a standard surveying technique in most surveying practices

SURVEYING WITH GPS. GPS has become a standard surveying technique in most surveying practices SURVEYING WITH GPS Key Words: Static, Fast-static, Kinematic, Pseudo- Kinematic, Real-time kinematic, Receiver Initialization, On The Fly (OTF), Baselines, Redundant baselines, Base Receiver, Rover GPS

More information

Precise Point Positioning with GPS data and some of its applications

Precise Point Positioning with GPS data and some of its applications Budapest University of Technology and Economics Faculty of Civil Engineering Department of Geodesy and Surveying Precise Point Positioning with GPS data and some of its applications Theses of the PhD Dissertation

More information

GNSS-PW Progress Session 5: Other GRUAN products

GNSS-PW Progress Session 5: Other GRUAN products GNSS-PW Progress Session 5: Other GRUAN products Markus Bradke Helmholtz-Centre Potsdam - GFZ German Research Centre for Geosciences Telegrafenberg, 14473 Potsdam, Germany Department 1: Geodesy and Remote

More information

TESTING REAL-TIME GPS ORBIT AND CLOCK PRODUCT

TESTING REAL-TIME GPS ORBIT AND CLOCK PRODUCT TESTING REAL-TIME GPS ORBIT AND CLOCK PRODUCT J. DOUSA1 1. Introduction Within EUREF-IP project, the Federal Agency for Cartography and Geodesy, Frankfurt/Main (BKG) has started to distribute the real-time

More information

GNSS re-processing results at GOP and the latest updates of ITRS/ETRS. Jan Douša (jan.dousa@pecny.cz)

GNSS re-processing results at GOP and the latest updates of ITRS/ETRS. Jan Douša (jan.dousa@pecny.cz) GNSS re-processing results at GOP and the latest updates of ITRS/ETRS Jan Douša (jan.dousa@pecny.cz) Geodetic observatory Pecný, Research Institute of Geodesy, Topography and Cartography January 24, 2012

More information

Satellite Posi+oning. Lecture 5: Satellite Orbits. Jan Johansson jan.johansson@chalmers.se Chalmers University of Technology, 2013

Satellite Posi+oning. Lecture 5: Satellite Orbits. Jan Johansson jan.johansson@chalmers.se Chalmers University of Technology, 2013 Lecture 5: Satellite Orbits Jan Johansson jan.johansson@chalmers.se Chalmers University of Technology, 2013 Geometry Satellite Plasma Posi+oning physics Antenna theory Geophysics Time and Frequency GNSS

More information

Enabling RTK-like positioning offshore using the global VERIPOS GNSS network. Pieter Toor GNSS Technology Manager

Enabling RTK-like positioning offshore using the global VERIPOS GNSS network. Pieter Toor GNSS Technology Manager Enabling RTK-like positioning offshore using the global VERIPOS GNSS network Pieter Toor GNSS Technology Manager Introduction PPP/RTK Positioning Techniques PPP-AR Technology Presentation Overview PPP-AR

More information

Absolute GNSS Antenna Calibration with a Robot: Repeatability, GLONASS and Carrier-to-Noise Pattern

Absolute GNSS Antenna Calibration with a Robot: Repeatability, GLONASS and Carrier-to-Noise Pattern Absolute GNSS Antenna Calibration with a Robot: Repeatability, GLONASS and Carrier-to-Noise Pattern Gerhard Wübbena, Martin Schmitz, Gerald Boettcher Geo++ GmbH 30827 Garbsen Germany www.geopp.com Content

More information

GNSS Reflectometry at GFZ: ocean altimetry and land surface monitoring

GNSS Reflectometry at GFZ: ocean altimetry and land surface monitoring GNSS Reflectometry at GFZ: ocean altimetry and land surface monitoring M. Semmling 1 S. Vey 1 J. Beckheinrich 1 V. Leister 1,2 J. Saynisch 1 J. Wickert 1 1 Research Centre for Geoscience GFZ, Potsdam 2

More information

REAL-TIME GPS MONITORING OF ATOMIC FREQUENCY STANDARDS IN THE CANADIAN ACTIVE CONTROL SYSTEM (CACS)

REAL-TIME GPS MONITORING OF ATOMIC FREQUENCY STANDARDS IN THE CANADIAN ACTIVE CONTROL SYSTEM (CACS) 30th Annual Pmbe Time and Time Internal (PTTI) Meeting REAL-TIME GPS MONITORING OF ATOMIC FREQUENCY STANDARDS IN THE CANADIAN ACTIVE CONTROL SYSTEM (CACS) F. Lahaye, M. Caissy, J. Popelar Geodetic Survey

More information

GNSS satellite attitude characteristics during eclipse season

GNSS satellite attitude characteristics during eclipse season GNSS satellite attitude characteristics during eclipse season F. Dilssner 1, T. Springer 1, J. Weiss 2, G. Gienger 1, W. Enderle 1 1 ESA/ESOC, Darmstadt, Germany 2 JPL, Pasadena, USA July 26, 2012 IGS

More information

for satellite and receiver antennas

for satellite and receiver antennas Updated phase center corrections for satellite and receiver antennas Ralf Schmid Technische Universität München, Germany Xavier Collilieux Institut Géographique National, France Florian Dilssner European

More information

European Geodetic Status European Geodetic Reference Systems

European Geodetic Status European Geodetic Reference Systems European Geodetic Status European Geodetic Reference Systems Reporter: Hansjörg Kutterer, Federal Agency of Cartography and Geodäsie (BKG), Germany Contributors to this report: Johannes Ihde, Federal Agency

More information

AUTOMATED OPERATIONAL MULTI-TRACKING HIGH PRECISION ORBIT DETERMINATION FOR LEO MISSIONS

AUTOMATED OPERATIONAL MULTI-TRACKING HIGH PRECISION ORBIT DETERMINATION FOR LEO MISSIONS AUTOMATED OPERATIONAL MULTI-TRACKING HIGH PRECISION ORBIT DETERMINATION FOR LEO MISSIONS J. Fernández Sánchez, F. M. Martínez Fadrique, A. Águeda Maté, D. Escobar Antón GMV S.A., Isaac Newton 11, 876 Tres

More information

10th Czech-Polish Workshop. Andrzej Araszkiewicz, Janusz Bogusz, Mariusz Figurski

10th Czech-Polish Workshop. Andrzej Araszkiewicz, Janusz Bogusz, Mariusz Figurski 10th Czech-Polish Workshop ON RECENT GEODYNAMICS OF THE SUDETEN AND ADJACENT AREAS Application of short-time time GNSS solutions to geodynamical studies preliminary results Andrzej Araszkiewicz, Janusz

More information

Local monitoring by low cost devices and free and open sources softwares

Local monitoring by low cost devices and free and open sources softwares Local monitoring by low cost devices and free and open sources softwares Abstract Ludovico Biagi, Florin-Catalin Grec, Marco Negretti, Maria Grazia Visconti Politecnico di Milano, DICA@ComoCampus The purpose

More information

CDMA Technology : Pr. S. Flament www.greyc.fr/user/99. Pr. Dr. W. sk www.htwg-konstanz.de. On line Course on CDMA Technology

CDMA Technology : Pr. S. Flament www.greyc.fr/user/99. Pr. Dr. W. sk www.htwg-konstanz.de. On line Course on CDMA Technology CDMA Technology : Pr. Dr. W. sk www.htwg-konstanz.de Pr. S. Flament www.greyc.fr/user/99 On line Course on CDMA Technology CDMA Technology : CDMA / DS : Principle of operation Generation of PN Spreading

More information

GPS Positioning Modes

GPS Positioning Modes 5 GPS Positioning Modes Positioning with GPS can be performed in either of two ways: point (absolute) positioning or relative positioning. Classical GPS point positioning employs one GPS receiver that

More information

Orbit Modeling and Multi-GNSS in the IGS

Orbit Modeling and Multi-GNSS in the IGS Orbit Modeling and Multi-GNSS in the IGS G. Beutler Astronomical Institute, University of Bern O. Montenbruck, P. Steigenberger DLR, German Space Operations Center 14 th Meeting of the National Space-Based

More information

A forum to discuss Global Navigation Satellite Systems (GNSS) to benefit people around the world

A forum to discuss Global Navigation Satellite Systems (GNSS) to benefit people around the world A forum to discuss Global Navigation Satellite Systems (GNSS) to benefit people around the world The International Committee on Global Navigation Satellite Systems (ICG) The United Nations General Assembly

More information

Trimble CenterPoint RTX Post-Processing Services FAQs

Trimble CenterPoint RTX Post-Processing Services FAQs Trimble CenterPoint RTX Post-Processing Services FAQs What is Trimble RTX technology? 30 September 2013 Trimble RTX TM (Real Time extended) is a high-accuracy, global GNSS correction technology that combines

More information

The IGS: A Multi-GNSS Service

The IGS: A Multi-GNSS Service The IGS: A Multi-GNSS Service Chris Rizos, Urs Hugentobler, Ruth Neilan IUGG IAG Structure International Union of Geodesy and Geophysics (IUGG) 65 Member Countries (Adhering Bodies), 8 Associations International

More information

The Applanix SmartBase TM Software for Improved Robustness, Accuracy, and Productivity of Mobile Mapping and Positioning

The Applanix SmartBase TM Software for Improved Robustness, Accuracy, and Productivity of Mobile Mapping and Positioning The Applanix SmartBase TM Software for Improved Robustness, Accuracy, and Productivity of Mobile Mapping and Positioning Joe Hutton and Edith Roy, Applanix Corporation Introduction Applanix, along with

More information

International Global Navigation Satellite Systems Service

International Global Navigation Satellite Systems Service International Global Navigation Satellite Systems Service IGS Multi-GNSS Experiment IGS M-GEX Call for Participation www.igs.org Response to this Call for Participation in IGS M-GEX via Web Form Submission

More information

Assessing Long Term Trends in the Atmospheric Water Vapor Content by Combining Data From VLBI, GPS, Radiosondes and Microwave Radiometry

Assessing Long Term Trends in the Atmospheric Water Vapor Content by Combining Data From VLBI, GPS, Radiosondes and Microwave Radiometry Assessing Long Term Trends in the Atmospheric Water Vapor Content by Combining Data From VLBI, GPS, Radiosondes and Microwave Radiometry 1 Introduction Onsala Space Observatory, Chalmers University of

More information

GPS Precise Point Positioning with a Difference*

GPS Precise Point Positioning with a Difference* GPS Precise Point Positioning with a Difference* Pierre Héroux and Jan Kouba Geodetic Survey Division, Geomatics Canada Natural Resources Canada 615 Booth Street Ottawa, Ontario K1A E9 heroux@geod.nrcan.gc.ca

More information

RBMC: The main geodetic infrastructure contributing for land reform and weather researches in Brazil

RBMC: The main geodetic infrastructure contributing for land reform and weather researches in Brazil RBMC: The main geodetic infrastructure contributing for land reform and weather researches in Brazil Sonia Costa - IBGE Hisao Takahashi and Luiz Sapucci - INPE Workshop on the Applications of Global Navigation

More information

Leica AR25 White Paper

Leica AR25 White Paper Leica AR25 White Paper February 2009 Lennon Bedford, Neil Brown, Justin Walford Leica Geosystems AG Heerbrugg, Switzerland 2 Biography Lennon Bedford graduated from the University of Otago in 2003 with

More information

EPN Special Project Real-Time Analysis Status Report

EPN Special Project Real-Time Analysis Status Report EPN Special Project Real-Time Analysis Status Report Wolfgang Söhne Federal Agency for Cartography and Geodesy (BKG), Germany Highlights Real-time observational data EUREF regional broadcaster Broadcaster

More information

DEVELOPING A MULTI-GNSS ANALYSIS SOFTWARE FOR SCIENTIFIC PURPOSES

DEVELOPING A MULTI-GNSS ANALYSIS SOFTWARE FOR SCIENTIFIC PURPOSES DEVELOPING A MULTI-GNSS ANALYSIS SOFTWARE FOR SCIENTIFIC PURPOSES Michael Meindl (1), Rolf Dach (1), Stefan Schaer (2), Urs Hugentobler (3), Gerhard Beutler (1) (1) Astronomical Institute, University of

More information

Online Precise Point Positioning Using the. Natural Resources Canada Canadian Spatial Reference System (CSRS-PPP)

Online Precise Point Positioning Using the. Natural Resources Canada Canadian Spatial Reference System (CSRS-PPP) Online Precise Point Positioning Using the Natural Resources Canada Canadian Spatial Reference System (CSRS-PPP) Thomas Nylen and Seth White UNAVCO October 2007 I. Precise Point Positioning Precise Point

More information

Dancing in the Dark: How GNSS Satellites Cross the Earth s Shadow

Dancing in the Dark: How GNSS Satellites Cross the Earth s Shadow Dancing in the Dark: How GNSS Satellites Cross the Earth s Shadow F. Dilssner, T. Springer, G. Gienger, R. Zandbergen European Space Operations Centre (ESOC), Darmstadt 24 January 2011 Technische Universität

More information

Time and frequency distribution using satellites

Time and frequency distribution using satellites INSTITUTE OF PHYSICS PUBLISHING Rep. Prog. Phys. 65 (2002) 1119 1164 REPORTS ON PROGRESS IN PHYSICS PII: S0034-4885(02)98967-0 Time and frequency distribution using satellites Judah Levine Time and Frequency

More information

European Position Determination System. Guideline for EUPOS Reference Frame Fixing

European Position Determination System. Guideline for EUPOS Reference Frame Fixing European Position Determination System Guideline for EUPOS Reference Frame Fixing Version 1.0 21 September 2007 Copyright: Publisher: 2007 by the International EUPOS Steering Committee Office of the International

More information

The Use and Integrity Monitoring of IGS Products at Geoscience Australia (GA)

The Use and Integrity Monitoring of IGS Products at Geoscience Australia (GA) Australian Government Geoscience Australia The Use and Integrity Monitoring of IGS Products at Geoscience Australia (GA) Ramesh Govind, John Dawson, John Manning IGS-2004 Workshop and Symposium Berne,

More information

GENERAL INFORMATION ON GNSS AUGMENTATION SYSTEMS

GENERAL INFORMATION ON GNSS AUGMENTATION SYSTEMS GENERAL INFORMATION ON GNSS AUGMENTATION SYSTEMS 1. INTRODUCTION Navigation technologies with precision approach and landing systems, for civilian and military purposes, enable aircrafts to perform their

More information

Recent Advances in Pixel Localization Accuracy

Recent Advances in Pixel Localization Accuracy Recent Advances in Pixel Localization Accuracy U. Balss, X. Cong, M. Eineder, H. Breit, T. Fritz, B. Schättler Remote Sensing Technology Institute (IMF) German Aerospace Center (DLR) Outline Operational

More information

Education and Training in GNSS

Education and Training in GNSS Education and Training in GNSS Mourad BOUZIANI Department of Geodesy and Surveying ESGIT, IAV Hassan II, Morocco Cordinator of GNSS Master Curriculum CRASTE-LF, Affiliated to the United Nations OUTLINE

More information

DESIMETERSYSTEM FOR HØYNØYAKTIG POSISJONERING OG NAVIGASJON

DESIMETERSYSTEM FOR HØYNØYAKTIG POSISJONERING OG NAVIGASJON DESIMETERSYSTEM FOR HØYNØYAKTIG POSISJONERING OG NAVIGASJON John A. Vint Survey Manager Thales GeoSolutions Norge AS Hønefoss, 7. november 2003 Scope of Presentation Introduction Summary of GPS Errors.

More information

High accuracy positioning using carrier-phases with the open source GPSTk software.

High accuracy positioning using carrier-phases with the open source GPSTk software. High accuracy positioning using carrier-phases with the open source GPSTk software. Salazar, D., Hernandez-Pajares, M., Juan, J.M., Sanz, J. Grupo de Astronomia y Geomatica (gage), Universitat Politecnica

More information

GEOGRAPHIC INFORMATION SYSTEMS Lecture 21: The Global Positioning System

GEOGRAPHIC INFORMATION SYSTEMS Lecture 21: The Global Positioning System GEOGRAPHIC INFORMATION SYSTEMS Lecture 21: The Global Positioning System The Global Positioning System - recognize that GPS is only one of several Global Navigation Satellite Systems (GNSS) - the Russian

More information

Rotational Errors in IGS Orbit & ERP Products

Rotational Errors in IGS Orbit & ERP Products Rotational Errors in IGS Orbit & ERP Products Systematic rotations are a leading IGS error they affect all core products except probably clocks Sources include defects in: IERS model for 12h + 24h tidal

More information

Introduction into Real-Time Network Adjustment with Geo++ GNSMART

Introduction into Real-Time Network Adjustment with Geo++ GNSMART Introduction into Real-Time Network Adjustment with Geo++ GNSMART Andreas Bagge Gerhard Wübbena, Martin Schmitz Geo++ GmbH D-30827 Garbsen, Germany www.geopp.de GeoInformation Workshop 2004, Istanbul Kultur

More information

Präzise Bahnbestimmung des GOCE- Satelliten mittels GPS. Heike Bock

Präzise Bahnbestimmung des GOCE- Satelliten mittels GPS. Heike Bock Präzise Bahnbestimmung des GOCE- Satelliten mittels GPS Redundante Antenne Hauptantenne Heike Bock Entwicklung der LEO Bahnbestimmung am AIUB 1999: Gerhard Beutler initiiert die LEO Bahnbestimmung am AIUB

More information

La Tecnica di RO, I dati e la loro Elaborazione. Agenzia Spaziale Italiana Centro di Geodesia Spaziale

La Tecnica di RO, I dati e la loro Elaborazione. Agenzia Spaziale Italiana Centro di Geodesia Spaziale La Tecnica di RO, I dati e la loro Elaborazione Agenzia Spaziale Italiana Centro di Geodesia Spaziale The GNSS Radio Occultation Technique In view GNSS Satellite In view GNSS Satellite In occultation GNSS

More information

Why do we need to improve co-locations of space geodetic techniques?

Why do we need to improve co-locations of space geodetic techniques? Why do we need to improve co-locations of space geodetic techniques? Zuheir Altamimi & Xavier Collilieux IGN France 1 Outline ITRF Heritage Current status of technique networks & co-locations Results from

More information

A totally SDR-based Low Cost Augmentation System for Institutional Applications

A totally SDR-based Low Cost Augmentation System for Institutional Applications A totally SDR-based Low Cost Augmentation System for Institutional Applications R. Capua, L. Gattuso, A. Caporale, M. Giangolini, F. Frittella, C. D Amico, D. Tufillaro 21 January 2016 R. Capua DO-11-DO-01

More information

IGS Preparations for the Next Reprocessing and ITRF

IGS Preparations for the Next Reprocessing and ITRF IGS Preparations for the Next Reprocessing and ITRF what is IG2? who will contribute? expected performance remaining issues Jake Griffiths, NOAA/National Geodetic Survey Paul Rebischung, Institut Géographique

More information

Clocks/timers, Time, and GPS

Clocks/timers, Time, and GPS FYS3240 PC-based instrumentation and microcontrollers Clocks/timers, Time, and GPS Spring 2015 Lecture #11 Bekkeng, 22.12.2014 How good is a crystal oscillator (XO)? Interested in the long-term measurement

More information

Using Handheld GPS Receivers for Precise Positioning

Using Handheld GPS Receivers for Precise Positioning Using Handheld GPS Receivers for Precise Positioning Volker SCHWIEGER, Germany Key words: GPS, handheld GPS receivers, static positioning, kinematic positioning. SUMMARY In general handheld GPS receivers

More information

How To Monitor Sea Level With Satellite Radar

How To Monitor Sea Level With Satellite Radar Satellite Altimetry Wolfgang Bosch Deutsches Geodätisches Forschungsinstitut (DGFI), München email: bosch@dgfi.badw.de Objectives You shall recognize satellite altimetry as an operational remote sensing

More information

The Status and Development of the APREF GNSS Network Guorong Hu

The Status and Development of the APREF GNSS Network Guorong Hu The Status and Development of the APREF GNSS Network Guorong Hu Geodesy, Geoscience Australia, Canberra, Australia Outline Introduction Objectives How the reference frame is derived Services and applications

More information

International Committee on Global Navigation Satellite Systems and its Programme on the Applications of Global Navigation Satellite Systems

International Committee on Global Navigation Satellite Systems and its Programme on the Applications of Global Navigation Satellite Systems International Committee on Global Navigation Satellite Systems and its Programme on the Applications of Global Navigation Satellite Systems Sharafat Gadimova United Nations Office for Outer Space Affairs

More information

Leica GNSS Reference Antennas White Paper

Leica GNSS Reference Antennas White Paper Leica GNSS Reference Antennas White Paper State of The Art, Leading Edge Geodetic Antennas from Leica Geosystems Justin Walford, Leica Geosystems BIOGRAPHY Justin Walford holds an M.Sc.E in Survey Engineering

More information

Cost Effective GNSS Positioning Techniques

Cost Effective GNSS Positioning Techniques FIG REPORT FIG PUBLICATION NO 49 Cost Effective GNSS Positioning Techniques FIG Commission 5 Publication 2 nd Edition INTERNATIONAL FEDERATION OF SURVEYORS (FIG) Cost Effective GNSS Positioning Techniques

More information

Enhancement of the accuracy of single epoch GPS positioning for long baselines by local ionospheric modelling

Enhancement of the accuracy of single epoch GPS positioning for long baselines by local ionospheric modelling Enhancement of the accuracy of single epoch GPS positioning for long baselines by local ionospheric modelling M. Assiadi* S. J. Edwards P. J. Clarke School of Civil Engineering and Geosciences, Newcastle

More information

Preliminary Study of Modeling the Precipitable Water Vapor Based on Radiosonde Data

Preliminary Study of Modeling the Precipitable Water Vapor Based on Radiosonde Data Preliminary Study of Modeling the Precipitable Water Vapor Based on Radiosonde Data Ilke DENIZ and Cetin MEKIK, Turkey Key words: radiosonde, tropospheric zenith delay, precipitable water vapour SUMMARY

More information

Evaluation of EPOS-RT for Real-time Deformation Monitoring

Evaluation of EPOS-RT for Real-time Deformation Monitoring Journal of Global Positioning Systems (2009) Vol.8, No.1:1-5 Evaluation of EPOS-RT for Real-time Deformation Monitoring Junping Chen, Maorong Ge, Jan Dousa, Gerd Gendt Department of Geodesy and Remote

More information

ISSN 1610-0956. Scientific Technical Report STR 07/02

ISSN 1610-0956. Scientific Technical Report STR 07/02 ISSN 1610-0956 GPS data processing at GFZ for monitoring the vertical motion of global tide gauge benchmarks technical report for projects TIGA and SEAL Fei-peng Zhang, Gerd Gendt, Mao-rong Ge Abstract

More information

PDHonline Course L105 (12 PDH) GPS Surveying. Instructor: Jan Van Sickle, P.L.S. PDH Online PDH Center

PDHonline Course L105 (12 PDH) GPS Surveying. Instructor: Jan Van Sickle, P.L.S. PDH Online PDH Center PDHonline Course L105 (12 PDH) GPS Surveying Instructor: Jan Van Sickle, P.L.S. 2012 PDH Online PDH Center 5272 Meadow Estates Drive Fairfax, VA 22030-6658 Phone & Fax: 703-988-0088 www.pdhonline.org www.pdhcenter.com

More information

PPP: Precise Point Positioning Constraints and Opportunities

PPP: Precise Point Positioning Constraints and Opportunities PPP: Precise Point Positioning Constraints and Opportunities Katrin HUBER, Florian HEUBERGER, Christoph ABART, Ana KARABATIC, Robert WEBER and Philipp BERGLEZ, Austria Key words PPP, GNSS, positioning,

More information

CHAPTER 11 SATELLITE NAVIGATION

CHAPTER 11 SATELLITE NAVIGATION CHAPTER 11 SATELLITE NAVIGATION INTRODUCTION 1100. Development The idea that led to development of the satellite navigation systems dates back to 1957 and the first launch of an artificial satellite into

More information

USE OF GLONASS AT THE BIPM

USE OF GLONASS AT THE BIPM 1 st Annual Precise Time and Time Interval (PTTI) Meeting USE OF GLONASS AT THE BIPM W. Lewandowski and Z. Jiang Bureau International des Poids et Mesures Sèvres, France Abstract The Russian Navigation

More information

Bi-Directional DGPS for Range Safety Applications

Bi-Directional DGPS for Range Safety Applications Bi-Directional DGPS for Range Safety Applications Ranjeet Shetty 234-A, Avionics Engineering Center, Russ College of Engineering and Technology, Ohio University Advisor: Dr. Chris Bartone Outline Background

More information

MULTI-GNSS DEMONTRATION CAMPAIGN IN ASIA OCEANIA REGION

MULTI-GNSS DEMONTRATION CAMPAIGN IN ASIA OCEANIA REGION UNITED NATIONS INTERNATIONAL MEETING ON THE APPLICATIONS OF GLOBAL NAVIGATION SATELLITE SYSTEMS PRESENTATION SESSION 2: INTERNATIONAL INITIATIVES/EXPERIENCES MULTI-GNSS DEMONTRATION CAMPAIGN IN ASIA OCEANIA

More information

Guidelines for RTK/RTN GNSS Surveying in Canada

Guidelines for RTK/RTN GNSS Surveying in Canada Guidelines for RTK/RTN GNSS Surveying in Canada July 2013 Version 1.1 Ministry of Transportation Ministère des Transports EARTH SCIENCES SECTOR GENERAL INFORMATION PRODUCT 100-E Main Authors: Brian Donahue,

More information

GEOPHYSICAL EFFECTS ON SITE DISPLACEMENTS FOR PERMANENT GPS TRACKING STATIONS IN TAIWAN

GEOPHYSICAL EFFECTS ON SITE DISPLACEMENTS FOR PERMANENT GPS TRACKING STATIONS IN TAIWAN GEOPHYSICAL EFFECTS ON SITE DISPLACEMENTS FOR PERMANENT GPS TRACKING STATIONS IN TAIWAN C. C. Chang Department of Surveying and Mapping Engineering Chung Cheng Institute of Technology Tahsi, Taoyuan 335,

More information

Swedish User Guidelines for Network RTK

Swedish User Guidelines for Network RTK Swedish User Guidelines for Network RTK Robert Odolinski GNSS Research Centre, Curtin University of Technology (Previously Geodetic Research Department of Lantmäteriet, Sweden) Perth, WA, Australia robert.odolinski@curtin.edu.au

More information

Status, Development and Application

Status, Development and Application Federal Space Agency GLONASS GLONASS Status, Development and Application Sergey G. Revnivykh International Committee on Global Navigation Satellite Systems (ICG) Second Meeting, September 4-7, 2007, Bangalore,

More information

Development of BeiDou Navigation Satellite System

Development of BeiDou Navigation Satellite System The 7th Meeting of International Committee on GNSS Development of BeiDou Navigation Satellite System China Satellite Navigation Office November 5, 2012 Beijing, China Part Ⅰ Development Plan Part Ⅱ System

More information

On May 27, 2010, the U.S. Air. Satellite. Antenna Phase Center and Attitude Modeling

On May 27, 2010, the U.S. Air. Satellite. Antenna Phase Center and Attitude Modeling GPS IIF-1 Satellite Antenna Phase Center and Attitude Modeling Florian Dilssner Logica/European Space Agency Calculating the distances between satellites and user equipment is a basic operation for GNSS

More information

[3] beautiful visualisation of the satellites positions by HSR / ICOM

[3] beautiful visualisation of the satellites positions by HSR / ICOM GPS (Introduction) MSE, Rumc, GPS, 1 Terms NAVSTAR GPS ( Navigational Satellite Timing and Ranging - Global Positioning System) is a GNSS (Global Navigation Satellite System), developed by the US-DoD in

More information

RealtimePPP using EUREF and IGS Networks

RealtimePPP using EUREF and IGS Networks RealtimePPP using EUREF and IGS Networks Georg Weber 1) Leos Mervart 2), Peter Neumaier 1), Andrea Stürze 1) 1) Federal Agency for Cartography and Geodesy, Frankfurt am Main, Germany 2) Technical University

More information

Online GPS processing services: an initial study

Online GPS processing services: an initial study GPS Solut (2006) 10: 12 20 DOI 10.1007/s10291-005-0147-5 ORIGINAL ARTICLE Reza Ghoddousi-Fard Peter Dare Online GPS processing services: an initial study Received: 15 September 2004 Accepted: 3 May 2005

More information

GNSS antenna offset field test in Metsähovi

GNSS antenna offset field test in Metsähovi Ulla KALLIO, Hannu KOIVULA, Sonja NYBERG, Pasi Häkli, Paavo Rouhiainen, Veikko Saaranen, Finland Zane Cirule, Didzis Dobelis, Vladimirs Golovka, Latvia Key words: GNSS antenna offset, field calibration

More information

Analysis of Data From the GPS Reference Station at AAU Using GAMIT

Analysis of Data From the GPS Reference Station at AAU Using GAMIT Analysis of Data From the GPS Reference Station at AAU Using GAMIT GPS Technology - 2007 Group - 07gr1049 Isaac Nii Noi Tetteyfio Spring 2007 AALBORG UNIVERSITY Faculty of Engineering and Science Aalborg

More information

Pilot Processing Center in Argentina. Facultad de Ciencias Astronómicas y Geofísicas Universidad Nacional de La Plata

Pilot Processing Center in Argentina. Facultad de Ciencias Astronómicas y Geofísicas Universidad Nacional de La Plata Pilot Processing Center in Argentina María Paula Natali, Mariano MüllerM Facultad de Ciencias Astronómicas y Geofísicas Universidad Nacional de La Plata Processing Centers CPLat Centro de procesamiento

More information

To assess GPS tracking devices and associated software suitable for real time monitoring of timber haulage trucks.

To assess GPS tracking devices and associated software suitable for real time monitoring of timber haulage trucks. To assess GPS tracking devices and associated software suitable for real time monitoring of timber haulage trucks. Dr. Ger Devlin Bioresources Research Centre (BRC) Biosystems Engineering University College

More information

Satellite Altimetry Missions

Satellite Altimetry Missions Satellite Altimetry Missions SINGAPORE SPACE SYMPOSIUM 30 TH SEPTEMBER 2015 AUTHORS: LUCA SIMONINI/ ERICK LANSARD/ JOSE M GONZALEZ www.thalesgroup.com Table of Content General Principles and Applications

More information

Chapter 34 Latest GNSS Results of the CMONOC Network and Its Application in Earthquake Monitoring

Chapter 34 Latest GNSS Results of the CMONOC Network and Its Application in Earthquake Monitoring Chapter 34 Latest GNSS Results of the CMONOC Network and Its Application in Earthquake Monitoring Junping Chen, Yize Zhang, Yibing Xie, Weijie Tan, Sainan Yang and Bin Wu Abstract Crustal Movement Observation

More information

INTEGRITY AND CONTINUITY ANALYSIS OCTOBER TO DECEMBER 2013 QUARTERLY REPORT FROM GPS. Integrity and Continuity Analysis 08/01/14 08/01/14 08/01/14

INTEGRITY AND CONTINUITY ANALYSIS OCTOBER TO DECEMBER 2013 QUARTERLY REPORT FROM GPS. Integrity and Continuity Analysis 08/01/14 08/01/14 08/01/14 INTEGRITY AND CONTINUITY ANALYSIS FROM GPS OCTOBER TO DECEMBER 2013 QUARTERLY REPORT Prepared by: M Pattinson (NSL) 08/01/14 Checked by: L Banfield (NSL) 08/01/14 Approved by: M Dumville (NSL) 08/01/14

More information

Math 215 Project (25 pts) : Using Linear Algebra to solve GPS problem

Math 215 Project (25 pts) : Using Linear Algebra to solve GPS problem Due Thursday March 1, 2012 NAME(S): Math 215 Project (25 pts) : Using Linear Algebra to solve GPS problem 0.1 Introduction The age old question, Where in the world am I? can easily be solved nowadays by

More information

Real-Time GNSS in Routine EPN Operations Concept

Real-Time GNSS in Routine EPN Operations Concept Real-Time GNSS in Routine EPN Operations Concept EPN Real-time Working Group D. Dettmering, G. Weber, C. Bruyninx, H. v.d.marel W. Gurtner, J. Torres, A. Caporali Status: December 3, 2006 1 CONTENT 1 Introduction

More information

Perspective of Permanent Reference Network KOPOS in Kosova

Perspective of Permanent Reference Network KOPOS in Kosova 143 Perspective of Permanent Reference Network KOPOS in Kosova Meha, M. and Çaka, M. Kosovo Cadastral Agency, Kosovo Archive Building II nd floor, P.O. 10000, Prishtina, Republic of Kosovo, E-mail: mmeha@yahoo.com,

More information

UCGE Reports Number 20214

UCGE Reports Number 20214 UCGE Reports Number 224 Department of Geomatics Engineering Performance Evaluation of Multiple Reference Station GPS RTK for a Medium Scale Network (URL: http://www.geomatics.ucalgary.ca/links/gradtheses.html)

More information