Trimble CenterPoint RTX Post-Processing Services FAQs

Size: px
Start display at page:

Download "Trimble CenterPoint RTX Post-Processing Services FAQs"

Transcription

1 Trimble CenterPoint RTX Post-Processing Services FAQs What is Trimble RTX technology? 30 September 2013 Trimble RTX TM (Real Time extended) is a high-accuracy, global GNSS correction technology that combines real-time data with innovative positioning and compression algorithms to provide centimeter level positioning accuracy How does Trimble RTX technology work? Trimble RTX technology utilizes real-time data from a global reference station infrastructure to compute and relay satellite orbit, satellite clock and other system adjustments to the receiver, resulting in centimeter level positions that deliver repeatable high accuracy positions worldwide. These adjustments are transmitted to the receiver via satellite, Internet Protocol (IP or Cellular), and through post-processing delivery. What solutions are enabled by Trimble RTX Technology? Trimble RTX Technology now enables several different solutions: Trimble CenterPoint TM RTX TM post-processing service Trimble CenterPoint TM RTX TM correction services Trimble RangePoint RTX correction service Trimble xfill TM technology Trimble Pivot RTX App Trimble Pivot RTX-PP App What is the Trimble CenterPoint RTX post-processing service? CenterPoint RTX post-processing uses the Trimble RTX technology with the GPS, GLONASS and QZSS satellite systems to post-process user submitted observation files. Dual frequency data files can be submitted through the web service, at When processing is complete, a report will be sent via . The CenterPoint RTX post-processing PREVIEW service uses the Trimble RTX technology with the GPS, GLONASS, QZSS AND Galileo and BeiDou satellite systems to post-process user submitted observation files. Because the Galileo and BeiDou satellite systems have not been certified for commercial use, the PREVIEW service is for testing purposes only.

2 Where are the CenterPoint RTX post-processing services avaliable? The CenterPoint RTX post-processing services are accessible at Click on the Now Supporting Galileo and BeiDou image to access the PREVIEW service. Who can use the CenterPoint RTX post-processing services? The CenterPoint RTX post-processing service and the PREVIEW service are provided as free services to all users of supported GNSS hardware. For more information, or to check if your hardware is supported, visit What are the requirements of my observation file? Observation files must meet the following requirements: Data formats accepted include RINEX 2 and RINEX 3 data format and for Trimble proprietary data formats (e.g. DAT, T01, T02 files) Data must be collected for a minimum of 1 hour and cannot exceed 24 hours in length Data files must be static only Data files must contain dual frequency observations (L1/L2) Receivers must be on the supported receiver list at The service does not work with data files from unsupported receivers. Data must have been collected after 14 May 2011 The CenterPoint RTX post-processing PREVIEW service has similar requirements as noted above, however: 0nly Trimble receivers are supported Data must have been collected after 12 September 2013 What receivers can I use with the CenterPoint RTX postprocessing services? Receivers must be on the supported receiver list, which can be found at The CenterPoint RTX post-processing PREVIEW service only supports Trimble hardware at this time.

3 What is the recommended length of a data session? The achievable accuracy is very closely correlated to the length of the observation file. It is recommended to use data sets that are a minimum one hour in length, and this will deliver 2cm horizontal accuracy. Longer data files will yield even greater accuracy and can approach 1cm. The post-processing services do not accept observation files that are longer than twenty-four hours in length. What is the recommended maximum observation update rate? The maximum observation update rate is one second. How does the obervation rate affect the accuracy? The observation update rate should not impact accuracy but higher update rates allow for easier detection and fixing of carrier phase cycle slips. The minimum recommended observation update rate is therefore ten seconds. What coordinate systems are supported? CenterPoint RTX corrected positions are originally derived in ITRF2008 (current epoch), however it has been identified that users often need their data in a different reference frame. The CenterPoint RTX post-processing services therefore offer many different reference frames by which data can be transformed. The reference frames currently supported include: ITRF 1988 to ITRF 2008 NAD83, NAD83-CSRS, NAD83-CORS96, NAD , NAD83-MA11, NAD83-PA11 ETRS89, ETRF2000-R05 GDA94 SIRGAS2000, SIRGAS95, SIRGAS-CON What accuracy level can I achieve using the CenterPoint RTX postprocessing services? The achievable accuracy level of the CenterPoint RTX post-processing services is two centimeters or better horizontal accuracy and approximately 4 centimeters in vertical. This is based on a minimum one hour data session. Accuracy can approach one centimeter horizontal accuracy and approximately two centimeters in vertical, as the data session approaches but does not exceed 24 hours in length.

4 When should I use the tectonic plates option? If individual station velocities are unknown and the user desires to determine a position on a specific tectonic plate the post-processing service allows transforming the ITRF2008 position to another frame with a different reference epoch and on a selected tectonic plate. The service uses plate rotations provided by Altamini (2007) and Bird (2003). The following tectonic plates are supported: Africa, Amurian, Antarctica, Arabia, Australia, Caribbean, Cocos, Eurasia, India, Juan de Fuca, Nazca, North America, Nubia, Okhotsk, Pacific, Philippine, Rivera, Scotia, South America, South Bismarck, Somalia, Yangtze. Is the accuracy achieved in any coordinate system or only in ITRF2008? CenterPoint RTX post-processing is done in the IRTF2008 reference frame at the observation epoch. Transforming the positions computed at the observation epoch to a fixed epoch, requires knowledge of the station velocity due to the tectonic plate motion. If the velocity is not available, it must be determined from a tectonic plate model such as NNR-MORVEL56 or NNR-NUVEL-1A. The accuracy of the velocity estimate will degrade the accuracy of the position computed for a fixed epoch in ITRF2008. If transforming to another reference frame such as NAD83, the accuracy of the transformation parameters will further degrade the accuracy of the computed position. What is ITRF and ITRF 2008? The Earth is constantly changing shape. To be understood in context, when the motion of the Earth's crust is observed, it must be referenced. A Terrestrial Reference frame provides a set of coordinates of some points located on the Earth's surface. It can be used to measure plate tectonics, regional subsidence or loading [1] and/or used to represent the Earth when measuring its rotation in space. This rotation is measured with respect to a frame tied to stellar objects, called a celestial reference frame. The International Earth Rotation and Reference Systems Service (IERS) was created in 1988 to establish and maintain a Celestial Reference Frame, the ICRF, a Terrestrial Reference Frame, the ITRF. The Earth Orientation Parameters (EOPs) connect these two frames together. These frames provide a common reference to compare observations and results from different locations [1]. Nowadays, four main geodetic techniques are used to compute accurate coordinates: the GPS, VLBI, SLR, and DORIS. Since the tracking network equipped with the instruments of those techniques is evolving and the period of data available increases with time, the ITRF is constantly being updated. 11 realizations of the ITRS were set up from The latest is the ITRF2005. All these realizations include station positions and velocities. They model secular Earth s crust

5 changes that s why they can be used to compare observations from different epochs. All the higher frequencies of the station displacements can be accessed with the IERS conventions, chapter 7 [2]. Continuity between the realizations has been ensured as much as possible when adopting conventions for ITRF definitions. The relationship linking all these solutions is of utmost importance. They are supplied here by the transformation parameters. The International Terrestrial Reference System (ITRS) is a world spatial reference system corotating with the Earth in its diurnal motion in space. The IERS, in charge of providing global references to the astronomical, geodetic and geophysical communities, supervises the realization of the ITRS. Realizations of the ITRS are produced by the IERS ITRS Product Center (ITRS-PC) under the name International Terrestrial Reference Frames (ITRF). ITRF coordinates were obtained by combination of individual TRF solutions computed by IERS analysis centers using the observations of Space Geodesy techniques : GPS, VLBI, SLR, LLR and DORIS. They all use networks of stations located on sites covering the whole Earth. (Source: International Terrestrial Reference Frame, What is the accuracy of the coordinate transformation? This will depend on the process used to compute the transformation parameters and will likely be different for each reference frame. The accuracy will also be time dependent. What is the difference between ITRF and WGS84? ITRF is a global datum used primarily by the scientific community and is realised by a large network of fiducial (i.e. fundamental trust) sites around the globe. ITRF sites are typically continuously operating GPS stations (including the Australian Regional Geodetic Network (ARGN) managed by Geoscience Australia), Very Long Baseline Interferometry (VLBI) and Satellite Laser ranging (SLR) stations. The ITRF is defined by the coordinates and velocities of the stations at a specified reference epoch. ITRF sites are located on different tectonic plates which move at up 10 cm per year with respect to each other (Figure 2). As a consequence, the velocity for each ITRF site with respect to a stable earth enables ITRF coordinates to be computed for any specified epoch. Because ITRF coordinates are constantly changing, ITRF is referred to as a dynamic datum. The latest realisation of ITRF is ITRF2005. (Source: International Terrestrial Reference Frame, WGS84 is a global datum used by the United States Global Positioning System. The datum is currently defined by the coordinates and velocities of 18 GPS tracking stations maintained by the US Air Force (USAF) and US National Geospatial Intelligence Agency (NGA). The latest realisation of WGS84 is WGS84(G1150) where 1150 refers to the GPS week of realisation. WGS84 is now coincident with the latest realisation of ITRF at the 10 cm level (NGA, 2003). WGS84 is kept in alignment with ITRF to ensure that the GPS broadcast ephemeris is not degraded by holding coordinates of the GPS tracking stations fixed when they are subject to relative deformation of up to 10 cm a year. (Source: Stanaway, Richard, Quickclose, Can I use any GPS antenna type in my observation? No, antennas need to be listed in the supported antenna list found at

6 What happens if my antenna type is not supported or unknown? The CenterPoint RTX post-processing services will not process unsupported antenna types. Does the CenterPoint RTX post-processing service use the geoid model or the ellipsoid model to establish elevation/height? The CenterPoint RTX post-processing service uses the ellipsoid model. How does the ionosphere affect CenterPoint RTX positioning? GNSS signals travel through a part of the earth s atmosphere called the ionosphere. When the signal is travelling through the ionosphere, refraction, or bending of the wave, occurs. The level of ionospheric activity is dependent on: Solar activity; it is highest at solar maxima during an eleven year solar cycle; the next solar maximum is expected to be in2013 Time of day (highest at local noon) Season (highest at equinoxes March/September) The ionospheric effect is frequency dependent, i.e. under normal conditions, dual-frequency (L1 and L2) code/carrier phase observations can be used to essentially remove ionospheric errors. This is what is done in RTX positioning, i.e. the position estimate is independent of the level of ionospheric effects as long as no ionospheric scintillation is occurring. Under extreme conditions, the ionosphere can become highly stratified (irregular distribution of charged particles) leading to GNSS signal scintillation. Ionospheric scintillation involves fluctuation in the phase and amplitude of GNSS signals. In extreme cases, scintillation can cause loss of signal tracking (i.e. cycle slips). It is important to note that the effects of scintillation are not removed by dual-frequency observations. Trimble has setup a global ionospheric scintillation sounding network, which detects scintillation effects and is able to give up-to-date warning information on scintillation effects in different parts of the world. Typically scintillation occurs in equatorial regions after sunset for several hours. In polar regions, scintillation can occur at any time. Mid-latitude regions are sometimes affected by Travelling Ionospheric Disturbances (TIDs).

Günter Seeber. Satellite Geodesy 2nd completely revised and extended edition

Günter Seeber. Satellite Geodesy 2nd completely revised and extended edition Günter Seeber Satellite Geodesy 2nd completely revised and extended edition Walter de Gruyter Berlin New York 2003 Contents Preface Abbreviations vii xvii 1 Introduction 1 1.1 Subject of Satellite Geodesy...

More information

Introducing Ambiguity Resolution in Webhosted Global Multi-GNSS Precise Positioning with Trimble RTX-PP

Introducing Ambiguity Resolution in Webhosted Global Multi-GNSS Precise Positioning with Trimble RTX-PP Introducing Ambiguity Resolution in Webhosted Global Multi-GNSS Precise Positioning with Trimble RTX-PP Ken Doucet, Michael Herwig, Adrian Kipka, Philip Kreikenbohm, Herbert Landau, Rodrigo Leandro, Matthias

More information

Evolving a new Geodetic Positioning Framework: An Australian Perspective

Evolving a new Geodetic Positioning Framework: An Australian Perspective Evolving a new Geodetic Positioning Framework: An Australian Perspective G. Johnston, J. Dawson Outline Introduction Precise Positioning National Geospatial Reference Systems Asia Pacific Reference Frame

More information

Online Precise Point Positioning Using the. Natural Resources Canada Canadian Spatial Reference System (CSRS-PPP)

Online Precise Point Positioning Using the. Natural Resources Canada Canadian Spatial Reference System (CSRS-PPP) Online Precise Point Positioning Using the Natural Resources Canada Canadian Spatial Reference System (CSRS-PPP) Thomas Nylen and Seth White UNAVCO October 2007 I. Precise Point Positioning Precise Point

More information

PLM PRODUCT INFORMATION

PLM PRODUCT INFORMATION PLM PRODUCT INFORMATION Agricultural Equipment UK & ROI Precision Farming Reference UK- PLM_03_13 Date: 1st May 2013 Announcing the new RangePoint RTX Correction Service RangePoint RTX is a GPS and GLONASS

More information

Alfons-Goppel-Str. 11, D-80539 München

Alfons-Goppel-Str. 11, D-80539 München Combination method of different space geodesy techniques for EOP and terrestrial reference frame determination Vojtěch Štefka Alfons-Goppel-Str. 11, D-80539 München Contents: Introduction: ICRS, ITRS and

More information

The IGS: A Multi-GNSS Service

The IGS: A Multi-GNSS Service The IGS: A Multi-GNSS Service Chris Rizos, Urs Hugentobler, Ruth Neilan IUGG IAG Structure International Union of Geodesy and Geophysics (IUGG) 65 Member Countries (Adhering Bodies), 8 Associations International

More information

North American Horizontal Datums. Jan Van Sickle

North American Horizontal Datums. Jan Van Sickle North American Horizontal Datums Jan Van Sickle http://www.holoscenes.com/cgi-bin/moin.cgi/easternobliquearc The New England Datum 1879 was the first geodetic datum of this type in the United States. The

More information

Prof. Ludovico Biagi. Satellite Navigation and Monitoring

Prof. Ludovico Biagi. Satellite Navigation and Monitoring Prof. Ludovico Biagi Satellite Navigation and Monitoring Navigation: trajectories control positions estimations in real time, at high frequency popular applications: low accuracy (10 m) required specific

More information

SURVEYING WITH GPS. GPS has become a standard surveying technique in most surveying practices

SURVEYING WITH GPS. GPS has become a standard surveying technique in most surveying practices SURVEYING WITH GPS Key Words: Static, Fast-static, Kinematic, Pseudo- Kinematic, Real-time kinematic, Receiver Initialization, On The Fly (OTF), Baselines, Redundant baselines, Base Receiver, Rover GPS

More information

Satellite Posi+oning. Lecture 5: Satellite Orbits. Jan Johansson jan.johansson@chalmers.se Chalmers University of Technology, 2013

Satellite Posi+oning. Lecture 5: Satellite Orbits. Jan Johansson jan.johansson@chalmers.se Chalmers University of Technology, 2013 Lecture 5: Satellite Orbits Jan Johansson jan.johansson@chalmers.se Chalmers University of Technology, 2013 Geometry Satellite Plasma Posi+oning physics Antenna theory Geophysics Time and Frequency GNSS

More information

International Global Navigation Satellite Systems Service

International Global Navigation Satellite Systems Service International Global Navigation Satellite Systems Service IGS Multi-GNSS Experiment IGS M-GEX Call for Participation www.igs.org Response to this Call for Participation in IGS M-GEX via Web Form Submission

More information

Enabling RTK-like positioning offshore using the global VERIPOS GNSS network. Pieter Toor GNSS Technology Manager

Enabling RTK-like positioning offshore using the global VERIPOS GNSS network. Pieter Toor GNSS Technology Manager Enabling RTK-like positioning offshore using the global VERIPOS GNSS network Pieter Toor GNSS Technology Manager Introduction PPP/RTK Positioning Techniques PPP-AR Technology Presentation Overview PPP-AR

More information

GNSS and Heighting, Practical Considerations. A Parker National Geo-spatial Information Department of Rural Development and Land Reform

GNSS and Heighting, Practical Considerations. A Parker National Geo-spatial Information Department of Rural Development and Land Reform GNSS and Heighting, Practical Considerations A Parker National Geo-spatial Information Department of Rural Development and Land Reform GNSS Global Navigation Satellite Systems (GNSS) Global Positioning

More information

European Position Determination System. Guideline for EUPOS Reference Frame Fixing

European Position Determination System. Guideline for EUPOS Reference Frame Fixing European Position Determination System Guideline for EUPOS Reference Frame Fixing Version 1.0 21 September 2007 Copyright: Publisher: 2007 by the International EUPOS Steering Committee Office of the International

More information

European Geodetic Status European Geodetic Reference Systems

European Geodetic Status European Geodetic Reference Systems European Geodetic Status European Geodetic Reference Systems Reporter: Hansjörg Kutterer, Federal Agency of Cartography and Geodäsie (BKG), Germany Contributors to this report: Johannes Ihde, Federal Agency

More information

Post Processing Service

Post Processing Service Post Processing Service The delay of propagation of the signal due to the ionosphere is the main source of generation of positioning errors. This problem can be bypassed using a dual-frequency receivers

More information

Global Positioning System

Global Positioning System B. Hofmann-Wellenhof, H. Lichtenegger, and J. Collins Global Positioning System Theory and Practice Third, revised edition Springer-Verlag Wien New York Contents Abbreviations Numerical constants xix xxiii

More information

GEOGRAPHIC INFORMATION SYSTEMS Lecture 21: The Global Positioning System

GEOGRAPHIC INFORMATION SYSTEMS Lecture 21: The Global Positioning System GEOGRAPHIC INFORMATION SYSTEMS Lecture 21: The Global Positioning System The Global Positioning System - recognize that GPS is only one of several Global Navigation Satellite Systems (GNSS) - the Russian

More information

GPS Precise Point Positioning as a Method to Evaluate Global TanDEM-X Digital Elevation Model

GPS Precise Point Positioning as a Method to Evaluate Global TanDEM-X Digital Elevation Model GPS Precise Point Positioning as a Method to Evaluate Global TanDEM-X Digital Elevation Model 7 th FIG Regional Conference TS 1C Advances in GNSS Positioning and Applications I Volker Schwieger 1, Jürgen

More information

The Status and Development of the APREF GNSS Network Guorong Hu

The Status and Development of the APREF GNSS Network Guorong Hu The Status and Development of the APREF GNSS Network Guorong Hu Geodesy, Geoscience Australia, Canberra, Australia Outline Introduction Objectives How the reference frame is derived Services and applications

More information

The Chief Directorate: National

The Chief Directorate: National Surveying The South African Coordinate Reference System (Part 1) by Aslam Parker, Chief Directorate: National Geo-spatial Information This article will define the various elements of the South African

More information

Online GPS processing services: an initial study

Online GPS processing services: an initial study GPS Solut (2006) 10: 12 20 DOI 10.1007/s10291-005-0147-5 ORIGINAL ARTICLE Reza Ghoddousi-Fard Peter Dare Online GPS processing services: an initial study Received: 15 September 2004 Accepted: 3 May 2005

More information

GEOPHYSICAL EFFECTS ON SITE DISPLACEMENTS FOR PERMANENT GPS TRACKING STATIONS IN TAIWAN

GEOPHYSICAL EFFECTS ON SITE DISPLACEMENTS FOR PERMANENT GPS TRACKING STATIONS IN TAIWAN GEOPHYSICAL EFFECTS ON SITE DISPLACEMENTS FOR PERMANENT GPS TRACKING STATIONS IN TAIWAN C. C. Chang Department of Surveying and Mapping Engineering Chung Cheng Institute of Technology Tahsi, Taoyuan 335,

More information

GPS Precise Point Positioning with a Difference*

GPS Precise Point Positioning with a Difference* GPS Precise Point Positioning with a Difference* Pierre Héroux and Jan Kouba Geodetic Survey Division, Geomatics Canada Natural Resources Canada 615 Booth Street Ottawa, Ontario K1A E9 heroux@geod.nrcan.gc.ca

More information

Chapter 34 Latest GNSS Results of the CMONOC Network and Its Application in Earthquake Monitoring

Chapter 34 Latest GNSS Results of the CMONOC Network and Its Application in Earthquake Monitoring Chapter 34 Latest GNSS Results of the CMONOC Network and Its Application in Earthquake Monitoring Junping Chen, Yize Zhang, Yibing Xie, Weijie Tan, Sainan Yang and Bin Wu Abstract Crustal Movement Observation

More information

Economic and Social Council 8 July 2016

Economic and Social Council 8 July 2016 ADVANCE UNEDITED VERSION UNITED NATIONS E/C.20/2016/4/Add.1 Economic and Social Council 8 July 2016 Committee of Experts on Global Geospatial Information Management Sixth session New York, 3-5 August 2016

More information

Korea Geodetic Framework for Sustainable Development*

Korea Geodetic Framework for Sustainable Development* UNITED NATIONS E/CONF.102/IP.17 ECONOMIC AND SOCIAL COUNCIL Nineteenth United Nations Regional Cartographic Conference for Asia and the Pacific Bangkok, 29 October 1 November 2012 Item 6(b) of the provisional

More information

DESIMETERSYSTEM FOR HØYNØYAKTIG POSISJONERING OG NAVIGASJON

DESIMETERSYSTEM FOR HØYNØYAKTIG POSISJONERING OG NAVIGASJON DESIMETERSYSTEM FOR HØYNØYAKTIG POSISJONERING OG NAVIGASJON John A. Vint Survey Manager Thales GeoSolutions Norge AS Hønefoss, 7. november 2003 Scope of Presentation Introduction Summary of GPS Errors.

More information

Congreso Internacional Geomática Andina 2012 4 y 5 de junio, Bogotá, D. C., Colombia

Congreso Internacional Geomática Andina 2012 4 y 5 de junio, Bogotá, D. C., Colombia Claudio Brunini SIRGAS President UNLP - CONICET Argentina Laura Sánchez SIRGAS Vice-President DGFI - Germany William Martínez SIRGAS WGII President IGAC - Colombia María Viriginia Mackern SIRGAS - WGI

More information

The Use and Integrity Monitoring of IGS Products at Geoscience Australia (GA)

The Use and Integrity Monitoring of IGS Products at Geoscience Australia (GA) Australian Government Geoscience Australia The Use and Integrity Monitoring of IGS Products at Geoscience Australia (GA) Ramesh Govind, John Dawson, John Manning IGS-2004 Workshop and Symposium Berne,

More information

a Brief Background DEFINITION

a Brief Background DEFINITION GNSS FOR AVIATION a Brief Background ANC informal briefing DEFINITION GNSS: A worldwide position and time determination ti system that t includes one or more satellite constellations, aircraft receivers

More information

WHAT YOU NEED TO USE THE STATE PLANE COORDINATE SYSTEMS

WHAT YOU NEED TO USE THE STATE PLANE COORDINATE SYSTEMS WHAT YOU NEED TO USE THE STATE PLANE COORDINATE SYSTEMS N & E State Plane Coordinates for Control Points AZIMUTHS - True, Geodetic, or Grid - Conversion from Astronomic to Geodetic (LaPlace Correction)

More information

GGOS Bureau for Networks and Commuications Michael Pearlman Harvard-Smithsonian Center for Astrophysics Cambridge MA USA mpearlman@cfa.harvard.

GGOS Bureau for Networks and Commuications Michael Pearlman Harvard-Smithsonian Center for Astrophysics Cambridge MA USA mpearlman@cfa.harvard. GGOS Bureau for Networks and Commuications Michael Pearlman Harvard-Smithsonian Center for Astrophysics Cambridge MA USA mpearlman@cfa.harvard.edu GGOS Bureau for Networks and Communications Donatello

More information

European Petroleum Survey Group EPSG. Guidance Note Number 10. April 2001. Geodetic Transformations Offshore Norway

European Petroleum Survey Group EPSG. Guidance Note Number 10. April 2001. Geodetic Transformations Offshore Norway European Petroleum Survey Group EPSG Guidance Note Number 10 April 2001 Geodetic Transformations Offshore Norway Background 1. European Datum 1950 (ED50) is the de facto and de jure geographic coordinate

More information

The Effect of Space Weather Phenomena on Precise GNSS Applications

The Effect of Space Weather Phenomena on Precise GNSS Applications FUGRO SATELLITE POSITIONING Doc. Ref.: A12321850TCBRC1 The Effect of Space Weather Phenomena on Precise GNSS Applications December 2014 PUBLIC Table of contents The Effect of Space Weather Phenomena on

More information

Deformation Monitoring and Analysis Using Regional GPS Permanent Tracking Station Networks

Deformation Monitoring and Analysis Using Regional GPS Permanent Tracking Station Networks Deformation Monitoring and Analysis Using Regional GPS Permanent Tracking Station Networks Youjian HU, China P. R. and Kefei ZHANG and Gangjun LIU, Australia Key words: CORS, ITRF, precise ephemeris, deformation

More information

Threats of Ionosphere on GNSS an general overview of CIGALA and CALIBRA Projects

Threats of Ionosphere on GNSS an general overview of CIGALA and CALIBRA Projects Threats of Ionosphere on GNSS an general overview of CIGALA and CALIBRA Projects João Francisco Galera Monico Vinícius Stuani Presentation Outline Threats of Ionosphere on GNSS o Ionosphere effects and

More information

CORS/OPUS: Status & Future Prospects

CORS/OPUS: Status & Future Prospects CORS/OPUS: Status & Future Prospects Richard Snay, Gerald Mader, & Neil Weston NOAA s National Geodetic Survey CORS Users Forum 44 th CGSIC Meeting Long Beach, CA September 21, 2004 Continuously Operating

More information

AMENDMENT 1 3 January 2000. DEPARTMENT OF DEFENSE WORLD GEODETIC SYSTEM 1984 Its Definition and Relationships with Local Geodetic Systems

AMENDMENT 1 3 January 2000. DEPARTMENT OF DEFENSE WORLD GEODETIC SYSTEM 1984 Its Definition and Relationships with Local Geodetic Systems AMENDMENT 1 3 January 2000 DEPARTMENT OF DEFENSE WORLD GEODETIC SYSTEM 1984 Its Definition and Relationships with Local Geodetic Systems These pages document the changes made to this document as of the

More information

Lecture 2. Map Projections and GIS Coordinate Systems. Tomislav Sapic GIS Technologist Faculty of Natural Resources Management Lakehead University

Lecture 2. Map Projections and GIS Coordinate Systems. Tomislav Sapic GIS Technologist Faculty of Natural Resources Management Lakehead University Lecture 2 Map Projections and GIS Coordinate Systems Tomislav Sapic GIS Technologist Faculty of Natural Resources Management Lakehead University Map Projections Map projections are mathematical formulas

More information

Time and frequency distribution using satellites

Time and frequency distribution using satellites INSTITUTE OF PHYSICS PUBLISHING Rep. Prog. Phys. 65 (2002) 1119 1164 REPORTS ON PROGRESS IN PHYSICS PII: S0034-4885(02)98967-0 Time and frequency distribution using satellites Judah Levine Time and Frequency

More information

Maintaining High Accuracy in Modern Geospatial Data

Maintaining High Accuracy in Modern Geospatial Data Maintaining High Accuracy in Modern Geospatial Data Patrick Cunningham President info@bluemarblegeo.com www.bluemarblegeo.com +1 (207) 582 6747 Copyright 2010 Blue Marble Geographics Concepts Geodesy -

More information

European Position Determination System. Guidelines For Cross- Border Data Exchange

European Position Determination System. Guidelines For Cross- Border Data Exchange European Position Determination System Guidelines For Cross- Border Data Exchange Version 1.0 21 September 2006 Copyright: Publisher: 2007 by the International EUPOS Steering Committee Office of the International

More information

Local monitoring by low cost devices and free and open sources softwares

Local monitoring by low cost devices and free and open sources softwares Local monitoring by low cost devices and free and open sources softwares Abstract Ludovico Biagi, Florin-Catalin Grec, Marco Negretti, Maria Grazia Visconti Politecnico di Milano, DICA@ComoCampus The purpose

More information

Towards the Realization of Geo-Referencing Infrastructure for Dynamic Japan (GRID-Japan) Hiromichi TSUJI and Kazuo KOMAKI

Towards the Realization of Geo-Referencing Infrastructure for Dynamic Japan (GRID-Japan) Hiromichi TSUJI and Kazuo KOMAKI 1 Towards the Realization of Geo-Referencing Infrastructure for Dynamic Japan (GRID-Japan) Hiromichi TSUJI and Kazuo KOMAKI Abstract The recent change of the geodetic reference system of Japan from the

More information

GGOS and the Importance of the Combination of Space Techniques. Hansjörg Kutterer Federal Agency for Cartography and Geodesy, Germany

GGOS and the Importance of the Combination of Space Techniques. Hansjörg Kutterer Federal Agency for Cartography and Geodesy, Germany GGOS and the Importance of the Combination of Space Techniques Hansjörg Kutterer Federal Agency for Cartography and Geodesy, Germany Content Combination of space-geodetic techniques Combination examples

More information

Update of BeiDou Education and Training

Update of BeiDou Education and Training Update of BeiDou Education and Training Introduction Activities in 2014 GNSS education and training facility Future plan Introduction Beidou International Exchanging and Training Center is affiliated to

More information

The goals, achievements, and tools of modern geodesy

The goals, achievements, and tools of modern geodesy Chapter 2 The goals, achievements, and tools of modern geodesy H.-P. Plag, Z. Altamimi, S. Bettadpur, G. Beutler, G. Beyerle, A. Cazenave, D. Crossley, A. Donnellan, R. Forsberg, R. Gross, J. Hinderer,

More information

Surveying & Positioning Guidance note 10

Surveying & Positioning Guidance note 10 Surveying & Positioning Guidance note 10 Geodetic Transformations Offshore Norway Revision history Version Date Amendments 1.0 April 2001 First release 1 Background European Datum 1950 (ED50) is the de

More information

Alberding GNSS data management & monitoring tools

Alberding GNSS data management & monitoring tools Alberding GNSS data management & monitoring tools 1/24 Alberding GNSS data management & monitoring tools Tamás Horváth Alberding GmbH EUREF 2013 Symposium, 29-31 May 2013, Budapest, Hungary Alberding GNSS

More information

Analysis of Data From the GPS Reference Station at AAU Using GAMIT

Analysis of Data From the GPS Reference Station at AAU Using GAMIT Analysis of Data From the GPS Reference Station at AAU Using GAMIT GPS Technology - 2007 Group - 07gr1049 Isaac Nii Noi Tetteyfio Spring 2007 AALBORG UNIVERSITY Faculty of Engineering and Science Aalborg

More information

and Navigation Systems

and Navigation Systems Global Ionospheric Monitoring and Navigation Systems J. Feltens, M. Angling, N. Jakowski, M. Hernández-Pajares, R. Zandbergen 1 Consortium Partners Hewlett-Packard GmbH, Rüsselsheim, Germany QinetiQ Ltd,

More information

Case Study Australia. Dr John Dawson A/g Branch Head Geodesy and Seismic Monitoring Geoscience Australia. Chair UN-GGIM-AP WG1 Chair APREF.

Case Study Australia. Dr John Dawson A/g Branch Head Geodesy and Seismic Monitoring Geoscience Australia. Chair UN-GGIM-AP WG1 Chair APREF. Case Study Australia Dr John Dawson A/g Branch Head Geodesy and Seismic Monitoring Geoscience Australia Chair UN-GGIM-AP WG1 Chair APREF Page 1 Overview 1. Australian height system Australian Height Datum

More information

GNSS re-processing results at GOP and the latest updates of ITRS/ETRS. Jan Douša (jan.dousa@pecny.cz)

GNSS re-processing results at GOP and the latest updates of ITRS/ETRS. Jan Douša (jan.dousa@pecny.cz) GNSS re-processing results at GOP and the latest updates of ITRS/ETRS Jan Douša (jan.dousa@pecny.cz) Geodetic observatory Pecný, Research Institute of Geodesy, Topography and Cartography January 24, 2012

More information

RBMC: The main geodetic infrastructure contributing for land reform and weather researches in Brazil

RBMC: The main geodetic infrastructure contributing for land reform and weather researches in Brazil RBMC: The main geodetic infrastructure contributing for land reform and weather researches in Brazil Sonia Costa - IBGE Hisao Takahashi and Luiz Sapucci - INPE Workshop on the Applications of Global Navigation

More information

Towards Real-time GNSS Troposphere Delay Monitoring Service for Poland

Towards Real-time GNSS Troposphere Delay Monitoring Service for Poland Towards Real-time GNSS Troposphere Delay Monitoring Service for Poland Tomasz Hadas, Kaplon Jan, Bosy Jaroslaw Institute of Geodesy and Geoinformatics Wroclaw University of Environmental and Life Sciences

More information

GNSS permanent stations as the part of integrated geodetic system in Estonia

GNSS permanent stations as the part of integrated geodetic system in Estonia GNSS permanent stations as the part of integrated geodetic system in Estonia Karin Kollo (MSc) Department of Geodesy Estonian Land Board United Nations/Croatia Workshop on the applications of Global Navigation

More information

Swedish User Guidelines for Network RTK

Swedish User Guidelines for Network RTK Swedish User Guidelines for Network RTK Robert Odolinski GNSS Research Centre, Curtin University of Technology (Previously Geodetic Research Department of Lantmäteriet, Sweden) Perth, WA, Australia robert.odolinski@curtin.edu.au

More information

Radio Technical Commission for Maritime Services. GPS Update. Bob Markle RTCM Arlington, VA USA. NMEA Convention & Expo 2010

Radio Technical Commission for Maritime Services. GPS Update. Bob Markle RTCM Arlington, VA USA. NMEA Convention & Expo 2010 Radio Technical Commission for Maritime Services GPS Update NMEA Convention & Expo 2010 Bob Markle RTCM Arlington, VA USA What is RTCM? International non-profit scientific, professional and membership

More information

NJDEP GPS Data Collection Standards For GIS Data Development

NJDEP GPS Data Collection Standards For GIS Data Development NJDEP GPS Data Collection Standards For GIS Data Development Bureau of Geographic Information Systems Office of Information Resource Management June 8, 2011 1.0 Introduction... 3 2.0 GPS Receiver Hardware

More information

Waypoint. Best-in-Class GNSS and GNSS+INS Processing Software

Waypoint. Best-in-Class GNSS and GNSS+INS Processing Software Waypoint Best-in-Class GNSS and GNSS+INS Processing Software Waypoint Exceptional Post-Processing Software Enhance your GNSS Position, Velocity and Attitude Accuracy For applications requiring highly

More information

Survey Ties Guidelines

Survey Ties Guidelines North Carolina Board of Examiners for Engineers and Surveyors Survey Ties Guidelines The North Carolina Board of Examiners for Engineers and Surveyors is providing this document to serve as an interpretative

More information

GNSS FIELD DATA COLLECTION GUIDELINES

GNSS FIELD DATA COLLECTION GUIDELINES AD-SDI DATA STANDARD GNSS FIELD DATA COLLECTION GUIDELINES Version 1.0 September 2011 Prepared by Abu Dhabi Spatial Data Infrastructure (AD-SDI) Abu Dhabi Systems and Information Centre (ADSIC) Abu Dhabi,

More information

A guide to coordinate systems in Great Britain

A guide to coordinate systems in Great Britain A guide to coordinate systems in Great Britain An introduction to mapping coordinate systems and the use of GPS datasets with Ordnance Survey mapping D00659 v2.3 Mar 2015 Crown copyright Page 1 of 43 Contents

More information

The Applanix SmartBase TM Software for Improved Robustness, Accuracy, and Productivity of Mobile Mapping and Positioning

The Applanix SmartBase TM Software for Improved Robustness, Accuracy, and Productivity of Mobile Mapping and Positioning The Applanix SmartBase TM Software for Improved Robustness, Accuracy, and Productivity of Mobile Mapping and Positioning Joe Hutton and Edith Roy, Applanix Corporation Introduction Applanix, along with

More information

THE NEED TO IMPLEMENT CONSTRUCTION DEFORMATION SPATIAL MONITORING SYSTEMS IN ROMANIA

THE NEED TO IMPLEMENT CONSTRUCTION DEFORMATION SPATIAL MONITORING SYSTEMS IN ROMANIA THE NEED TO IMPLEMENT CONSTRUCTION DEFORMATION SPATIAL MONITORING SYSTEMS IN ROMANIA Cristian ONU, Lecturer PhD. Eng., Technical University Gheorghe Asachi of Iasi, Romania, e-mail: cristi_onu@yahoo.com

More information

Guidelines for RTK/RTN GNSS Surveying in Canada

Guidelines for RTK/RTN GNSS Surveying in Canada Guidelines for RTK/RTN GNSS Surveying in Canada July 2013 Version 1.1 Ministry of Transportation Ministère des Transports EARTH SCIENCES SECTOR GENERAL INFORMATION PRODUCT 100-E Main Authors: Brian Donahue,

More information

GPS Applications in Agriculture. Gary T. Roberson Agricultural Machinery Systems

GPS Applications in Agriculture. Gary T. Roberson Agricultural Machinery Systems GPS Applications in Agriculture Gary T. Roberson Agricultural Machinery Systems What is a Positioning System? A position information system enables the user to determine absolute or relative location of

More information

Ionospheric Research with the LOFAR Telescope

Ionospheric Research with the LOFAR Telescope Ionospheric Research with the LOFAR Telescope Leszek P. Błaszkiewicz Faculty of Mathematics and Computer Science, UWM Olsztyn LOFAR - The LOw Frequency ARray The LOFAR interferometer consist of a large

More information

Scheduling of VLBI observations to satellites with the Vienna VLBI Software (VieVS)

Scheduling of VLBI observations to satellites with the Vienna VLBI Software (VieVS) 22 nd EVGA Working Meeting, May 17-21, 2015, Sao Miguel, Pont Delgada, Azores, Portugal Scheduling of VLBI observations to satellites with the Vienna VLBI Software (VieVS) Andreas Hellerschmied 1, J. Böhm

More information

Perspective of Permanent Reference Network KOPOS in Kosova

Perspective of Permanent Reference Network KOPOS in Kosova 143 Perspective of Permanent Reference Network KOPOS in Kosova Meha, M. and Çaka, M. Kosovo Cadastral Agency, Kosovo Archive Building II nd floor, P.O. 10000, Prishtina, Republic of Kosovo, E-mail: mmeha@yahoo.com,

More information

Greg Keel P.Eng. Parallel Geo Services gkeel@nanaimo.ark.com

Greg Keel P.Eng. Parallel Geo Services gkeel@nanaimo.ark.com Greg Keel P.Eng. Parallel Geo Services gkeel@nanaimo.ark.com Presentation Outline GNSS: Global Navigation Satellite System GPS: overview, current signals, modernization GLONASS: history (rise fall rise),

More information

IP-S3 HD1. Compact, High-Density 3D Mobile Mapping System

IP-S3 HD1. Compact, High-Density 3D Mobile Mapping System IP-S3 HD1 Compact, High-Density 3D Mobile Mapping System Integrated, turnkey solution Ultra-compact design Multiple lasers minimize scanning shades Unparalleled ease-of-use No user calibration required

More information

Why do we need to improve co-locations of space geodetic techniques?

Why do we need to improve co-locations of space geodetic techniques? Why do we need to improve co-locations of space geodetic techniques? Zuheir Altamimi & Xavier Collilieux IGN France 1 Outline ITRF Heritage Current status of technique networks & co-locations Results from

More information

GPS Positioning Modes

GPS Positioning Modes 5 GPS Positioning Modes Positioning with GPS can be performed in either of two ways: point (absolute) positioning or relative positioning. Classical GPS point positioning employs one GPS receiver that

More information

Orbit Modeling and Multi-GNSS in the IGS

Orbit Modeling and Multi-GNSS in the IGS Orbit Modeling and Multi-GNSS in the IGS G. Beutler Astronomical Institute, University of Bern O. Montenbruck, P. Steigenberger DLR, German Space Operations Center 14 th Meeting of the National Space-Based

More information

SPACE WEATHER SUPPORT FOR COMMUNICATIONS. Overview

SPACE WEATHER SUPPORT FOR COMMUNICATIONS. Overview SPACE WEATHER SUPPORT FOR COMMUNICATIONS Overview Ionospheric variability (space weather) significantly impacts ground and space-based communications. In essence, the electrically charged particles of

More information

Real-Time GNSS in Routine EPN Operations Concept

Real-Time GNSS in Routine EPN Operations Concept Real-Time GNSS in Routine EPN Operations Concept EPN Real-time Working Group D. Dettmering, G. Weber, C. Bruyninx, H. v.d.marel W. Gurtner, J. Torres, A. Caporali Status: December 3, 2006 1 CONTENT 1 Introduction

More information

Example application of the IAU 2000 resolutions concerning Earth orientation and rotation

Example application of the IAU 2000 resolutions concerning Earth orientation and rotation Example application of the IAU 2000 resolutions concerning Earth orientation and rotation Patrick Wallace 1 (Original version 20 July 2004, revised 29 July 2004; this reformatted and corrected version

More information

Rotational Errors in IGS Orbit & ERP Products

Rotational Errors in IGS Orbit & ERP Products Rotational Errors in IGS Orbit & ERP Products Systematic rotations are a leading IGS error they affect all core products except probably clocks Sources include defects in: IERS model for 12h + 24h tidal

More information

Using GNSS to establish a Height Datum on a Project

Using GNSS to establish a Height Datum on a Project Abstract Richard Stanaway Quickclose PO Box 1364 Carlton VIC 3053 Australia email: richard.stanaway@quickclose.com.au This paper explains in detail practical steps for establishing or extending a height

More information

CHARACTERISTICS OF DEEP GPS SIGNAL FADING DUE TO IONOSPHERIC SCINTILLATION FOR AVIATION RECEIVER DESIGN

CHARACTERISTICS OF DEEP GPS SIGNAL FADING DUE TO IONOSPHERIC SCINTILLATION FOR AVIATION RECEIVER DESIGN CHARACTERISTICS OF DEEP GPS SIGNAL FADING DUE TO IONOSPHERIC SCINTILLATION FOR AVIATION RECEIVER DESIGN Jiwon Seo, Todd Walter, Tsung-Yu Chiou, and Per Enge Stanford University ABSTRACT Aircraft navigation

More information

GPS LOCATIONS FOR GIS: GETTING THEM RIGHT THE FIRST TIME

GPS LOCATIONS FOR GIS: GETTING THEM RIGHT THE FIRST TIME GPS LOCATIONS FOR GIS: GETTING THEM RIGHT THE FIRST TIME Caroline Erickson and Pierre Héroux Geodetic Survey Division, Geomatics Canada Natural Resources Canada 615 Booth Street Ottawa, Ontario K1A 0E9

More information

GFZ prototype for GPS-based realtime deformation monitoring

GFZ prototype for GPS-based realtime deformation monitoring GFZ prototype for GPS-based realtime deformation monitoring Junping Chen, Maorong Ge, Markus Vennebusch, Gerd Gendt, Markus Rothacher Department of Geodesy and Remote Sensing, GeoForschungsZentrum, Postdam

More information

Marlene C.S. Assis. Francisco Colomer. Jesús Gómez-González. José Antonio López-Fernández. Luisa VMS. Moniz. http://www.raege.net/

Marlene C.S. Assis. Francisco Colomer. Jesús Gómez-González. José Antonio López-Fernández. Luisa VMS. Moniz. http://www.raege.net/ Marlene C.S. Assis Francisco Colomer Jesús Gómez-González José Antonio López-Fernández Luisa VMS. Moniz http://www.raege.net/ Instituto Geográfico Nacional Spain Global Geodetic Observing System (GGOS)

More information

INTEGRITY AND CONTINUITY ANALYSIS OCTOBER TO DECEMBER 2013 QUARTERLY REPORT FROM GPS. Integrity and Continuity Analysis 08/01/14 08/01/14 08/01/14

INTEGRITY AND CONTINUITY ANALYSIS OCTOBER TO DECEMBER 2013 QUARTERLY REPORT FROM GPS. Integrity and Continuity Analysis 08/01/14 08/01/14 08/01/14 INTEGRITY AND CONTINUITY ANALYSIS FROM GPS OCTOBER TO DECEMBER 2013 QUARTERLY REPORT Prepared by: M Pattinson (NSL) 08/01/14 Checked by: L Banfield (NSL) 08/01/14 Approved by: M Dumville (NSL) 08/01/14

More information

How To Monitor Sea Level With Satellite Radar

How To Monitor Sea Level With Satellite Radar Satellite Altimetry Wolfgang Bosch Deutsches Geodätisches Forschungsinstitut (DGFI), München email: bosch@dgfi.badw.de Objectives You shall recognize satellite altimetry as an operational remote sensing

More information

RELEASE NOTES. Trimble VRS 3 Net GNSS Infrastructure Software. Introduction. New features. Enhancements. Supported operating systems and SQL Server

RELEASE NOTES. Trimble VRS 3 Net GNSS Infrastructure Software. Introduction. New features. Enhancements. Supported operating systems and SQL Server RELEASE NOTES Trimble VRS 3 Net GNSS Infrastructure Software Introduction New features Enhancements Supported operating systems and SQL Server Minimum system requirements Updating the software Version

More information

Laser Ranging to Nano-Satellites

Laser Ranging to Nano-Satellites 13-0222 Laser Ranging to Nano-Satellites G. Kirchner (1), Ludwig Grunwaldt (2), Reinhard Neubert (2), Franz Koidl (1), Merlin Barschke (3), Zizung Yoon (3), Hauke Fiedler (4), Christine Hollenstein (5)

More information

AUTOMATED OPERATIONAL MULTI-TRACKING HIGH PRECISION ORBIT DETERMINATION FOR LEO MISSIONS

AUTOMATED OPERATIONAL MULTI-TRACKING HIGH PRECISION ORBIT DETERMINATION FOR LEO MISSIONS AUTOMATED OPERATIONAL MULTI-TRACKING HIGH PRECISION ORBIT DETERMINATION FOR LEO MISSIONS J. Fernández Sánchez, F. M. Martínez Fadrique, A. Águeda Maté, D. Escobar Antón GMV S.A., Isaac Newton 11, 876 Tres

More information

SATELLITE TIME-TRANSFER: RECENT DEVELOPMENTS AND PROJECTS

SATELLITE TIME-TRANSFER: RECENT DEVELOPMENTS AND PROJECTS SATELLITE TIME-TRANSFER: RECENT DEVELOPMENTS AND PROJECTS W. LEWANDOWSKI 1 and J. NAWROCKI 2 1 Bureau International des Poids et Mesures, Sèvres, France e-mail: wlewandowski@bipm.org 2 Astrogeodynamical

More information

Lucilla Alfonsi. Giorgiana De Franceschi, Vincenzo Romano, Luca Spogli-INGV In collaboration with Anita Aikio-University of Oulu

Lucilla Alfonsi. Giorgiana De Franceschi, Vincenzo Romano, Luca Spogli-INGV In collaboration with Anita Aikio-University of Oulu Lucilla Alfonsi Giorgiana De Franceschi, Vincenzo Romano, Luca Spogli-INGV In collaboration with Anita Aikio-University of Oulu EISCAT _3D User Meeting 2012 Introduction Ionospheric scintillation GNSS

More information

Opus Projects A Web-Based Application to Administer and Process Multi- Day GPS Campaign Data

Opus Projects A Web-Based Application to Administer and Process Multi- Day GPS Campaign Data Opus Projects A Web-Based Application to Administer and Process Multi- Day GPS Campaign Data Neil D. WESTON, Gerald L. MADER and Tomás SOLER, USA Key words: GPS; Positioning; Campaign SUMMARY The National

More information

Leica SmartNet UK & Ireland Network RTK User Guide

Leica SmartNet UK & Ireland Network RTK User Guide Leica SmartNet UK & Ireland Network RTK User Guide Contents Background.. Page 3 Single Base RTK.... Page 3 Advantages & Disadvantages of Single Base RTK Page 4 Network RTK... Page 4 Advantages & Disadvantages

More information

CHAPTER 6 THE TERRESTRIAL PLANETS

CHAPTER 6 THE TERRESTRIAL PLANETS CHAPTER 6 THE TERRESTRIAL PLANETS MULTIPLE CHOICE 1. Which of the following is NOT one of the four stages in the development of a terrestrial planet? 2. That Earth, evidence that Earth differentiated.

More information

Clever Devices IVN GPS Broadcast over Ethernet Interface Control Document

Clever Devices IVN GPS Broadcast over Ethernet Interface Control Document Clever Devices IVN GPS Broadcast over Ethernet Interface Control Document Version 1.0 June 15, 2015 Page 1 of 6 Revision History Date Version Description Author 6/15/2015 1.0 Initial Release G. Glogowski

More information

SATELLITE COMMUNICATION

SATELLITE COMMUNICATION SATELLITE COMMUNICATION By Gaurish Kumar Tripathi. 1.0 INTRODUCTION: The use of satellite in communication system is very much a fact of everyday in life. This is evidence by the many homes, which are

More information

4.03 Vertical Control Surveys: 4-1

4.03 Vertical Control Surveys: 4-1 4. HORIZONTAL AND VERTICAL CONTROL 4.01 General: Sufficient horizontal and, if applicable, vertical control surveys shall be established by the Contractor for all photogrammetric mapping purposes. Prior

More information

Activity 10 - Universal Time

Activity 10 - Universal Time Activity 10 - Universal Time Teacher s Guide Scientists use the Universal Time reference to talk about data that is taken around the globe. Universal Time is the time kept in the time zone centered on

More information