European Position Determination System. Guideline for EUPOS Reference Frame Fixing
|
|
|
- Vivien Rose
- 9 years ago
- Views:
Transcription
1 European Position Determination System Guideline for EUPOS Reference Frame Fixing Version September 2007
2 Copyright: Publisher: 2007 by the International EUPOS Steering Committee Office of the International EUPOS Steering Committee c/o Senate Department for Urban Development III B Fehrbelliner Platz 1 D Berlin, Germany
3 Content 1. Preamble ETRS89 realization ETRS89 implementation in EUPOS Using EPN...5 References...6
4 1. Preamble The IAG Subcommission for the European Reference Frame (EUREF), following its resolution No. 1 of the Firenze 1990 meeting, recommends that the terrestrial reference system to be adopted by EUREF is coincident with ITRS at the epoch of and fixed to the stable part of the Eurasian plate. It is named European Terrestrial Reference System 89 (ETRS89). In 2003 the European Commission accepted the ETRS89 as an obligatory reference system for referencing spatial information for all applications done in EU s interests. The ellipsoidal coordinates related to ETRS89 represent an obligatory system of geographical coordinates. The EuroGeographics, which is an association representing European Mapping and Cadastral Agencies of 42 European countries, has been developing its main projects, like ESDI (European Spatial Data Infrastructure), on the basis of ETRS89. Therefore, ETRS89 should be underlying to the EUPOS GNSS positioning system currently developed in Central and Eastern Europe. 2. ETRS89 realization The ETRS89 is maintained by the IAG Subcommission EUREF and is accessed through the EUREF Permanent Network (EPN), a science-driven network of continuously operating GNSS reference stations with precisely known coordinates in ETRS89 see e.g. The EPN represents the ETRS89 first-order realization on international (continental) level. On national level the ETRS89 has been realized by a stepwise densification and improvement of the original EUREF reference frame carried out by individual European countries making full use of existing operational EPN stations. At present (March 2007) the EPN consists of about 200 operational tracking stations. In the years EUREF densification observation campaigns were carried out in almost all European countries, in some of them repeatedly. These campaigns, along with EPN stations, constitute national ETRS89 realizations. The realization of a system is called reference frame, which is represented by a number of markers on the earth surface, with known coordinates and (sometimes) velocities. Like each system, ETRS89 has been evolving in time and each evolution stage is represented by a corresponding realization. The most recent realization is always an improvement with respect to the previous one. The reliability of the EPN site coordinates depends on the length of its operation and on the possibility to link the GPS-based coordinates to the coordinates determined by other space observation techniques. EPN coordinates are available in two reference systems ITRS and ETRS89. With respect to the history of observations and processing three types of EPN site coordinates can be distinguished: (1) weekly coordinates, computed by the EPN combination centre, (2) site coordinates and velocities computed within the EPN project Time series monitoring and (3) official coordinates and velocities issued by the IERS as a result of a combination of the multi-year coordinate solutions obtained by several space geodetic techniques. Coordinates (1) are not suitable for reference frame definition, this is only for rough coordinate monitoring. Coordinates (2) are the most up-to-date and most accurate crd and vel. solution for the EPN stations.they are useful when a permanent station is running for years but not yet included into the latest ITRF solution (between 2 consecutive ITRF realizations). If a non-itrf EPN station have 1-2 years observation history the quality of its crd solution is equivalent or comparable to the ITRF (the velocity needs longer observation set). They fully rely on (1). Coordinates (3) are official coordinates/velocities issued by IERS,. Recommended usage:
5 If the spacing of EPN stations is less then 300 km and if no coordinate discontinuity appears, use (3), If (3) not available, use (2) especially when you want to involve as much permanent stations as possible, If (3) or (2) not available, use (1). 3. ETRS89 implementation in EUPOS The ETRS89 coordinates of EUPOS stations should be basically determined following the guidelines agreed by the TWG EUREF, see Gurtner et al., 1996 and Boucher and Altamimi, 2007 (see also Annex Memo: Specifications for reference frame fixing in the analysis of a EUREF GPS campaign, issued March 27, 2007). The goal is to process the observation data in ETRS89 taking full benefit of the most recent realization of the reference frame represented by fiducial stations and of the final IGS orbits. It is recommended the EUPOS coordinates should be related exclusively to the reference frame represented by the EPN and should represent the national ETRS89 realization. The EUPOS member countries are encouraged not to accommodate the EUPOS coordinates to the the old national realizations, but to recompute the national realization to most recent realization of the ETRS89. using EPN. The aim of this approach is to ensure: - nationwide consistency of the passive and active networks, - consistent reference system realization between EUPOS countries (important for crossborder networking). 3.1 Using EPN The ETRS89 coordinates of EUPOS reference stations should be determined following the EUREF specifications and relevant EUREF TWG guidelines. Use high precision GNSS data processing software like Bernese, GIPSY-OASIS, Geodyn, Geonap, etc. Select properly several EPN stations distributed inside and outside the corresponding national EUPOS segment Avoid EPN stations with the history shorter than 1 year, check their observation time series visiting avoid stations with unexplained trends and periodicities, prefere IGS stations if any Define a campaign lasting at least 3 4 weeks, operating the EUPOS stations simultaneously with the EPN stations Process the campaign, generate a loosely constrained SINEX solution Regularize the solution fixing the ITRF-YY coordinates of EPN stations Convert the results into ETRS89 at tc following the formulas and numerical values of parameters given in Boucher and Altamimi, 2007 (see Annex) In the processing of the corresponding GNSS observation campaigns antennas phase centre variations from individual phase center calibrations should be used if they exist. Using this approach a consistency with the actual ETRS89 realization on the level of 1 mm horizontally and 3 mm vertically can be achieved for the defined observation period.
6 References Gurtner W., C. Boucher, C. Bruyninx, H. v.d. Marel: The Use of the IGS/EUREF Permanent Network for EUREF Densification Campaigns. In: Report on the Symposium of the IAG Subcommission for Europe (EUREF) held in Sofia, 4-7 June Veroeff. D. Bayer Komm. Fuer die Internat. Erdmessung d. Bayer. Akad. D. Wissenschaften, Heft. Nr. 58, Muenchen 1997, pp Boucher C., Z Altamimi: Memo: Specifications for reference frame fixing in the analysis of a EUREF GPS campaign. Issue March 27, 2007, see
European Geodetic Status European Geodetic Reference Systems
European Geodetic Status European Geodetic Reference Systems Reporter: Hansjörg Kutterer, Federal Agency of Cartography and Geodäsie (BKG), Germany Contributors to this report: Johannes Ihde, Federal Agency
Status and Development of the European Height Systems
Status and Development of the European Height Systems J. Adam, W. Augath, F. Brouwer, G. Engelhardt, W. Gurtner, B. G. Harsson, J. IHDE, D. Ineichen, H. Lang, J. Luthardt, M. Sacher, W. Schlüter, T. Springer,
European Petroleum Survey Group EPSG. Guidance Note Number 10. April 2001. Geodetic Transformations Offshore Norway
European Petroleum Survey Group EPSG Guidance Note Number 10 April 2001 Geodetic Transformations Offshore Norway Background 1. European Datum 1950 (ED50) is the de facto and de jure geographic coordinate
European Position Determination System. Guidelines For Cross- Border Data Exchange
European Position Determination System Guidelines For Cross- Border Data Exchange Version 1.0 21 September 2006 Copyright: Publisher: 2007 by the International EUPOS Steering Committee Office of the International
Surveying & Positioning Guidance note 10
Surveying & Positioning Guidance note 10 Geodetic Transformations Offshore Norway Revision history Version Date Amendments 1.0 April 2001 First release 1 Background European Datum 1950 (ED50) is the de
Real-Time GNSS in Routine EPN Operations Concept
Real-Time GNSS in Routine EPN Operations Concept EPN Real-time Working Group D. Dettmering, G. Weber, C. Bruyninx, H. v.d.marel W. Gurtner, J. Torres, A. Caporali Status: December 3, 2006 1 CONTENT 1 Introduction
GNSS re-processing results at GOP and the latest updates of ITRS/ETRS. Jan Douša ([email protected])
GNSS re-processing results at GOP and the latest updates of ITRS/ETRS Jan Douša ([email protected]) Geodetic observatory Pecný, Research Institute of Geodesy, Topography and Cartography January 24, 2012
Online Precise Point Positioning Using the. Natural Resources Canada Canadian Spatial Reference System (CSRS-PPP)
Online Precise Point Positioning Using the Natural Resources Canada Canadian Spatial Reference System (CSRS-PPP) Thomas Nylen and Seth White UNAVCO October 2007 I. Precise Point Positioning Precise Point
The Status and Development of the APREF GNSS Network Guorong Hu
The Status and Development of the APREF GNSS Network Guorong Hu Geodesy, Geoscience Australia, Canberra, Australia Outline Introduction Objectives How the reference frame is derived Services and applications
THE FINNISH COORDINATE REFERENCE SYSTEMS
THE FINNISH COORDINATE REFERENCE SYSTEMS Published by the Finnish Geodetic Institute and the National Land Survey of Finland Editors: Marko Ollikainen, National Land Survey of Finland Matti Ollikainen,
Trimble CenterPoint RTX Post-Processing Services FAQs
Trimble CenterPoint RTX Post-Processing Services FAQs What is Trimble RTX technology? 30 September 2013 Trimble RTX TM (Real Time extended) is a high-accuracy, global GNSS correction technology that combines
Congreso Internacional Geomática Andina 2012 4 y 5 de junio, Bogotá, D. C., Colombia
Claudio Brunini SIRGAS President UNLP - CONICET Argentina Laura Sánchez SIRGAS Vice-President DGFI - Germany William Martínez SIRGAS WGII President IGAC - Colombia María Viriginia Mackern SIRGAS - WGI
Maintenance and Densification of the Italian GNSS Network. DIPARTIMENTO DI GEOSCIENZE A. Caporali J. Zurutuza M. Bertocco R. Corso P.
Maintenance and Densification of the Italian GNSS Network DIPARTIMENTO DI GEOSCIENZE A. Caporali J. Zurutuza M. Bertocco R. Corso P. Legovini Outline Maintenance and Densification of the Italian GNSS Network
Summary of the determination and analysis of the ETRS89 coordinates for the GNSS Reference Station Network
Summary of the determination and analysis of the ETRS89 coordinates for the GNSS Reference Station Network Document References and approaches: -Capilla, Saa, Die (2006): Diseño, aplicaciones integradas
North American Horizontal Datums. Jan Van Sickle
North American Horizontal Datums Jan Van Sickle http://www.holoscenes.com/cgi-bin/moin.cgi/easternobliquearc The New England Datum 1879 was the first geodetic datum of this type in the United States. The
Opus Projects A Web-Based Application to Administer and Process Multi- Day GPS Campaign Data
Opus Projects A Web-Based Application to Administer and Process Multi- Day GPS Campaign Data Neil D. WESTON, Gerald L. MADER and Tomás SOLER, USA Key words: GPS; Positioning; Campaign SUMMARY The National
The Use and Integrity Monitoring of IGS Products at Geoscience Australia (GA)
Australian Government Geoscience Australia The Use and Integrity Monitoring of IGS Products at Geoscience Australia (GA) Ramesh Govind, John Dawson, John Manning IGS-2004 Workshop and Symposium Berne,
Perspective of Permanent Reference Network KOPOS in Kosova
143 Perspective of Permanent Reference Network KOPOS in Kosova Meha, M. and Çaka, M. Kosovo Cadastral Agency, Kosovo Archive Building II nd floor, P.O. 10000, Prishtina, Republic of Kosovo, E-mail: [email protected],
Evolving a new Geodetic Positioning Framework: An Australian Perspective
Evolving a new Geodetic Positioning Framework: An Australian Perspective G. Johnston, J. Dawson Outline Introduction Precise Positioning National Geospatial Reference Systems Asia Pacific Reference Frame
Prof. Ludovico Biagi. Satellite Navigation and Monitoring
Prof. Ludovico Biagi Satellite Navigation and Monitoring Navigation: trajectories control positions estimations in real time, at high frequency popular applications: low accuracy (10 m) required specific
GPS Precise Point Positioning as a Method to Evaluate Global TanDEM-X Digital Elevation Model
GPS Precise Point Positioning as a Method to Evaluate Global TanDEM-X Digital Elevation Model 7 th FIG Regional Conference TS 1C Advances in GNSS Positioning and Applications I Volker Schwieger 1, Jürgen
Why do we need to improve co-locations of space geodetic techniques?
Why do we need to improve co-locations of space geodetic techniques? Zuheir Altamimi & Xavier Collilieux IGN France 1 Outline ITRF Heritage Current status of technique networks & co-locations Results from
International Global Navigation Satellite Systems Service
International Global Navigation Satellite Systems Service IGS Multi-GNSS Experiment IGS M-GEX Call for Participation www.igs.org Response to this Call for Participation in IGS M-GEX via Web Form Submission
Non-parametric estimation of seasonal variations in GNSS-derived time series
Military University of Technology, Poland ([email protected]) Seasonal variations in the frame sites can bias the frame realization. I would like to invite you to click on each of the four
Scheduling of VLBI observations to satellites with the Vienna VLBI Software (VieVS)
22 nd EVGA Working Meeting, May 17-21, 2015, Sao Miguel, Pont Delgada, Azores, Portugal Scheduling of VLBI observations to satellites with the Vienna VLBI Software (VieVS) Andreas Hellerschmied 1, J. Böhm
Geomatics Guidance Note 3
Geomatics Guidance Note 3 Contract area description Revision history Version Date Amendments 5.1 December 2014 Revised to improve clarity. Heading changed to Geomatics. 4 April 2006 References to EPSG
The Chief Directorate: National
Surveying The South African Coordinate Reference System (Part 1) by Aslam Parker, Chief Directorate: National Geo-spatial Information This article will define the various elements of the South African
GPS Precise Point Positioning with a Difference*
GPS Precise Point Positioning with a Difference* Pierre Héroux and Jan Kouba Geodetic Survey Division, Geomatics Canada Natural Resources Canada 615 Booth Street Ottawa, Ontario K1A E9 [email protected]
The IGS: A Multi-GNSS Service
The IGS: A Multi-GNSS Service Chris Rizos, Urs Hugentobler, Ruth Neilan IUGG IAG Structure International Union of Geodesy and Geophysics (IUGG) 65 Member Countries (Adhering Bodies), 8 Associations International
WHAT YOU NEED TO USE THE STATE PLANE COORDINATE SYSTEMS
WHAT YOU NEED TO USE THE STATE PLANE COORDINATE SYSTEMS N & E State Plane Coordinates for Control Points AZIMUTHS - True, Geodetic, or Grid - Conversion from Astronomic to Geodetic (LaPlace Correction)
A New Map of UK Vertical Land Movements based on Continuous GPS and Absolute Gravity
A New Map of UK Vertical Land Movements based on Continuous GPS and Absolute Gravity Dionne Hansen(Nottingham), Norman Teferle(Nottingham), Richard Bingley(Nottingham) And Simon Williams(POL) EGU2009,
Towards the Realization of Geo-Referencing Infrastructure for Dynamic Japan (GRID-Japan) Hiromichi TSUJI and Kazuo KOMAKI
1 Towards the Realization of Geo-Referencing Infrastructure for Dynamic Japan (GRID-Japan) Hiromichi TSUJI and Kazuo KOMAKI Abstract The recent change of the geodetic reference system of Japan from the
Maintaining High Accuracy in Modern Geospatial Data
Maintaining High Accuracy in Modern Geospatial Data Patrick Cunningham President [email protected] www.bluemarblegeo.com +1 (207) 582 6747 Copyright 2010 Blue Marble Geographics Concepts Geodesy -
SKPOS ( EUPOS ) network solution monitoring application
S ( EUPOS ) network solution monitoring application Karol Smolík Branislav Droščák, PhD. Geodetic and Cartographic Institute BRATISLAVA [email protected] [email protected] 18 th conference
Pacific Sea Level Monitoring Project
Record 2015/04 GeoCat 82325 Pacific Sea Level Monitoring Project CGPS Coordinate Time Series Analysis Report Jia, M., Dawson, J., Twilley, B. and Hu, G. APPLYING GEOSCIENCE TO AUSTRALIA S MOST IMPORTANT
Günter Seeber. Satellite Geodesy 2nd completely revised and extended edition
Günter Seeber Satellite Geodesy 2nd completely revised and extended edition Walter de Gruyter Berlin New York 2003 Contents Preface Abbreviations vii xvii 1 Introduction 1 1.1 Subject of Satellite Geodesy...
EPN Time Series Analysis:
EPN Time Series Analysis: BEFORE AND AFTER GPSwk1400 AMBRUS KENYERES EPN TIME SERIES ANALYSIS SPECIAL PROJECT EUREF2007 symposium, 6-9 june 2007 london OUTLINE TIME SERIES WEB PAGES REVITALIZED ( as announced
GNSS and Heighting, Practical Considerations. A Parker National Geo-spatial Information Department of Rural Development and Land Reform
GNSS and Heighting, Practical Considerations A Parker National Geo-spatial Information Department of Rural Development and Land Reform GNSS Global Navigation Satellite Systems (GNSS) Global Positioning
Alfons-Goppel-Str. 11, D-80539 München
Combination method of different space geodesy techniques for EOP and terrestrial reference frame determination Vojtěch Štefka Alfons-Goppel-Str. 11, D-80539 München Contents: Introduction: ICRS, ITRS and
EPN Special Project Real-Time Analysis Status Report
EPN Special Project Real-Time Analysis Status Report Wolfgang Söhne Federal Agency for Cartography and Geodesy (BKG), Germany Highlights Real-time observational data EUREF regional broadcaster Broadcaster
Korea Geodetic Framework for Sustainable Development*
UNITED NATIONS E/CONF.102/IP.17 ECONOMIC AND SOCIAL COUNCIL Nineteenth United Nations Regional Cartographic Conference for Asia and the Pacific Bangkok, 29 October 1 November 2012 Item 6(b) of the provisional
LOCAL CORS Network Scene
SIRGAS Operations and the Regional LOCAL CORS Network Scene Claudio Brunini President Laura Sánchez Vice President Sonia Maria Alves Costa SIRGAS-WGI: Reference System Tomas Marino Herrera SIRGAS-WGII:
Absolute GNSS Antenna Calibration with a Robot: Repeatability, GLONASS and Carrier-to-Noise Pattern
Absolute GNSS Antenna Calibration with a Robot: Repeatability, GLONASS and Carrier-to-Noise Pattern Gerhard Wübbena, Martin Schmitz, Gerald Boettcher Geo++ GmbH 30827 Garbsen Germany www.geopp.com Content
Norwegian Hydrographic Service. and. [Contractor] APPENDIX B. Technical Specifications. MAREANO Programme. [Date]
Norwegian Hydrographic Service and [Contractor] APPENDIX B Technical Specifications MAREANO Programme [Date] Page 1 of 17 Technical Specifications Table of content: 1 Overview... 3 2 Terms and Definitions...
Online GPS processing services: an initial study
GPS Solut (2006) 10: 12 20 DOI 10.1007/s10291-005-0147-5 ORIGINAL ARTICLE Reza Ghoddousi-Fard Peter Dare Online GPS processing services: an initial study Received: 15 September 2004 Accepted: 3 May 2005
GGOS Bureau for Networks and Commuications Michael Pearlman Harvard-Smithsonian Center for Astrophysics Cambridge MA USA [email protected].
GGOS Bureau for Networks and Commuications Michael Pearlman Harvard-Smithsonian Center for Astrophysics Cambridge MA USA [email protected] GGOS Bureau for Networks and Communications Donatello
AFREF First GNSS Station : Lessons learnt Building up a Continental Reference Frame
AFREF First GNSS Station : Lessons learnt Building up a Continental Reference Frame Joel van Cranenbroeck, Director of Technology and Project Development Leica Geosystems AG, Geomatic Division CH-9435
Recent Activities of the SGO Local Analysis Centre
Recent Activities of the SGO Local Analysis Centre Tamás Jambor [email protected], Ambrus Kenyeres [email protected] Satellite Geodetic Observatory, Institute of Geodesy, Cartography and Remote Sensing
NTRIP-based DGPS service in Hungary
NTRIP-based DGPS service in Hungary Tamás Horváth FÖMI Satellite Geodetic Observatory Penc, Hungary The Satellite Geodetic Observatory Department of the Institute of Geodesy, Cartography and Remote Sensing
GNSS-PW Progress Session 5: Other GRUAN products
GNSS-PW Progress Session 5: Other GRUAN products Markus Bradke Helmholtz-Centre Potsdam - GFZ German Research Centre for Geosciences Telegrafenberg, 14473 Potsdam, Germany Department 1: Geodesy and Remote
THE NEED TO IMPLEMENT CONSTRUCTION DEFORMATION SPATIAL MONITORING SYSTEMS IN ROMANIA
THE NEED TO IMPLEMENT CONSTRUCTION DEFORMATION SPATIAL MONITORING SYSTEMS IN ROMANIA Cristian ONU, Lecturer PhD. Eng., Technical University Gheorghe Asachi of Iasi, Romania, e-mail: [email protected]
PLOTTING SURVEYING DATA IN GOOGLE EARTH
PLOTTING SURVEYING DATA IN GOOGLE EARTH D M STILLMAN Abstract Detail surveys measured with a total station use local coordinate systems. To make the data obtained from such surveys compatible with Google
The Applanix SmartBase TM Software for Improved Robustness, Accuracy, and Productivity of Mobile Mapping and Positioning
The Applanix SmartBase TM Software for Improved Robustness, Accuracy, and Productivity of Mobile Mapping and Positioning Joe Hutton and Edith Roy, Applanix Corporation Introduction Applanix, along with
Recent Advances in Pixel Localization Accuracy
Recent Advances in Pixel Localization Accuracy U. Balss, X. Cong, M. Eineder, H. Breit, T. Fritz, B. Schättler Remote Sensing Technology Institute (IMF) German Aerospace Center (DLR) Outline Operational
Lecture 2. Map Projections and GIS Coordinate Systems. Tomislav Sapic GIS Technologist Faculty of Natural Resources Management Lakehead University
Lecture 2 Map Projections and GIS Coordinate Systems Tomislav Sapic GIS Technologist Faculty of Natural Resources Management Lakehead University Map Projections Map projections are mathematical formulas
Case Study Australia. Dr John Dawson A/g Branch Head Geodesy and Seismic Monitoring Geoscience Australia. Chair UN-GGIM-AP WG1 Chair APREF.
Case Study Australia Dr John Dawson A/g Branch Head Geodesy and Seismic Monitoring Geoscience Australia Chair UN-GGIM-AP WG1 Chair APREF Page 1 Overview 1. Australian height system Australian Height Datum
Digital Cadastral Maps in Land Information Systems
LIBER QUARTERLY, ISSN 1435-5205 LIBER 1999. All rights reserved K.G. Saur, Munich. Printed in Germany Digital Cadastral Maps in Land Information Systems by PIOTR CICHOCINSKI ABSTRACT This paper presents
GNSS satellites as co-locations for a combined GNSS and SLR analysis
GNSS satellites as co-locations for a combined GNSS and SLR analysis D. Thaller 1), K. Sośnica 1), R. Dach 1), A. Jäggi 1), M. Mareyen 2), B. Richter 2), G. Beutler 1) (1) Astronomical Institute, University
Global Positioning System
B. Hofmann-Wellenhof, H. Lichtenegger, and J. Collins Global Positioning System Theory and Practice Third, revised edition Springer-Verlag Wien New York Contents Abbreviations Numerical constants xix xxiii
Satellite Posi+oning. Lecture 5: Satellite Orbits. Jan Johansson [email protected] Chalmers University of Technology, 2013
Lecture 5: Satellite Orbits Jan Johansson [email protected] Chalmers University of Technology, 2013 Geometry Satellite Plasma Posi+oning physics Antenna theory Geophysics Time and Frequency GNSS
Polish Spatial Data Infrastructure - from the Concept towards its Implementation
Polish Spatial Data Infrastructure - from the Concept towards its Implementation 8th EC-GI&GIS Workshop ESDI A Work in Progress Dublin, July 3-5 June 2001 r. Adam Linsenbarth, Ewa Wysocka Institute of
Development of new hybrid geoid model for Japan, GSIGEO2011. Basara MIYAHARA, Tokuro KODAMA, Yuki KUROISHI
Development of new hybrid geoid model for Japan, GSIGEO2011 11 Development of new hybrid geoid model for Japan, GSIGEO2011 Basara MIYAHARA, Tokuro KODAMA, Yuki KUROISHI (Published online: 26 December 2014)
Deformation Monitoring and Analysis Using Regional GPS Permanent Tracking Station Networks
Deformation Monitoring and Analysis Using Regional GPS Permanent Tracking Station Networks Youjian HU, China P. R. and Kefei ZHANG and Gangjun LIU, Australia Key words: CORS, ITRF, precise ephemeris, deformation
Enabling RTK-like positioning offshore using the global VERIPOS GNSS network. Pieter Toor GNSS Technology Manager
Enabling RTK-like positioning offshore using the global VERIPOS GNSS network Pieter Toor GNSS Technology Manager Introduction PPP/RTK Positioning Techniques PPP-AR Technology Presentation Overview PPP-AR
RealtimePPP using EUREF and IGS Networks
RealtimePPP using EUREF and IGS Networks Georg Weber 1) Leos Mervart 2), Peter Neumaier 1), Andrea Stürze 1) 1) Federal Agency for Cartography and Geodesy, Frankfurt am Main, Germany 2) Technical University
SURVEYING WITH GPS. GPS has become a standard surveying technique in most surveying practices
SURVEYING WITH GPS Key Words: Static, Fast-static, Kinematic, Pseudo- Kinematic, Real-time kinematic, Receiver Initialization, On The Fly (OTF), Baselines, Redundant baselines, Base Receiver, Rover GPS
Analysis of RTN Measurement Results Referring to ASG-EUPOS Network
GEOMATICS AND ENVIRONMENTAL ENGINEERING Volume 4 Number 1/1 2010 Andrzej Uznañski* Analysis of RTN Measurement Results Referring to ASG-EUPOS Network 1. Introduction In June 2008 ASG-EUPOS network system,
EUREF2013 SYMPOSIUM 29 MAY 01 JUNE 2013 BUDAPEST SCIENTIFIC AND SOCIAL PROGRAMMES
EUREF2013 SYMPOSIUM 29 MAY 01 JUNE 2013 BUDAPEST SCIENTIFIC AND SOCIAL PROGRAMMES Sponsors: Day 1 (Wednesday, May 29) 08:00 09:00 REGISTRATION 09:00 10:00 Opening Session Chair: Ambrus Kenyeres 09:00 09:10
The Map Grid of Australia 1994 A Simplified Computational Manual
The Map Grid of Australia 1994 A Simplified Computational Manual The Map Grid of Australia 1994 A Simplified Computational Manual 'What's the good of Mercator's North Poles and Equators, Tropics, Zones
Towards Real-time GNSS Troposphere Delay Monitoring Service for Poland
Towards Real-time GNSS Troposphere Delay Monitoring Service for Poland Tomasz Hadas, Kaplon Jan, Bosy Jaroslaw Institute of Geodesy and Geoinformatics Wroclaw University of Environmental and Life Sciences
The new ISO standard 17123-8 for checking GNSS field measuring systems
The new ISO standard 1713-8 for checking GNSS field measuring systems Hans Heister Institute for Geodesy - Geodetic Metrology - UniBw München D-85577 Neubiberg [email protected] FIG Working Week - Stockholm
Railway Track Deformation Surveying Using GNSS Real and Virtual Reference
85 Railway Track Deformation Surveying Using GNSS Real and Virtual Reference Švábenský, O. 1, Plášek, O. 2 and Bureš, J. 1 1 Brno University of Technology, Faculty of Civil Engineering, Institute of Geodesy,
Local monitoring by low cost devices and free and open sources softwares
Local monitoring by low cost devices and free and open sources softwares Abstract Ludovico Biagi, Florin-Catalin Grec, Marco Negretti, Maria Grazia Visconti Politecnico di Milano, DICA@ComoCampus The purpose
SWEPOS and its GNSS-Based Positioning Services
SWEPOS and its GNSS-Based Positioning Services Dan NORIN, Bo JONSSON and Peter WIKLUND, Sweden Key words: GPS, GLONASS, GNSS, reference stations, network RTK SUMMARY SWEPOS, the Swedish network of permanent
A guide to coordinate systems in Great Britain
A guide to coordinate systems in Great Britain An introduction to mapping coordinate systems and the use of GPS datasets with Ordnance Survey mapping D00659 v2.3 Mar 2015 Crown copyright Page 1 of 43 Contents
RELEASE NOTES. Trimble. SPS Series Receivers. Introduction. New features and changes
RELEASE NOTES Trimble SPS Series Receivers Introduction New features and changes Version 4.41 Revision A April 2011 F Corporate office Trimble Navigation Limited Engineering and Construction group 5475
Survey Ties Guidelines
North Carolina Board of Examiners for Engineers and Surveyors Survey Ties Guidelines The North Carolina Board of Examiners for Engineers and Surveyors is providing this document to serve as an interpretative
On May 27, 2010, the U.S. Air. Satellite. Antenna Phase Center and Attitude Modeling
GPS IIF-1 Satellite Antenna Phase Center and Attitude Modeling Florian Dilssner Logica/European Space Agency Calculating the distances between satellites and user equipment is a basic operation for GNSS
SATELLITE TIME-TRANSFER: RECENT DEVELOPMENTS AND PROJECTS
SATELLITE TIME-TRANSFER: RECENT DEVELOPMENTS AND PROJECTS W. LEWANDOWSKI 1 and J. NAWROCKI 2 1 Bureau International des Poids et Mesures, Sèvres, France e-mail: [email protected] 2 Astrogeodynamical
IDS Data Flow Coordination (2009)
IDS Data Flow Coordination (2009) Introduction Two data centers currently support the archiving and access activities for the IDS: Crustal Dynamics Data Information System (CDDIS), NASA GSFC, Greenbelt,
Preliminary Study of Modeling the Precipitable Water Vapor Based on Radiosonde Data
Preliminary Study of Modeling the Precipitable Water Vapor Based on Radiosonde Data Ilke DENIZ and Cetin MEKIK, Turkey Key words: radiosonde, tropospheric zenith delay, precipitable water vapour SUMMARY
DEVELOPING A MULTI-GNSS ANALYSIS SOFTWARE FOR SCIENTIFIC PURPOSES
DEVELOPING A MULTI-GNSS ANALYSIS SOFTWARE FOR SCIENTIFIC PURPOSES Michael Meindl (1), Rolf Dach (1), Stefan Schaer (2), Urs Hugentobler (3), Gerhard Beutler (1) (1) Astronomical Institute, University of
GPS LOCATIONS FOR GIS: GETTING THEM RIGHT THE FIRST TIME
GPS LOCATIONS FOR GIS: GETTING THEM RIGHT THE FIRST TIME Caroline Erickson and Pierre Héroux Geodetic Survey Division, Geomatics Canada Natural Resources Canada 615 Booth Street Ottawa, Ontario K1A 0E9
