Online GPS processing services: an initial study

Size: px
Start display at page:

Download "Online GPS processing services: an initial study"

Transcription

1 GPS Solut (2006) 10: DOI /s ORIGINAL ARTICLE Reza Ghoddousi-Fard Peter Dare Online GPS processing services: an initial study Received: 15 September 2004 Accepted: 3 May 2005 Published online: 30 June 2005 Ó Springer-Verlag 2005 R. Ghoddousi-Fard Æ P. Dare (&) Department of Geodesy and Geomatics Engineering, Geodetic Research Laboratory, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada r.ghoddousi@unb.ca Tel.: Fax: dare@unb.ca Abstract There are a number of online Global Positioning System (GPS) processing services that provide GPS processing results to the user free of charge and with unlimited access. These services provide solutions for a user-submitted Receiver Independent Exchange Format (RINEX) file based on differential methods using reference stations or precise point positioning using precise GPS orbit and clock data. Different data sets varying in time and location were submitted to the online services and their results compared. Although the quality of results depends on many factors, in most cases the users can expect reliable online processing results for a 10-h data set made by a geodetic dual frequency receiver anywhere in the world. Introduction Over the last few years a number of organizations have developed online Global Positioning System (GPS) processing services. These services provide GPS processing results to the user free of charge and with unlimited access. The user sends a Receiver Independent Exchange Format (RINEX) file to the service and within a short period of time, the estimated position of the receiver used to collect the RINEX data is sent back to the user. Organizations that provide these free services include: Geohazards Division of Geoscience Australia, the Geodetic Survey Division (GSD) in Canada, the United States National Geodetic Survey (NGS), Scripps Orbit and Permanent Array Center (SOPAC) at the University of California and the Jet Propulsion Laboratory (JPL) at National Aeronautics and Space Administration (NASA). The objective of this paper is to evaluate these online services and compare their position results with expected values. A comparison has also been made between the results obtained using data sets with varying observation time intervals. Furthermore, the results of the services are evaluated using data collected in different parts of the world. Online services: an overview Each of the above-mentioned organizations provides their own free online GPS processing service. The basic requirements that the user needs to take advantage of these different services are almost the same: access to the Internet and a valid address. The following sections will give a brief description of each service. AUSPOS The Geoscience Australia [formerly the Australian Surveying and Land Information Group s (AUSLIG)] Online GPS Processing Service (AUSPOS) was officially

2 13 Table 1 An overall assessment of online GPS processing services Name of service Data transfer method Available options Elapsed time to receive results (min) Restrictions on length of GPS data set Limitations AUSPOS Uploading Antenna height >25 Minimum of 1 h Dual frequency Via anonymous FTP Antenna type Static No. of RINEX files (maximum 7) SCOUT Via anonymous FTP Antenna height >15 Minimum of 1 h Dual frequency PPP* (*An expert version is also available with more options) Upload the file to Scripps FTP site Uploading Mode of processing (static or kinematic) Antenna type Static Selection of reference stations Reference system (NAD 83 or ITRF) <3 No minimum Maximum 6-day long providing uncompressed RINEX file is less than 100 MB (GSD 2004) OPUS Uploading Antenna height >4 Minimum of 2 h (recommended by the service) Auto-GIPSY Via sending the anonymous FTP address Dual frequency Antenna type 24 h maximum Static Additional options: selection of state plane and base stations, extended output, set user profile Only available for use in Central and North America None <3 At least an hour, preferably more (Zumberge 1999) Data within 15 h of GPS noon of obs. day will be analyzed

3 14 service is accessible from the SOPAC website at: sopac.ucsd.edu. OPUS Fig. 1 The location of UNB1 (after SOPAC 2004) launched in late 2000 (Dawson et al. 2004), and has been in continuous operation since then processing data for dual frequency geodetic GPS receivers located anywhere on earth. The AUSPOS positioning is by differential GPS to the nearest three International GNSS Service (IGS) stations and uses the IGS precise orbit information. This service is accessible via the Geoscience Australia website at: SCOUT The Scripps Coordinate Update Tool (SCOUT) was developed by the Scripps Orbit and Permanent Array Center (SOPAC). This service also uses by default the three nearest IGS stations. However, this service allows the user to choose up to four different reference stations. The SCOUT uses the GAMIT processing software. This The United States National Geodetic Survey developed the Online Positioning User Service (OPUS). This service generates coordinate results by using data from three Continuously Operating Reference Stations (CORS). The CORS sites are chosen not according to closest proximity but picked according to compatibility between the user s data and the CORS site (OPUS Team 2004). There is also an option that allows the user to choose the CORS stations to be used. The service can be found at: Auto-GIPSY Auto-GIPSY is an /ftp interface to the GPS Inferred Positioning System (GIPSY) developed by JPL. This service performs single point positioning, and is therefore not dependent on the proximity or availability of CORS/IGS data (Macdonald 2002). The FTP address of user s data should be submitted by to: ag@cobra.jpl.nasa.gov. PPP The Geodetic Survey Division (GSD), Canada, developed the Canadian Spatial Reference System (CSRS) Precise Point Positioning (PPP) service. Single point positioning is provided for users operating in static or Fig. 2 The location of reference stations for OPUS, SCOUT and AUSPOS runs (after SOPAC 2004)

4 15 Fig. 3 Latitude differences between known value and online services result versus length of data set for UNB1, April 27, 2004 kinematic modes using precise GPS orbits and clocks (GSD 2004). This service is available via the GSD website at: Online services: a preliminary assessment As well as the proximity of the online service s coordinate results to the expected receiver position values (the topic of the following sections of this paper) there are other general factors to consider in the evaluation of services; these include: the method of sending and receiving the data, the time delay in receiving the results; available options and limitations. An overall assessment of each service (summarizing the above-mentioned aspects) can be seen in Table 1. As can be seen in Table 1, the services use either uploading of the data or an FTP site in order to access the user s RINEX file. However, all of the services send an to the user either including the results or the FTP address of where the results can be obtained. Time delay on receiving the results depends on several factors including the traffic on the Internet and the number of users accessing the service at the same time. The displayed times in the Fourth column of Table 1 are only a rough indicator in order to compare the speed of each service and were obtained by submitting the same 6-h data set to each service. Results validation One results validation method is to process observed GPS data at known points and compare the resultant coordinates with the known position values. Also evaluated was the relationship between the accuracy of the results and the observation time span. Analysis of solutions for UNB1 RINEX data In order to evaluate the accuracy of the online services, data collected at the UNB1 station on April 27, 2004 was submitted to the online services. UNB1 (see Fig. 1) is an IGS station at the University of New Brunswick (UNB) managed by the Department of Geodesy and Geomatics Engineering at UNB. UNB1 uses a continuously operating Javad Legacy GPS/GLONASS receiver located on the UNB Fredericton campus. The JPL has processed the UNB1 data and the latest coordinate of this station in the ITRF2000 reference frame Fig. 4 Longitude differences between known value and online services result versus length of data set for UNB1, April 27, 2004

5 16 Fig. 5 Ellipsoid height differences between known value and online services result versus length of data set for UNB1, April 27, 2004 Fig. 6 Ten hour length plot of Fig. 2 (latitude differences) can be found at: table2.txt. It is this JPL estimation that has been taken as the known value for UNB1 in this investigation. A single 24-h RINEX file was decimated into 1-h length, 2-h length, and then every 2 h up to 24 h. The 24-h file and the decimated files were submitted to the five online services. The OPUS does not process the RINEX files that contain GLONASS observations while other services remove the GLONASS data from the RINEX file before processing. Therefore GLONASS observations were excluded from UNB1 RINEX data in order that they could be submitted to OPUS. As mentioned before, OPUS and SCOUT also allow the user to choose the reference stations. In order to see whether the user s selection of reference points can provide better results than default selections, OPUS was also tested using 3 user-selected reference points (OPUS3) and SCOUT using 3 and 4 user selected reference points (SCOUT3 and SCOUT4) with different geometric configurations than the default. The OPUS used by default BARN, BRU1 and PNB1 as reference stations while SCOUT used BARN, PNB1 and WES2. In the OPUS3 and SCOUT3 scenarios ALGO, STJO and PNB1 were selected as reference stations while BARN was added to these stations for the SCOUT4 scenario. It is worth mentioning that AUSPOS used NRC1, WES2 and ALGO. The location and type of reference stations can be seen in Fig. 2. Fig. 7 Ten hour plot of Fig. 3 (longitude differences)

6 17 Fig. 8 Ten hour plot of Fig. 4 (height differences) Fig. 9 Location of investigated GPS points (after University of Alabama 2004) Figures 3, 4 and 5 show the differences between services resultant coordinates and the known values as a function of data set length. Figures 6, 7 and 8 give a more detailed look at the differences over the first 10 h. As might be expected the results in ellipsoid height show more variation over the time period (Fig. 5). It can be inferred from the figures that after almost 8 10 h observation the latitude and longitude have converged to within a centimeter of the known value. The height solution for each service continues to show variations at the centimeter level after 8 10 h, but with a variation of 7 cm between the services. Submitting less than 6 h of data to the services resulted (in most cases) in a few centimeters disagreement with the expected values. Auto-GIPSY did not provide proper results for the data set of 1-h length, therefore Auto-GIPSY results start from 2 h in the figures. As it can be seen in Figs. 6, 7 and 8 OPUS3, SCOUT3 and SCOUT4 provided closer latitude and longitude results to the known values than OPUS and SCOUT for data sets up to 6 h. After 6 h no significant difference can be seen. For the height results, however, SCOUT3 and SCOUT4 provided closer results to the known value than SCOUT for up to 8 h. In the case for Fig. 10 Latitude differences between assumed value and services result versus data set time (DODOLA, April 2, 2002)

7 18 Fig. 11 Longitude differences between assumed value and services result versus data set time (DODOLA, April 2, 2002) Fig. 12 Ellipsoid height differences between assumed value and services result versus data set time (DODOLA, April 2, 2002) OPUS3 the height results with respect to OPUS were improved for up to 2 h. Results in different parts of the world Except for OPUS, which is limited to Central and North America, all of the online services provide GPS processing results for observations made anywhere in the world. The PPP and Auto-GIPSY processing are based on precise GPS orbit and clocks products that are global in nature while SCOUT and AUSPOS use differential methods to the nearest three or four reference stations. However, these reference stations are not uniformly distributed in the world. In order to investigate the effect of reference station proximity on online services results two further tests have been done, as explained in the following sections. Analysis of solutions from commercial RINEX data A further investigation was carried out to compare the results of processing GPS data that were collected in Ethiopia on April 2, 2002 using commercial Trimble GPS equipment. The assumed coordinates of the point DODOLA (see Fig. 9) were obtained from data analysis using commercial software and UNB S DIPOP scientific software (Dare and Baglole 2003). Different data set time intervals of the DODOLA GPS observation were submitted to the online services, and the differences in the coordinates with the assumed values can be seen in Figs. 10, 11 and 12. A warning message appeared in AUSPOS results indicating some modeling problems in the 24-h data set, so this data set was excluded from the figures. Processing of observations from an IGS point in Africa Three 24-h data sets (the first 3 days of 2004) of point MALI were submitted to the online services. The MALI is an IGS point located in Malindi, Kenya (see Fig. 9). An Ashtech Z-XII receiver is operating at this station. The differences between service results and expected values (JPL estimation) are presented in Figs. 13, 14 and 15. The PPP results did not converge on January 1, 2004, so these results are excluded from Fig. 13. Further investigations carried out on the PPP results will be described in the following section. Fig. 13 The difference between online services results and expected values (January 1, 2004)

8 19 Fig. 14 The difference between online services results and expected values (January 2, 2004) Fig. 15 The difference between online services results and expected values (January 3, 2004) Further investigation on PPP results As mentioned in the previous section, the results of PPP did not converge for point MALI on January 1, To investigate this further, IGS points were selected in different locations and their data for January 1, 2004 were processed by PPP. These points are: ALGO (Ontario, Canada), UNB1 (New Brunswick, Canada), STJO (Newfoundland, Canada), STR1 (Australia), BAHR (Bahrain) and RIOG (Argentina). The location of these points is indicated in Fig. 9. The differences between the PPP results and expected values (JPL estimation) can be seen in Fig. 16. The PPP results did not converge for STR1 (the same problem that occurred for MALI) and this point is excluded from Fig. 16. Analysis of the results On average, Auto-GIPSY was found to produce the closest horizontal and vertical coordinates at the investigated points. Furthermore, the quality of this service and the PPP service are independent of site location due to using precise GPS orbit and clock data in point positioning mode. These two services are also the fastest to return the results. Fig. 16 The PPP results versus expected values on January 1, 2004

9 20 Ellipsoid height results of SCOUT and Auto-GIPSY show some unusual changes as can be seen in Fig. 5 at hour 4 and at hour 20 for SCOUT and at hour 6 for Auto-GIPSY. However, the SCOUT3 and SCOUT4 results do not show such unusual changes, even though the average baselines length in SCOUT3 and SCOUT4 are more than SCOUT. For short data sets, user selected reference stations in SCOUT3/4 and OPUS3 scenarios provided closer results to the known values than SCOUT and OPUS. This may be due to reference station quality and geometric configuration. A significant change in vertical accuracy of SCOUT can be seen at point MALI, where on the first day the vertical accuracy was about 3 cm but on the next 2 days was more than 10 cm (Figs. 13, 14 and 15). At DODOLA, the latitude converges as it did for UNB1. The longitude solutions from SCOUT and PPP, however, continue to show variations at approximately 2 3 cm and the convergence pattern is not as clear as UNB1. The AUSPOS produced identical results for the last 8 h and Auto-GIPSY for the last 12 h. In the solution for height (Fig. 12), Auto-GIPSY provided the closest results to the assumed value while it had a systematic difference of 12 cm with other services. After 10 h, the height solutions for the services (ignoring Auto-GIPSY) vary by about 4 cm. The PPP results did not converge for points MALI and STR1 on January 1, 2004 (both of these points located in the southern hemisphere). On January 1, 2004 PRN 23 experienced failure in its atomic frequency standard (Sigmond 2004). However it does not seem that the two mentioned reasons caused the failure of the PPP results in MALI and STR1 because although the point RIOG is also in the southern hemisphere accurate results were provided by the PPP (Fig. 16). Furthermore, other services provided reliable results on the same day for point MALI (Fig. 13). Conclusions Online GPS processing services can help GPS users all over the world to take advantage of precise point positioning or differential methods with one single receiver, and without requiring detailed knowledge of processing software. Solution quality depends on the availability, proximity and quality of base station data, and the availability of precise satellite orbits and clock corrections. Performed tests in this paper indicate that users can expect reliable results from online services, although some problems have occurred, such as those mentioned for PPP. The resultant coordinates converged after almost 10 h of observations using default-processing parameters. This shows that users can expect almost the same results for a 10-h data set as for a 24-h data set. With user-selected reference stations for the examples used, the data set length could be reduced by a few hours. Acknowledgements Preliminary work on this research was carried out by two undergraduate students at UNB. Their work has been published in Leslie (2004) and Hatch (2003). We thank Duncan Moss and Neil Stuart of the University of Edinburgh, Scotland, for providing the GPS data they collected at Dodola, Ethiopia. Paul Jamason is thanked for providing comments that improved the quality of this paper. We also acknowledge Canada s Natural Science and Engineering Research Council (NSERC) for providing funds to enable this research to be carried out. References Dare P, Baglole J (2003) Processing and analysis of Ethiopian GPS data. Final contract report prepared by the Department of Geodesy and Geomatics Engineering, University of New Brunswick, Fredericton, NB, Canada, for the Department of Geography, University of Edinburgh, Scotland, 12 pp Dawson J, Govind R, Manning J (2004) The AUSLIG online GPS processing system (AUSPOS), The Australian surveying and land information group (AUSLIG). 4 July 2004, online at: sgc/wwwgps/pdf/auspos.pdf GSD (2004) Online precise positioning how to use document. Natural Resources Canada. 4 July 2004, online at: Guide/HowToUse.pdf Hatch P (2003) Analysis of automated webbased GPS processing services. B.Sc.E. report, Department of Geodesy and Geomatics Engineering, University of New Brunswick, Fredericton, NB, Canada Leslie J (2004) Analysis of automated online GPS processing services. B.Sc.E. report, Department of Geodesy and Geomatics Engineering, University of New Brunswick, Fredericton, NB, Canada Macdonald D (2002) Auto-GIPSY, Graf- Net, OPUS and SCOUT: a comparison. Scripps Orbit and Permanent Array Center. 11 July 2004, online at: sopac.ucsd.edu/input/processing/pubs/ staticprocessingcomparison.pdf OPUS Team (2004) Online positioning user service. National Geodetic Survey. 3 July 2004, online at: OPUS.html Sigmond M (2004) CANSPACE archive, Canadian Space Geodesy Forum. 29 July 2004, online at: listserv.unb.ca/archives/canspace.html SOPAC (2004) Scripps orbit and permanent array center. Locate GPS Site. 26 July 2004, online at: sopac.ucsd.edu/scripts/dblocatesite.cgi University of Alabama (2004) Mercator projection of the world. 26 July 2004, online at: Zumberge JF (1999) Automated GPS data analysis service. GPS Solut 2(3):76 78

GPS Precise Point Positioning with a Difference*

GPS Precise Point Positioning with a Difference* GPS Precise Point Positioning with a Difference* Pierre Héroux and Jan Kouba Geodetic Survey Division, Geomatics Canada Natural Resources Canada 615 Booth Street Ottawa, Ontario K1A E9 heroux@geod.nrcan.gc.ca

More information

GPS Precise Point Positioning as a Method to Evaluate Global TanDEM-X Digital Elevation Model

GPS Precise Point Positioning as a Method to Evaluate Global TanDEM-X Digital Elevation Model GPS Precise Point Positioning as a Method to Evaluate Global TanDEM-X Digital Elevation Model 7 th FIG Regional Conference TS 1C Advances in GNSS Positioning and Applications I Volker Schwieger 1, Jürgen

More information

CORS/OPUS: Status & Future Prospects

CORS/OPUS: Status & Future Prospects CORS/OPUS: Status & Future Prospects Richard Snay, Gerald Mader, & Neil Weston NOAA s National Geodetic Survey CORS Users Forum 44 th CGSIC Meeting Long Beach, CA September 21, 2004 Continuously Operating

More information

Online Precise Point Positioning Using the. Natural Resources Canada Canadian Spatial Reference System (CSRS-PPP)

Online Precise Point Positioning Using the. Natural Resources Canada Canadian Spatial Reference System (CSRS-PPP) Online Precise Point Positioning Using the Natural Resources Canada Canadian Spatial Reference System (CSRS-PPP) Thomas Nylen and Seth White UNAVCO October 2007 I. Precise Point Positioning Precise Point

More information

The Use and Integrity Monitoring of IGS Products at Geoscience Australia (GA)

The Use and Integrity Monitoring of IGS Products at Geoscience Australia (GA) Australian Government Geoscience Australia The Use and Integrity Monitoring of IGS Products at Geoscience Australia (GA) Ramesh Govind, John Dawson, John Manning IGS-2004 Workshop and Symposium Berne,

More information

Opus Projects A Web-Based Application to Administer and Process Multi- Day GPS Campaign Data

Opus Projects A Web-Based Application to Administer and Process Multi- Day GPS Campaign Data Opus Projects A Web-Based Application to Administer and Process Multi- Day GPS Campaign Data Neil D. WESTON, Gerald L. MADER and Tomás SOLER, USA Key words: GPS; Positioning; Campaign SUMMARY The National

More information

International Global Navigation Satellite Systems Service

International Global Navigation Satellite Systems Service International Global Navigation Satellite Systems Service IGS Multi-GNSS Experiment IGS M-GEX Call for Participation www.igs.org Response to this Call for Participation in IGS M-GEX via Web Form Submission

More information

Real-Time Reality by Arthur R. Andrew III, PLS

Real-Time Reality by Arthur R. Andrew III, PLS Real-Time Reality by Arthur R. Andrew III, PLS A progressive RTK network in California deems the setting up of a base station a thing of the past. Imagine having the ability to survey using Real-Time Kinematic

More information

Enabling RTK-like positioning offshore using the global VERIPOS GNSS network. Pieter Toor GNSS Technology Manager

Enabling RTK-like positioning offshore using the global VERIPOS GNSS network. Pieter Toor GNSS Technology Manager Enabling RTK-like positioning offshore using the global VERIPOS GNSS network Pieter Toor GNSS Technology Manager Introduction PPP/RTK Positioning Techniques PPP-AR Technology Presentation Overview PPP-AR

More information

Trimble CenterPoint RTX Post-Processing Services FAQs

Trimble CenterPoint RTX Post-Processing Services FAQs Trimble CenterPoint RTX Post-Processing Services FAQs What is Trimble RTX technology? 30 September 2013 Trimble RTX TM (Real Time extended) is a high-accuracy, global GNSS correction technology that combines

More information

Initial Analysis of the Accuracy of Position Determination Using ASG-EUPOS NAVGEO (RTK VRS) Service

Initial Analysis of the Accuracy of Position Determination Using ASG-EUPOS NAVGEO (RTK VRS) Service GEOMATICS AND ENVIRONMENTAL ENGINEERING Volume 4 Number 4 2010 Marcin Uradziñski*, Adam Doskocz* Initial Analysis of the Accuracy of Position Determination Using ASG-EUPOS NAVGEO (RTK VRS) Service 1. Introduction

More information

Prof. Ludovico Biagi. Satellite Navigation and Monitoring

Prof. Ludovico Biagi. Satellite Navigation and Monitoring Prof. Ludovico Biagi Satellite Navigation and Monitoring Navigation: trajectories control positions estimations in real time, at high frequency popular applications: low accuracy (10 m) required specific

More information

GPS LOCATIONS FOR GIS: GETTING THEM RIGHT THE FIRST TIME

GPS LOCATIONS FOR GIS: GETTING THEM RIGHT THE FIRST TIME GPS LOCATIONS FOR GIS: GETTING THEM RIGHT THE FIRST TIME Caroline Erickson and Pierre Héroux Geodetic Survey Division, Geomatics Canada Natural Resources Canada 615 Booth Street Ottawa, Ontario K1A 0E9

More information

INTEGRITY AND CONTINUITY ANALYSIS OCTOBER TO DECEMBER 2013 QUARTERLY REPORT FROM GPS. Integrity and Continuity Analysis 08/01/14 08/01/14 08/01/14

INTEGRITY AND CONTINUITY ANALYSIS OCTOBER TO DECEMBER 2013 QUARTERLY REPORT FROM GPS. Integrity and Continuity Analysis 08/01/14 08/01/14 08/01/14 INTEGRITY AND CONTINUITY ANALYSIS FROM GPS OCTOBER TO DECEMBER 2013 QUARTERLY REPORT Prepared by: M Pattinson (NSL) 08/01/14 Checked by: L Banfield (NSL) 08/01/14 Approved by: M Dumville (NSL) 08/01/14

More information

The IGS: A Multi-GNSS Service

The IGS: A Multi-GNSS Service The IGS: A Multi-GNSS Service Chris Rizos, Urs Hugentobler, Ruth Neilan IUGG IAG Structure International Union of Geodesy and Geophysics (IUGG) 65 Member Countries (Adhering Bodies), 8 Associations International

More information

The Applanix SmartBase TM Software for Improved Robustness, Accuracy, and Productivity of Mobile Mapping and Positioning

The Applanix SmartBase TM Software for Improved Robustness, Accuracy, and Productivity of Mobile Mapping and Positioning The Applanix SmartBase TM Software for Improved Robustness, Accuracy, and Productivity of Mobile Mapping and Positioning Joe Hutton and Edith Roy, Applanix Corporation Introduction Applanix, along with

More information

NJDEP GPS Data Collection Standards For GIS Data Development

NJDEP GPS Data Collection Standards For GIS Data Development NJDEP GPS Data Collection Standards For GIS Data Development Bureau of Geographic Information Systems Office of Information Resource Management June 8, 2011 1.0 Introduction... 3 2.0 GPS Receiver Hardware

More information

WHAT YOU NEED TO USE THE STATE PLANE COORDINATE SYSTEMS

WHAT YOU NEED TO USE THE STATE PLANE COORDINATE SYSTEMS WHAT YOU NEED TO USE THE STATE PLANE COORDINATE SYSTEMS N & E State Plane Coordinates for Control Points AZIMUTHS - True, Geodetic, or Grid - Conversion from Astronomic to Geodetic (LaPlace Correction)

More information

Maintaining High Accuracy in Modern Geospatial Data

Maintaining High Accuracy in Modern Geospatial Data Maintaining High Accuracy in Modern Geospatial Data Patrick Cunningham President info@bluemarblegeo.com www.bluemarblegeo.com +1 (207) 582 6747 Copyright 2010 Blue Marble Geographics Concepts Geodesy -

More information

9 th Annual CORS User Forum

9 th Annual CORS User Forum Report on the 9 th Annual CORS User Forum Savannah, Georgia September 22, 2009 NOAA's National Geodetic Survey (NGS) in cooperation with the U.S. Department of Transportation and the U.S. Coast Guard convened

More information

Alberding GNSS data management & monitoring tools

Alberding GNSS data management & monitoring tools Alberding GNSS data management & monitoring tools 1/24 Alberding GNSS data management & monitoring tools Tamás Horváth Alberding GmbH EUREF 2013 Symposium, 29-31 May 2013, Budapest, Hungary Alberding GNSS

More information

GFZ prototype for GPS-based realtime deformation monitoring

GFZ prototype for GPS-based realtime deformation monitoring GFZ prototype for GPS-based realtime deformation monitoring Junping Chen, Maorong Ge, Markus Vennebusch, Gerd Gendt, Markus Rothacher Department of Geodesy and Remote Sensing, GeoForschungsZentrum, Postdam

More information

The Map Grid of Australia 1994 A Simplified Computational Manual

The Map Grid of Australia 1994 A Simplified Computational Manual The Map Grid of Australia 1994 A Simplified Computational Manual The Map Grid of Australia 1994 A Simplified Computational Manual 'What's the good of Mercator's North Poles and Equators, Tropics, Zones

More information

GNSS and Heighting, Practical Considerations. A Parker National Geo-spatial Information Department of Rural Development and Land Reform

GNSS and Heighting, Practical Considerations. A Parker National Geo-spatial Information Department of Rural Development and Land Reform GNSS and Heighting, Practical Considerations A Parker National Geo-spatial Information Department of Rural Development and Land Reform GNSS Global Navigation Satellite Systems (GNSS) Global Positioning

More information

Non-parametric estimation of seasonal variations in GNSS-derived time series

Non-parametric estimation of seasonal variations in GNSS-derived time series Military University of Technology, Poland (marta.gruszczynska@wat.edu.pl) Seasonal variations in the frame sites can bias the frame realization. I would like to invite you to click on each of the four

More information

REAL-TIME GPS MONITORING OF ATOMIC FREQUENCY STANDARDS IN THE CANADIAN ACTIVE CONTROL SYSTEM (CACS)

REAL-TIME GPS MONITORING OF ATOMIC FREQUENCY STANDARDS IN THE CANADIAN ACTIVE CONTROL SYSTEM (CACS) 30th Annual Pmbe Time and Time Internal (PTTI) Meeting REAL-TIME GPS MONITORING OF ATOMIC FREQUENCY STANDARDS IN THE CANADIAN ACTIVE CONTROL SYSTEM (CACS) F. Lahaye, M. Caissy, J. Popelar Geodetic Survey

More information

Waypoint. Best-in-Class GNSS and GNSS+INS Processing Software

Waypoint. Best-in-Class GNSS and GNSS+INS Processing Software Waypoint Best-in-Class GNSS and GNSS+INS Processing Software Waypoint Exceptional Post-Processing Software Enhance your GNSS Position, Velocity and Attitude Accuracy For applications requiring highly

More information

ANALYSIS OF WEB-BASED ONLINE SERVICES FOR GPS RELATIVE AND PRECISE POINT POSITIONING TECHNIQUES

ANALYSIS OF WEB-BASED ONLINE SERVICES FOR GPS RELATIVE AND PRECISE POINT POSITIONING TECHNIQUES ANALYSIS OF WEB-BASED ONLINE SERVICES FOR GPS RELATIVE AND PRECISE POINT POSITIONING TECHNIQUES Análise dos serviços online que empregam as técnicas dos posicionamentos GPS por ponto preciso e relativo.

More information

RELEASE NOTES. Trimble VRS 3 Net GNSS Infrastructure Software. Introduction. New features. Enhancements. Supported operating systems and SQL Server

RELEASE NOTES. Trimble VRS 3 Net GNSS Infrastructure Software. Introduction. New features. Enhancements. Supported operating systems and SQL Server RELEASE NOTES Trimble VRS 3 Net GNSS Infrastructure Software Introduction New features Enhancements Supported operating systems and SQL Server Minimum system requirements Updating the software Version

More information

Günter Seeber. Satellite Geodesy 2nd completely revised and extended edition

Günter Seeber. Satellite Geodesy 2nd completely revised and extended edition Günter Seeber Satellite Geodesy 2nd completely revised and extended edition Walter de Gruyter Berlin New York 2003 Contents Preface Abbreviations vii xvii 1 Introduction 1 1.1 Subject of Satellite Geodesy...

More information

Local monitoring by low cost devices and free and open sources softwares

Local monitoring by low cost devices and free and open sources softwares Local monitoring by low cost devices and free and open sources softwares Abstract Ludovico Biagi, Florin-Catalin Grec, Marco Negretti, Maria Grazia Visconti Politecnico di Milano, DICA@ComoCampus The purpose

More information

Real-Time GNSS in Routine EPN Operations Concept

Real-Time GNSS in Routine EPN Operations Concept Real-Time GNSS in Routine EPN Operations Concept EPN Real-time Working Group D. Dettmering, G. Weber, C. Bruyninx, H. v.d.marel W. Gurtner, J. Torres, A. Caporali Status: December 3, 2006 1 CONTENT 1 Introduction

More information

Evolving a new Geodetic Positioning Framework: An Australian Perspective

Evolving a new Geodetic Positioning Framework: An Australian Perspective Evolving a new Geodetic Positioning Framework: An Australian Perspective G. Johnston, J. Dawson Outline Introduction Precise Positioning National Geospatial Reference Systems Asia Pacific Reference Frame

More information

GPS accuracy: Hand-held versus RTK

GPS accuracy: Hand-held versus RTK GPS accuracy GPS accuracy: Hand-held versus RTK Kevin W. Hall, Joanna K. Cooper, and Don C. Lawton ABSTRACT Source and receiver points for seismic lines recorded during the geophysics field school near

More information

GNSS satellite attitude characteristics during eclipse season

GNSS satellite attitude characteristics during eclipse season GNSS satellite attitude characteristics during eclipse season F. Dilssner 1, T. Springer 1, J. Weiss 2, G. Gienger 1, W. Enderle 1 1 ESA/ESOC, Darmstadt, Germany 2 JPL, Pasadena, USA July 26, 2012 IGS

More information

Leica AR25 White Paper

Leica AR25 White Paper Leica AR25 White Paper February 2009 Lennon Bedford, Neil Brown, Justin Walford Leica Geosystems AG Heerbrugg, Switzerland 2 Biography Lennon Bedford graduated from the University of Otago in 2003 with

More information

Guidelines for RTK/RTN GNSS Surveying in Canada

Guidelines for RTK/RTN GNSS Surveying in Canada Guidelines for RTK/RTN GNSS Surveying in Canada July 2013 Version 1.1 Ministry of Transportation Ministère des Transports EARTH SCIENCES SECTOR GENERAL INFORMATION PRODUCT 100-E Main Authors: Brian Donahue,

More information

Evaluation of EPOS-RT for Real-time Deformation Monitoring

Evaluation of EPOS-RT for Real-time Deformation Monitoring Journal of Global Positioning Systems (2009) Vol.8, No.1:1-5 Evaluation of EPOS-RT for Real-time Deformation Monitoring Junping Chen, Maorong Ge, Jan Dousa, Gerd Gendt Department of Geodesy and Remote

More information

SURVEYING WITH GPS. GPS has become a standard surveying technique in most surveying practices

SURVEYING WITH GPS. GPS has become a standard surveying technique in most surveying practices SURVEYING WITH GPS Key Words: Static, Fast-static, Kinematic, Pseudo- Kinematic, Real-time kinematic, Receiver Initialization, On The Fly (OTF), Baselines, Redundant baselines, Base Receiver, Rover GPS

More information

Deformation Monitoring and Analysis Using Regional GPS Permanent Tracking Station Networks

Deformation Monitoring and Analysis Using Regional GPS Permanent Tracking Station Networks Deformation Monitoring and Analysis Using Regional GPS Permanent Tracking Station Networks Youjian HU, China P. R. and Kefei ZHANG and Gangjun LIU, Australia Key words: CORS, ITRF, precise ephemeris, deformation

More information

Regional/Operational Centers

Regional/Operational Centers Regional/Operational Centers BKG Regional IGS Data Center Report BKG Regional IGS Data Center Report Heinz Habrich Federal Agency for Cartography and Geodesy D-60598 Frankfurt at Main, Germany 1 Introduction

More information

Case Study Australia. Dr John Dawson A/g Branch Head Geodesy and Seismic Monitoring Geoscience Australia. Chair UN-GGIM-AP WG1 Chair APREF.

Case Study Australia. Dr John Dawson A/g Branch Head Geodesy and Seismic Monitoring Geoscience Australia. Chair UN-GGIM-AP WG1 Chair APREF. Case Study Australia Dr John Dawson A/g Branch Head Geodesy and Seismic Monitoring Geoscience Australia Chair UN-GGIM-AP WG1 Chair APREF Page 1 Overview 1. Australian height system Australian Height Datum

More information

Geospatial Positioning Accuracy Standards Part 2: Standards for Geodetic Networks

Geospatial Positioning Accuracy Standards Part 2: Standards for Geodetic Networks Geospatial Positioning Accuracy Standards Federal Geodetic Control Subcommittee Federal Geographic Data Committee Federal Geographic Data Committee Department of Agriculture Department of Commerce Department

More information

The Status and Development of the APREF GNSS Network Guorong Hu

The Status and Development of the APREF GNSS Network Guorong Hu The Status and Development of the APREF GNSS Network Guorong Hu Geodesy, Geoscience Australia, Canberra, Australia Outline Introduction Objectives How the reference frame is derived Services and applications

More information

RELEASE NOTES. Trimble. SPS Series Receivers. Introduction. New features and changes

RELEASE NOTES. Trimble. SPS Series Receivers. Introduction. New features and changes RELEASE NOTES Trimble SPS Series Receivers Introduction New features and changes Version 4.41 Revision A April 2011 F Corporate office Trimble Navigation Limited Engineering and Construction group 5475

More information

Polynomial interpolation of GPS satellite coordinates

Polynomial interpolation of GPS satellite coordinates GPS Solut (26) : 67 72 DOI.7/s29-5-8- GPS TOOL BOX Milan Horemuzˇ Johan Vium Andersson Polynomial interpolation of GPS satellite coordinates Published online: 4 January 26 Ó Springer-Verlag 26 M. Horemuzˇ

More information

Why do we need to improve co-locations of space geodetic techniques?

Why do we need to improve co-locations of space geodetic techniques? Why do we need to improve co-locations of space geodetic techniques? Zuheir Altamimi & Xavier Collilieux IGN France 1 Outline ITRF Heritage Current status of technique networks & co-locations Results from

More information

Survey Ties Guidelines

Survey Ties Guidelines North Carolina Board of Examiners for Engineers and Surveyors Survey Ties Guidelines The North Carolina Board of Examiners for Engineers and Surveyors is providing this document to serve as an interpretative

More information

Remote Calibration of a GPS Timing Receiver to UTC(NIST) via the Internet*

Remote Calibration of a GPS Timing Receiver to UTC(NIST) via the Internet* Remote Calibration of a GPS Timing Receiver to UTC(NIST) via the Internet* Michael A. Lombardi and Andrew N. Novick National Institute of Standards and Technology Boulder, Colorado lombardi@boulder.nist.gov

More information

Scheduling of VLBI observations to satellites with the Vienna VLBI Software (VieVS)

Scheduling of VLBI observations to satellites with the Vienna VLBI Software (VieVS) 22 nd EVGA Working Meeting, May 17-21, 2015, Sao Miguel, Pont Delgada, Azores, Portugal Scheduling of VLBI observations to satellites with the Vienna VLBI Software (VieVS) Andreas Hellerschmied 1, J. Böhm

More information

GNSS FIELD DATA COLLECTION GUIDELINES

GNSS FIELD DATA COLLECTION GUIDELINES AD-SDI DATA STANDARD GNSS FIELD DATA COLLECTION GUIDELINES Version 1.0 September 2011 Prepared by Abu Dhabi Spatial Data Infrastructure (AD-SDI) Abu Dhabi Systems and Information Centre (ADSIC) Abu Dhabi,

More information

IDS Data Flow Coordination (2009)

IDS Data Flow Coordination (2009) IDS Data Flow Coordination (2009) Introduction Two data centers currently support the archiving and access activities for the IDS: Crustal Dynamics Data Information System (CDDIS), NASA GSFC, Greenbelt,

More information

Precise Point Positioning (PPP) Technique versus Network-RTK GNSS

Precise Point Positioning (PPP) Technique versus Network-RTK GNSS Precise Point Positioning (PPP) Technique versus Network-RTK GNSS Reha Metin ALKAN, İ. Murat OZULU, Veli İLÇİ, Turkey Key words: GNSS, PPP, CSRS-PPP, Network-RTK, CORS, TUSAGA-Aktif SUMMARY The aim of

More information

TESTING REAL-TIME GPS ORBIT AND CLOCK PRODUCT

TESTING REAL-TIME GPS ORBIT AND CLOCK PRODUCT TESTING REAL-TIME GPS ORBIT AND CLOCK PRODUCT J. DOUSA1 1. Introduction Within EUREF-IP project, the Federal Agency for Cartography and Geodesy, Frankfurt/Main (BKG) has started to distribute the real-time

More information

European Geodetic Status European Geodetic Reference Systems

European Geodetic Status European Geodetic Reference Systems European Geodetic Status European Geodetic Reference Systems Reporter: Hansjörg Kutterer, Federal Agency of Cartography and Geodäsie (BKG), Germany Contributors to this report: Johannes Ihde, Federal Agency

More information

GPS Data Collection Procedures for Georeferencing Vegetation Resources Inventory and National Forest Inventory Field Sample Plots

GPS Data Collection Procedures for Georeferencing Vegetation Resources Inventory and National Forest Inventory Field Sample Plots Province of British Columbia GPS Data Collection Procedures for Georeferencing Vegetation Resources Inventory and National Forest Inventory Field Sample Plots Resources Information Branch Ministry of Sustainable

More information

Dancing in the Dark: How GNSS Satellites Cross the Earth s Shadow

Dancing in the Dark: How GNSS Satellites Cross the Earth s Shadow Dancing in the Dark: How GNSS Satellites Cross the Earth s Shadow F. Dilssner, T. Springer, G. Gienger, R. Zandbergen European Space Operations Centre (ESOC), Darmstadt 24 January 2011 Technische Universität

More information

ESTABLISHMENT OF A PERMANENT GPS STATION AT THE DEPARTMENT OF GEODESY AND SURVEYING OF THE BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS

ESTABLISHMENT OF A PERMANENT GPS STATION AT THE DEPARTMENT OF GEODESY AND SURVEYING OF THE BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS PERIODICA POLYTECHNICA SER. CIV. ENG. VOL. 46, NO. 2, PP. 179 184 (2002) ESTABLISHMENT OF A PERMANENT GPS STATION AT THE DEPARTMENT OF GEODESY AND SURVEYING OF THE BUDAPEST UNIVERSITY OF TECHNOLOGY AND

More information

DESIMETERSYSTEM FOR HØYNØYAKTIG POSISJONERING OG NAVIGASJON

DESIMETERSYSTEM FOR HØYNØYAKTIG POSISJONERING OG NAVIGASJON DESIMETERSYSTEM FOR HØYNØYAKTIG POSISJONERING OG NAVIGASJON John A. Vint Survey Manager Thales GeoSolutions Norge AS Hønefoss, 7. november 2003 Scope of Presentation Introduction Summary of GPS Errors.

More information

Status, Development and Application

Status, Development and Application Federal Space Agency GLONASS GLONASS Status, Development and Application Sergey G. Revnivykh International Committee on Global Navigation Satellite Systems (ICG) Second Meeting, September 4-7, 2007, Bangalore,

More information

RealtimePPP using EUREF and IGS Networks

RealtimePPP using EUREF and IGS Networks RealtimePPP using EUREF and IGS Networks Georg Weber 1) Leos Mervart 2), Peter Neumaier 1), Andrea Stürze 1) 1) Federal Agency for Cartography and Geodesy, Frankfurt am Main, Germany 2) Technical University

More information

Provide network RTK Services in a few simple steps

Provide network RTK Services in a few simple steps RTRef System Provide network RTK Services in a few simple steps What is RTRef? RTRef is a software system to provide GNSS network corrections for accurate positioning. The system includes a web-based interface

More information

TI GPS PPS Timing Application Note

TI GPS PPS Timing Application Note Application Note Version 0.6 January 2012 1 Contents Table of Contents 1 INTRODUCTION... 3 2 1PPS CHARACTERISTICS... 3 3 TEST SETUP... 4 4 PPS TEST RESULTS... 6 Figures Figure 1 - Simplified GPS Receiver

More information

Calibrated PPP time transfer among time scales generated at Time and Frequency Laboratories

Calibrated PPP time transfer among time scales generated at Time and Frequency Laboratories Calibrated PPP time transfer among time scales generated at Time and Frequency Laboratories Alejandro Ceballos + #, Ricardo Piriz*, David Calle*, Giancarlo Cerretto + (g.cerretto@inrim.it) + Istituto Nazionale

More information

AFREF First GNSS Station : Lessons learnt Building up a Continental Reference Frame

AFREF First GNSS Station : Lessons learnt Building up a Continental Reference Frame AFREF First GNSS Station : Lessons learnt Building up a Continental Reference Frame Joel van Cranenbroeck, Director of Technology and Project Development Leica Geosystems AG, Geomatic Division CH-9435

More information

The new ISO standard 17123-8 for checking GNSS field measuring systems

The new ISO standard 17123-8 for checking GNSS field measuring systems The new ISO standard 1713-8 for checking GNSS field measuring systems Hans Heister Institute for Geodesy - Geodetic Metrology - UniBw München D-85577 Neubiberg h.heister@unibw.de FIG Working Week - Stockholm

More information

AUTOMATED DEM VALIDATION USING ICESAT GLAS DATA INTRODUCTION

AUTOMATED DEM VALIDATION USING ICESAT GLAS DATA INTRODUCTION AUTOMATED DEM VALIDATION USING ICESAT GLAS DATA Mary Pagnutti Robert E. Ryan Innovative Imaging and Research Corp. Building 1103, Suite 140C Stennis Space Center, MS 39529 mpagnutti@i2rcorp.com rryan@i2rcorp.com

More information

Research Toward Wireless Internet-Based DGPS

Research Toward Wireless Internet-Based DGPS Research Toward Wireless Internet-Based DGPS Z. Liu and Y. Gao Department of Geomatics Engineering The University of Calgary Calgary, Alberta, Canada T2N 1N4 Tel: 403-220-6174 Fax: 403-284-1980 Email:

More information

White Paper By Earl F. Burkholder, PS, PE (NMSU) Gilbert Chavez, PS (City of Las Cruces) February 2006

White Paper By Earl F. Burkholder, PS, PE (NMSU) Gilbert Chavez, PS (City of Las Cruces) February 2006 White Paper By Earl F. Burkholder, PS, PE (NMSU) Gilbert Chavez, PS (City of Las Cruces) February 2006 Need for and Benefits of a Modern Spatial Reference Network in Southern New Mexico Overview: Economic

More information

FOR IMMEDIATE RELEASE

FOR IMMEDIATE RELEASE FOR IMMEDIATE RELEASE Utilizing a Self-steering Robotic Tractor in the Developmental Phases of Rice -- Feasibility Study on Using Quasi-Zenith Satellite System for Precision Farming in Australia -- Hitachi

More information

EPN Special Project Real-Time Analysis Status Report

EPN Special Project Real-Time Analysis Status Report EPN Special Project Real-Time Analysis Status Report Wolfgang Söhne Federal Agency for Cartography and Geodesy (BKG), Germany Highlights Real-time observational data EUREF regional broadcaster Broadcaster

More information

PLM PRODUCT INFORMATION

PLM PRODUCT INFORMATION PLM PRODUCT INFORMATION Agricultural Equipment UK & ROI Precision Farming Reference UK- PLM_03_13 Date: 1st May 2013 Announcing the new RangePoint RTX Correction Service RangePoint RTX is a GPS and GLONASS

More information

IMES (Indoor Messaging System) A Proposal for New Indoor Positioning System Presenter: Dr. Dinesh Manandhar GNSS Technologies Inc., Japan Third Meeting of the International Committee on Global Navigation

More information

An Innovative Concept to Manage GPS Reference Stations Network and RTK Data Distribution Globally

An Innovative Concept to Manage GPS Reference Stations Network and RTK Data Distribution Globally An Innovative Concept to Manage GPS Reference Stations Network and RTK Data Distribution Vincent LUI, Hong Kong SAR, China Key words: GPS reference station network, Internet, Spider, data management, integrity

More information

GGOS Bureau for Networks and Commuications Michael Pearlman Harvard-Smithsonian Center for Astrophysics Cambridge MA USA mpearlman@cfa.harvard.

GGOS Bureau for Networks and Commuications Michael Pearlman Harvard-Smithsonian Center for Astrophysics Cambridge MA USA mpearlman@cfa.harvard. GGOS Bureau for Networks and Commuications Michael Pearlman Harvard-Smithsonian Center for Astrophysics Cambridge MA USA mpearlman@cfa.harvard.edu GGOS Bureau for Networks and Communications Donatello

More information

Coverage Characteristics of Earth Satellites

Coverage Characteristics of Earth Satellites Coverage Characteristics of Earth Satellites This document describes two MATLAB scripts that can be used to determine coverage characteristics of single satellites, and Walker and user-defined satellite

More information

Congreso Internacional Geomática Andina 2012 4 y 5 de junio, Bogotá, D. C., Colombia

Congreso Internacional Geomática Andina 2012 4 y 5 de junio, Bogotá, D. C., Colombia Claudio Brunini SIRGAS President UNLP - CONICET Argentina Laura Sánchez SIRGAS Vice-President DGFI - Germany William Martínez SIRGAS WGII President IGAC - Colombia María Viriginia Mackern SIRGAS - WGI

More information

The Status of Geospatial Information Management in China

The Status of Geospatial Information Management in China The Status of Geospatial Information Management in China Submitted by the National Administration of Surveying, Mapping and Geoinformation of China 1. Administration System The National Administration

More information

DEVELOPING A MULTI-GNSS ANALYSIS SOFTWARE FOR SCIENTIFIC PURPOSES

DEVELOPING A MULTI-GNSS ANALYSIS SOFTWARE FOR SCIENTIFIC PURPOSES DEVELOPING A MULTI-GNSS ANALYSIS SOFTWARE FOR SCIENTIFIC PURPOSES Michael Meindl (1), Rolf Dach (1), Stefan Schaer (2), Urs Hugentobler (3), Gerhard Beutler (1) (1) Astronomical Institute, University of

More information

Technical Article Developing Software for the CN3 Integrated GPS Receiver

Technical Article Developing Software for the CN3 Integrated GPS Receiver Technical Article Developing Software for the CN3 Integrated GPS Receiver 1 Intermec Technologies Table of Contents INTRODUCTION... 3 AN OVERVIEW OF GPS TECHNOLOGY... 3 What is GPS?... 3 How GPS works...

More information

Leica SmartNet Commercial RTK Network Solution

Leica SmartNet Commercial RTK Network Solution Leica SmartNet Commercial RTK Network Solution One person, one GPS receiver, one precise network solution Work Smart, choose Leica SmartNet Leica SmartNet is Britain and Ireland s first commercial RTK

More information

Towards Real-time GNSS Troposphere Delay Monitoring Service for Poland

Towards Real-time GNSS Troposphere Delay Monitoring Service for Poland Towards Real-time GNSS Troposphere Delay Monitoring Service for Poland Tomasz Hadas, Kaplon Jan, Bosy Jaroslaw Institute of Geodesy and Geoinformatics Wroclaw University of Environmental and Life Sciences

More information

{ XE "CIR_30-6_intelligent_compaction_D02-26-14" } Page 1 of 10

{ XE CIR_30-6_intelligent_compaction_D02-26-14 } Page 1 of 10 { XE "CIR_30-6_intelligent_compaction_D02-26-14" } Page 1 of 10 Section 30-6. Use to incorporate intelligent compaction requirements in CIR or FDR projects. Use bid item: 306100A Intelligent Compaction

More information

Cost Effective GNSS Positioning Techniques

Cost Effective GNSS Positioning Techniques FIG REPORT FIG PUBLICATION NO 49 Cost Effective GNSS Positioning Techniques FIG Commission 5 Publication 2 nd Edition INTERNATIONAL FEDERATION OF SURVEYORS (FIG) Cost Effective GNSS Positioning Techniques

More information

SURVEY PRO. GPS Quick Start Guide

SURVEY PRO. GPS Quick Start Guide SURVEY PRO GPS Quick Start Guide ii Table of Contents Before You Leave the Office...1 Survey Method: RTK or Post Processing...2 Receiver Setup...2 Receiver Settings...3 RTK Data Collection and Stake Out...4

More information

GEOPHYSICAL EFFECTS ON SITE DISPLACEMENTS FOR PERMANENT GPS TRACKING STATIONS IN TAIWAN

GEOPHYSICAL EFFECTS ON SITE DISPLACEMENTS FOR PERMANENT GPS TRACKING STATIONS IN TAIWAN GEOPHYSICAL EFFECTS ON SITE DISPLACEMENTS FOR PERMANENT GPS TRACKING STATIONS IN TAIWAN C. C. Chang Department of Surveying and Mapping Engineering Chung Cheng Institute of Technology Tahsi, Taoyuan 335,

More information

Real-Time Carrier Phase Positioning Using the RTCM Standard Message Types 20/21 and 18/19.

Real-Time Carrier Phase Positioning Using the RTCM Standard Message Types 20/21 and 18/19. Real-Time Carrier Phase Positioning Using the RTCM Standard Message Types 2/21 and 18/19. Janet Brown Neumann, Keith J. VanDierendonck, Allan Manz, and Thomas J. Ford NovAtel Inc. BIOGRAPHIES Janet Brown

More information

Assessment Tasks Pass theory exams at > 70%. Meet, or exceed, outcome criteria for projects and assignments.

Assessment Tasks Pass theory exams at > 70%. Meet, or exceed, outcome criteria for projects and assignments. CENTRAL OREGON COMMUNITY COLLEGE: GEOGRAPHIC INFORMATION SYSTEM PROGRAM 1 CENTRAL OREGON COMMUNITY COLLEGE Associate Degree Geographic Information Systems Program Outcome Guide (POG) Program Outcome Guide

More information

GPS Applications in Agriculture. Gary T. Roberson Agricultural Machinery Systems

GPS Applications in Agriculture. Gary T. Roberson Agricultural Machinery Systems GPS Applications in Agriculture Gary T. Roberson Agricultural Machinery Systems What is a Positioning System? A position information system enables the user to determine absolute or relative location of

More information

Activity 3.7 Statistical Analysis with Excel

Activity 3.7 Statistical Analysis with Excel Activity 3.7 Statistical Analysis with Excel Introduction Engineers use various tools to make their jobs easier. Spreadsheets can greatly improve the accuracy and efficiency of repetitive and common calculations;

More information

European Position Determination System. Guideline for EUPOS Reference Frame Fixing

European Position Determination System. Guideline for EUPOS Reference Frame Fixing European Position Determination System Guideline for EUPOS Reference Frame Fixing Version 1.0 21 September 2007 Copyright: Publisher: 2007 by the International EUPOS Steering Committee Office of the International

More information

On May 27, 2010, the U.S. Air. Satellite. Antenna Phase Center and Attitude Modeling

On May 27, 2010, the U.S. Air. Satellite. Antenna Phase Center and Attitude Modeling GPS IIF-1 Satellite Antenna Phase Center and Attitude Modeling Florian Dilssner Logica/European Space Agency Calculating the distances between satellites and user equipment is a basic operation for GNSS

More information

Satellite Posi+oning. Lecture 5: Satellite Orbits. Jan Johansson jan.johansson@chalmers.se Chalmers University of Technology, 2013

Satellite Posi+oning. Lecture 5: Satellite Orbits. Jan Johansson jan.johansson@chalmers.se Chalmers University of Technology, 2013 Lecture 5: Satellite Orbits Jan Johansson jan.johansson@chalmers.se Chalmers University of Technology, 2013 Geometry Satellite Plasma Posi+oning physics Antenna theory Geophysics Time and Frequency GNSS

More information

Cost-Effective Collection of a Network-Level Asset Inventory. Michael Nieminen, Roadware

Cost-Effective Collection of a Network-Level Asset Inventory. Michael Nieminen, Roadware Cost-Effective Collection of a Network-Level Asset Inventory Michael Nieminen, Roadware Introduction This presentation is about using a mobile vehicle to collect roadway asset (feature) data. Asset/Feature

More information

Korea Geodetic Framework for Sustainable Development*

Korea Geodetic Framework for Sustainable Development* UNITED NATIONS E/CONF.102/IP.17 ECONOMIC AND SOCIAL COUNCIL Nineteenth United Nations Regional Cartographic Conference for Asia and the Pacific Bangkok, 29 October 1 November 2012 Item 6(b) of the provisional

More information

PPP: Precise Point Positioning Constraints and Opportunities

PPP: Precise Point Positioning Constraints and Opportunities PPP: Precise Point Positioning Constraints and Opportunities Katrin HUBER, Florian HEUBERGER, Christoph ABART, Ana KARABATIC, Robert WEBER and Philipp BERGLEZ, Austria Key words PPP, GNSS, positioning,

More information

Perspective of Permanent Reference Network KOPOS in Kosova

Perspective of Permanent Reference Network KOPOS in Kosova 143 Perspective of Permanent Reference Network KOPOS in Kosova Meha, M. and Çaka, M. Kosovo Cadastral Agency, Kosovo Archive Building II nd floor, P.O. 10000, Prishtina, Republic of Kosovo, E-mail: mmeha@yahoo.com,

More information

GEOGRAPHIC INFORMATION SYSTEMS Lecture 21: The Global Positioning System

GEOGRAPHIC INFORMATION SYSTEMS Lecture 21: The Global Positioning System GEOGRAPHIC INFORMATION SYSTEMS Lecture 21: The Global Positioning System The Global Positioning System - recognize that GPS is only one of several Global Navigation Satellite Systems (GNSS) - the Russian

More information

Trimble R8 Base and Rover Quick Setup Guide. Inland GPS Inc.

Trimble R8 Base and Rover Quick Setup Guide. Inland GPS Inc. Trimble R8 Base and Rover Quick Setup Guide Inland GPS Inc. Setting up the GPS Base Equipment Hardware First Find the best, most advantageous secure place to setup the GPS base equipment. Look for a high

More information

Analysis of RTN Measurement Results Referring to ASG-EUPOS Network

Analysis of RTN Measurement Results Referring to ASG-EUPOS Network GEOMATICS AND ENVIRONMENTAL ENGINEERING Volume 4 Number 1/1 2010 Andrzej Uznañski* Analysis of RTN Measurement Results Referring to ASG-EUPOS Network 1. Introduction In June 2008 ASG-EUPOS network system,

More information