Approximate Analysis of Statically Indeterminate Structures
|
|
|
- Victor Tyler
- 9 years ago
- Views:
Transcription
1 Approximate Analysis of Statically Indeterminate Structures Every successful structure must be capable of reaching stable equilibrium under its applied loads, regardless of structural behavior. Exact analysis of indeterminate structures involves computation of deflections and solution of simultaneous equations. Thus, computer programs are typically used. 1 To eliminate the difficulties associated with exact analysis, preliminary designs of indeterminate structures are often based on the results of approximate analysis. Approximate analysis is based on introducing deformation and/or force distribution assumptions into a statically indeterminate structure, equal in number to degree of indeterminacy, which maintains stable equilibrium of the structure. No assumptions inconsistent with stable equilibrium are admissible in any approximate analysis. Uses of approximate analysis include: (1) planning phase of projects, when several alternative designs of the structure are usually evaluated for relative economy; () estimating the various member sizes needed to initiate an exact analysis; (3) check on exact analysis results; () upgrades for older structure designs initially based on approximate analysis; and (5) provide the engineer with a sense of how the forces distribute through the structure. 3 1
2 In order to determine the reactions and internal forces for indeterminate structures using approximate equilibrium methods, the equilibrium equations must be supplemented by enough equations of conditions or assumptions such that the resulting structure is stable and statically determinate. 5 The required number of such additional equations equals the degree of static indeterminacy for the structure, with each assumption providing an independent relationship between the unknown reactions and/or internal forces. In approximate analysis, these additional equations are based on engineering judgment of appropriate simplifying assumptions on the response of the structure. 6 Approximate Analysis of a Continuous Beam for Gravity Loads Continuous beams and girders occur commonly in building floor systems and bridges. In the approximate analysis of continuous beams, points of inflection or inflection point (IP) positions are assumed equal in number to the degree of static indeterminacy. For continuous beam structures, the degree of static indeterminacy in bending (I b ) equals Ib = NbR C N br = number of bending reactions (vertical and moment support reactions) C = number of equations of condition in bending 7 8
3 Each inflection point position introduces one equation of condition to the static equilibrium equations. Three strategies are used to approximate the location of the inflection points: 1. qualitative displacement diagrams of the beam structure,. qualitative bending moment diagrams (preferred method for students), and 3. location of exact inflection points for some simple statically indeterminate Approximate analysis of continuous beams using the qualitative deflection diagram is based on the fact that the elastic curve (deflected shape) of a continuous beam can generally be sketched with a fair degree of accuracy without performing an exact analysis. When the elastic curve is sketched in this manner, the actual magnitudes of deflection (displacements and rotations) are not accurately portrayed, but the inflection point locations are easily estimated even on a fairly rough sketch. structures Qualitative bending moment diagrams can also be used to locate inflection points. Bending moments in spans with no loading are linear or constant; with point loading the span bending moment equations are piecewise linear; and with uniform loading the moments are quadratic. Remember, internal bending moments at interior support locations adjacent to one or two loaded spans is negative. Recall that zero moment locations correspond to the inflection point locations. 11 From the total set of inflection points, select the needed number to achieve a solution by statics. In the case of beams, there will normally be enough inflection points to reduce the structure to a statically determinate structure and typically there are more inflection points than the degree of indeterminacy. 1 3
4 With the inflection points located (equal in number to the degree of static indeterminacy), the analysis can proceed on the basis of statics alone. Since an inflection point is a zero moment location, it may be thought of as an internal hinge for purposes of analysis. Some examples to guide the learning and practice are given on the following pages. Both the elastic curve and bending moment diagrams are given. 13 Fixed-Fixed Beam Subjected to a Uniform Load 1 Fixed-Fixed Beam Subjected to a Central Point Force Propped Cantilever Beam Subjected to a Uniform Load 15 16
5 Propped Cantilever Beam Subjected to a Central Point Force 17 When considering problems that do not match the exact values given, some useful guides are: Inflection points move towards positions of reduced stiffness, No more than one inflection point can occur in an unloaded span, and No more than two inflection points will occur in a loaded span. 18 Example Approximate Analysis of a Continuous Beam 0.5 M βl EI = constant q L/3 -M L L Qualitative Bending Moment Diagram IP 1 Qualitative Deflection Diagram M 1 q q L/3 IP βl R1 L/3 L/3 βl (1-β)L V 1 V R R 3 FBD through IP s 0.1 β <
6 From the last FBD: q(1 β)l R3 = q(1 β)l V = R3 = From the middle FBD: M = 0 L q( βl) = V1+ +βlv 3 3qβL V1 = 1 Fy= 0 = R+ V1 qβl V ql R = (+ 5 β) From the first FBD: L qβl M1= 0 M1 = V1 = 3 3qβL Fy= 0 R1= V1 = R + R 1 (1-β)L/ Frame Example R -R3 R 1 Shear Force Diagram 0.15q[(1-β)L] M 1 -M 1 Bending Moment Diagram 3 6
7 Trusses with Double Diagonals Truss systems for roofs, bridges and building walls often contain double diagonals in each panel, which makes each panel statically indeterminate. Approximate analysis requires that the number of assumptions introduced must equal the degree of indeterminacy so that only the equations of equilibrium are required to perform the approximate analysis. 5 Since one extra diagonal exists in each double diagonal panel, one assumption regarding the force distribution between the two diagonals must be made in each panel. If the diagonals are slender, it may be assumed that the diagonal members are only capable of resisting tensile forces and that diagonals subjected to compression can be ignored since they are susceptible to buckling, i.e., assume very small buckling load and ignore post-buckling strength. 6 Such an assumption is illustrated in Fig. DD.1(a). In Fig. DD.1(a), the total panel shear is assumed to be resisted by the tension diagonal as shown. Compression diagonals are assumed to resist no loading. With this assumption, the truss of Fig. DD.1 is statically determinate. 7 Fig. DD.1 Truss with Double Diagonal Panels 8 7
8 The assumption discussed in the previous paragraph is generally too stringent, i.e., the compression diagonals can resist a portion of the panel shear. Figures DD.1(b) and (c) show two different assumptions regarding the ability of the compression diagonals to resist force. Figure DD.1(b) shows the shear (vertical) components of the diagonal members assuming that the compression and tension diagonals equally resist the panel shear. Figure DD.1(c) shows the vertical force distribution among the compression and tension diagonals based on the tension diagonal resisting twice the force of the compression diagonal or two-thirds of the panel shear Any reasonable assumption can be made. The compression diagonal assumptions for double diagonal trusses can be mathematically summarized as: Once the diagonal member forces are determined, the remaining member forces in the truss can be calculated using simple statics, i.e., the method of sections and/or the method of joints. C = αt; 0 α 1 If P S = Panel Shear, then T(1+α) = P S
Structural Axial, Shear and Bending Moments
Structural Axial, Shear and Bending Moments Positive Internal Forces Acting Recall from mechanics of materials that the internal forces P (generic axial), V (shear) and M (moment) represent resultants
Statics of Structural Supports
Statics of Structural Supports TYPES OF FORCES External Forces actions of other bodies on the structure under consideration. Internal Forces forces and couples exerted on a member or portion of the structure
INTRODUCTION TO BEAMS
CHAPTER Structural Steel Design LRFD Method INTRODUCTION TO BEAMS Third Edition A. J. Clark School of Engineering Department of Civil and Environmental Engineering Part II Structural Steel Design and Analysis
Deflections. Question: What are Structural Deflections?
Question: What are Structural Deflections? Answer: The deformations or movements of a structure and its components, such as beams and trusses, from their original positions. It is as important for the
Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method. Version 2 CE IIT, Kharagpur
Module Analysis of Statically Indeterminate Structures by the Matrix Force Method esson 11 The Force Method of Analysis: Frames Instructional Objectives After reading this chapter the student will be able
8.2 Elastic Strain Energy
Section 8. 8. Elastic Strain Energy The strain energy stored in an elastic material upon deformation is calculated below for a number of different geometries and loading conditions. These expressions for
Statically Indeterminate Structure. : More unknowns than equations: Statically Indeterminate
Statically Indeterminate Structure : More unknowns than equations: Statically Indeterminate 1 Plane Truss :: Determinacy No. of unknown reactions = 3 No. of equilibrium equations = 3 : Statically Determinate
Structural Analysis - II Prof. P. Banerjee Department of Civil Engineering Indian Institute of Technology, Bombay. Lecture - 02
Structural Analysis - II Prof. P. Banerjee Department of Civil Engineering Indian Institute of Technology, Bombay Lecture - 02 Good morning. Today is the second lecture in the series of lectures on structural
Shear Forces and Bending Moments
Chapter 4 Shear Forces and Bending Moments 4.1 Introduction Consider a beam subjected to transverse loads as shown in figure, the deflections occur in the plane same as the loading plane, is called the
SLAB DESIGN. Introduction ACI318 Code provides two design procedures for slab systems:
Reading Assignment SLAB DESIGN Chapter 9 of Text and, Chapter 13 of ACI318-02 Introduction ACI318 Code provides two design procedures for slab systems: 13.6.1 Direct Design Method (DDM) For slab systems
The Analysis of Open Web Steel Joists in Existing Buildings
PDHonline Course S117 (1 PDH) The Analysis of Open Web Steel Joists in Existing Buildings Instructor: D. Matthew Stuart, P.E., S.E., F.ASCE, F.SEI, SECB, MgtEng 2013 PDH Online PDH Center 5272 Meadow Estates
Chapter 5: Indeterminate Structures Slope-Deflection Method
Chapter 5: Indeterminate Structures Slope-Deflection Method 1. Introduction Slope-deflection method is the second of the two classical methods presented in this course. This method considers the deflection
Advanced Structural Analysis. Prof. Devdas Menon. Department of Civil Engineering. Indian Institute of Technology, Madras. Module - 5.3.
Advanced Structural Analysis Prof. Devdas Menon Department of Civil Engineering Indian Institute of Technology, Madras Module - 5.3 Lecture - 29 Matrix Analysis of Beams and Grids Good morning. This is
Finite Element Formulation for Beams - Handout 2 -
Finite Element Formulation for Beams - Handout 2 - Dr Fehmi Cirak (fc286@) Completed Version Review of Euler-Bernoulli Beam Physical beam model midline Beam domain in three-dimensions Midline, also called
ENGINEERING MECHANICS STATIC
EX 16 Using the method of joints, determine the force in each member of the truss shown. State whether each member in tension or in compression. Sol Free-body diagram of the pin at B X = 0 500- BC sin
4.2 Free Body Diagrams
CE297-FA09-Ch4 Page 1 Friday, September 18, 2009 12:11 AM Chapter 4: Equilibrium of Rigid Bodies A (rigid) body is said to in equilibrium if the vector sum of ALL forces and all their moments taken about
The elements used in commercial codes can be classified in two basic categories:
CHAPTER 3 Truss Element 3.1 Introduction The single most important concept in understanding FEA, is the basic understanding of various finite elements that we employ in an analysis. Elements are used for
MECHANICS OF SOLIDS - BEAMS TUTORIAL 2 SHEAR FORCE AND BENDING MOMENTS IN BEAMS
MECHANICS OF SOLIDS - BEAMS TUTORIAL 2 SHEAR FORCE AND BENDING MOMENTS IN BEAMS This is the second tutorial on bending of beams. You should judge your progress by completing the self assessment exercises.
Rigid and Braced Frames
Rigid Frames Rigid and raced Frames Rigid frames are identified b the lack of pinned joints within the frame. The joints are rigid and resist rotation. The ma be supported b pins or fied supports. The
SECTION 5 ANALYSIS OF CONTINUOUS SPANS DEVELOPED BY THE PTI EDC-130 EDUCATION COMMITTEE LEAD AUTHOR: BRYAN ALLRED
SECTION 5 ANALYSIS OF CONTINUOUS SPANS DEVELOPED BY THE PTI EDC-130 EDUCATION COMMITTEE LEAD AUTHOR: BRYAN ALLRED NOTE: MOMENT DIAGRAM CONVENTION In PT design, it is preferable to draw moment diagrams
Ideal Cable. Linear Spring - 1. Cables, Springs and Pulleys
Cables, Springs and Pulleys ME 202 Ideal Cable Neglect weight (massless) Neglect bending stiffness Force parallel to cable Force only tensile (cable taut) Neglect stretching (inextensible) 1 2 Sketch a
4B-2. 2. The stiffness of the floor and roof diaphragms. 3. The relative flexural and shear stiffness of the shear walls and of connections.
Shear Walls Buildings that use shear walls as the lateral force-resisting system can be designed to provide a safe, serviceable, and economical solution for wind and earthquake resistance. Shear walls
16. Beam-and-Slab Design
ENDP311 Structural Concrete Design 16. Beam-and-Slab Design Beam-and-Slab System How does the slab work? L- beams and T- beams Holding beam and slab together University of Western Australia School of Civil
PLANE TRUSSES. Definitions
Definitions PLANE TRUSSES A truss is one of the major types of engineering structures which provides a practical and economical solution for many engineering constructions, especially in the design of
Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar. Fig. 7.21 some of the trusses that are used in steel bridges
7.7 Truss bridges Fig. 7.21 some of the trusses that are used in steel bridges Truss Girders, lattice girders or open web girders are efficient and economical structural systems, since the members experience
Shear Force and Moment Diagrams
C h a p t e r 9 Shear Force and Moment Diagrams In this chapter, you will learn the following to World Class standards: Making a Shear Force Diagram Simple Shear Force Diagram Practice Problems More Complex
Course in. Nonlinear FEM
Course in Introduction Outline Lecture 1 Introduction Lecture 2 Geometric nonlinearity Lecture 3 Material nonlinearity Lecture 4 Material nonlinearity continued Lecture 5 Geometric nonlinearity revisited
Introduction to Beam. Area Moments of Inertia, Deflection, and Volumes of Beams
Introduction to Beam Theory Area Moments of Inertia, Deflection, and Volumes of Beams Horizontal structural member used to support horizontal loads such as floors, roofs, and decks. Types of beam loads
Mechanics of Materials. Chapter 4 Shear and Moment In Beams
Mechanics of Materials Chapter 4 Shear and Moment In Beams 4.1 Introduction The term beam refers to a slender bar that carries transverse loading; that is, the applied force are perpendicular to the bar.
STRESS AND DEFORMATION ANALYSIS OF LINEAR ELASTIC BARS IN TENSION
Chapter 11 STRESS AND DEFORMATION ANALYSIS OF LINEAR ELASTIC BARS IN TENSION Figure 11.1: In Chapter10, the equilibrium, kinematic and constitutive equations for a general three-dimensional solid deformable
Design of reinforced concrete columns. Type of columns. Failure of reinforced concrete columns. Short column. Long column
Design of reinforced concrete columns Type of columns Failure of reinforced concrete columns Short column Column fails in concrete crushed and bursting. Outward pressure break horizontal ties and bend
Finite Element Simulation of Simple Bending Problem and Code Development in C++
EUROPEAN ACADEMIC RESEARCH, VOL. I, ISSUE 6/ SEPEMBER 013 ISSN 86-48, www.euacademic.org IMPACT FACTOR: 0.485 (GIF) Finite Element Simulation of Simple Bending Problem and Code Development in C++ ABDUL
Statically determinate structures
Statically determinate structures A statically determinate structure is the one in which reactions and internal forces can be determined solely from free-body diagrams and equations of equilibrium. These
Bending Stress in Beams
936-73-600 Bending Stress in Beams Derive a relationship for bending stress in a beam: Basic Assumptions:. Deflections are very small with respect to the depth of the beam. Plane sections before bending
ENGINEERING SCIENCE H1 OUTCOME 1 - TUTORIAL 3 BENDING MOMENTS EDEXCEL HNC/D ENGINEERING SCIENCE LEVEL 4 H1 FORMERLY UNIT 21718P
ENGINEERING SCIENCE H1 OUTCOME 1 - TUTORIAL 3 BENDING MOMENTS EDEXCEL HNC/D ENGINEERING SCIENCE LEVEL 4 H1 FORMERLY UNIT 21718P This material is duplicated in the Mechanical Principles module H2 and those
2. Axial Force, Shear Force, Torque and Bending Moment Diagrams
2. Axial Force, Shear Force, Torque and Bending Moment Diagrams In this section, we learn how to summarize the internal actions (shear force and bending moment) that occur throughout an axial member, shaft,
INTRODUCTION TO LIMIT STATES
4 INTRODUCTION TO LIMIT STATES 1.0 INTRODUCTION A Civil Engineering Designer has to ensure that the structures and facilities he designs are (i) fit for their purpose (ii) safe and (iii) economical and
Optimum proportions for the design of suspension bridge
Journal of Civil Engineering (IEB), 34 (1) (26) 1-14 Optimum proportions for the design of suspension bridge Tanvir Manzur and Alamgir Habib Department of Civil Engineering Bangladesh University of Engineering
New approaches in Eurocode 3 efficient global structural design
New approaches in Eurocode 3 efficient global structural design Part 1: 3D model based analysis using general beam-column FEM Ferenc Papp* and József Szalai ** * Associate Professor, Department of Structural
CHAPTER 3. INTRODUCTION TO MATRIX METHODS FOR STRUCTURAL ANALYSIS
1 CHAPTER 3. INTRODUCTION TO MATRIX METHODS FOR STRUCTURAL ANALYSIS Written by: Sophia Hassiotis, January, 2003 Last revision: February, 2015 Modern methods of structural analysis overcome some of the
ARCH 331 Structural Glossary S2014abn. Structural Glossary
Structural Glossary Allowable strength: Nominal strength divided by the safety factor. Allowable stress: Allowable strength divided by the appropriate section property, such as section modulus or cross
DESIGN OF SLABS. Department of Structures and Materials Engineering Faculty of Civil and Environmental Engineering University Tun Hussein Onn Malaysia
DESIGN OF SLABS Department of Structures and Materials Engineering Faculty of Civil and Environmental Engineering University Tun Hussein Onn Malaysia Introduction Types of Slab Slabs are plate elements
Design Analysis and Review of Stresses at a Point
Design Analysis and Review of Stresses at a Point Need for Design Analysis: To verify the design for safety of the structure and the users. To understand the results obtained in FEA, it is necessary to
SOLUTION 6 6. Determine the force in each member of the truss, and state if the members are in tension or compression.
6 6. etermine the force in each member of the truss, and state if the members are in tension or compression. 600 N 4 m Method of Joints: We will begin by analyzing the equilibrium of joint, and then proceed
Steel joists and joist girders are
THE STEEL CONFERENCE Hints on Using Joists Efficiently By Tim Holtermann, S.E., P.E.; Drew Potts, P.E.; Bob Sellers, P.E.; and Walt Worthley, P.E. Proper coordination between structural engineers and joist
Shear and Moment Diagrams. Shear and Moment Diagrams. Shear and Moment Diagrams. Shear and Moment Diagrams. Shear and Moment Diagrams
CI 3 Shear Force and Bending oment Diagrams /8 If the variation of and are written as functions of position,, and plotted, the resulting graphs are called the shear diagram and the moment diagram. Developing
The Basics of FEA Procedure
CHAPTER 2 The Basics of FEA Procedure 2.1 Introduction This chapter discusses the spring element, especially for the purpose of introducing various concepts involved in use of the FEA technique. A spring
DESIGN OF SLABS. 3) Based on support or boundary condition: Simply supported, Cantilever slab,
DESIGN OF SLABS Dr. G. P. Chandradhara Professor of Civil Engineering S. J. College of Engineering Mysore 1. GENERAL A slab is a flat two dimensional planar structural element having thickness small compared
2011-2012. Crane Runway Girder. Dr. Ibrahim Fahdah Damascus University. https://sites.google.com/site/ifahdah/home/lectures
Crane Runway Girder Dr. Ibrahim Fahdah Damascus University https://sites.google.com/site/ifahdah/home/lectures Components of Crane system The Crane Runway Girder and the Structure Issue1: Vertical Load
REINFORCED CONCRETE. Reinforced Concrete Design. A Fundamental Approach - Fifth Edition. Walls are generally used to provide lateral support for:
HANDOUT REINFORCED CONCRETE Reinforced Concrete Design A Fundamental Approach - Fifth Edition RETAINING WALLS Fifth Edition A. J. Clark School of Engineering Department of Civil and Environmental Engineering
STRUCTURAL ANALYSIS II (A60131)
LECTURE NOTES ON STRUCTURAL ANALYSIS II (A60131) III B. Tech - II Semester (JNTUH-R13) Dr. Akshay S. K. Naidu Professor, Civil Engineering Department CIVIL ENGINEERING INSTITUTE OF AERONAUTICAL ENGINEERING
Copyright 2011 Casa Software Ltd. www.casaxps.com. Centre of Mass
Centre of Mass A central theme in mathematical modelling is that of reducing complex problems to simpler, and hopefully, equivalent problems for which mathematical analysis is possible. The concept of
When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid.
Fluid Statics When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid. Consider a small wedge of fluid at rest of size Δx, Δz, Δs
Design of pile foundations following Eurocode 7-Section 7
Brussels, 18-20 February 2008 Dissemination of information workshop 1 Workshop Eurocodes: background and applications Brussels, 18-20 Februray 2008 Design of pile foundations following Eurocode 7-Section
TECHNICAL NOTE. Design of Diagonal Strap Bracing Lateral Force Resisting Systems for the 2006 IBC. On Cold-Formed Steel Construction INTRODUCTION
TECHNICAL NOTE On Cold-Formed Steel Construction 1201 15th Street, NW, Suite 320 W ashington, DC 20005 (202) 785-2022 $5.00 Design of Diagonal Strap Bracing Lateral Force Resisting Systems for the 2006
Stack Contents. Pressure Vessels: 1. A Vertical Cut Plane. Pressure Filled Cylinder
Pressure Vessels: 1 Stack Contents Longitudinal Stress in Cylinders Hoop Stress in Cylinders Hoop Stress in Spheres Vanishingly Small Element Radial Stress End Conditions 1 2 Pressure Filled Cylinder A
CAE -Finite Element Method
16.810 Engineering Design and Rapid Prototyping CAE -Finite Element Method Instructor(s) Prof. Olivier de Weck January 11, 2005 Plan for Today Hand Calculations Aero Æ Structures FEM Lecture (ca. 45 min)
MODULE E: BEAM-COLUMNS
MODULE E: BEAM-COLUMNS This module of CIE 428 covers the following subjects P-M interaction formulas Moment amplification Web local buckling Braced and unbraced frames Members in braced frames Members
Finite Element Method
16.810 (16.682) Engineering Design and Rapid Prototyping Finite Element Method Instructor(s) Prof. Olivier de Weck [email protected] Dr. Il Yong Kim [email protected] January 12, 2004 Plan for Today FEM Lecture
Objectives. Experimentally determine the yield strength, tensile strength, and modules of elasticity and ductility of given materials.
Lab 3 Tension Test Objectives Concepts Background Experimental Procedure Report Requirements Discussion Objectives Experimentally determine the yield strength, tensile strength, and modules of elasticity
CAE -Finite Element Method
16.810 Engineering Design and Rapid Prototyping Lecture 3b CAE -Finite Element Method Instructor(s) Prof. Olivier de Weck January 16, 2007 Numerical Methods Finite Element Method Boundary Element Method
SEISMIC DESIGN. Various building codes consider the following categories for the analysis and design for earthquake loading:
SEISMIC DESIGN Various building codes consider the following categories for the analysis and design for earthquake loading: 1. Seismic Performance Category (SPC), varies from A to E, depending on how the
Joist. Reinforcement. Draft 12/7/02
Joist Reinforcement Draft 12/7/02 1 JOIST REINFORCING The purpose of this CSD Design Aid is to provide procedures and suggested details for the reinforcement of open web steel joists. There are three basic
Method of Joints. Method of Joints. Method of Joints. Method of Joints. Method of Joints. Method of Joints. CIVL 3121 Trusses - Method of Joints 1/5
IVL 3121 Trusses - 1/5 If a truss is in equilibrium, then each of its joints must be in equilibrium. The method of joints consists of satisfying the equilibrium equations for forces acting on each joint.
In-situ Load Testing to Evaluate New Repair Techniques
In-situ Load Testing to Evaluate New Repair Techniques W.J. Gold 1 and A. Nanni 2 1 Assistant Research Engineer, Univ. of Missouri Rolla, Dept. of Civil Engineering 2 V&M Jones Professor, Univ. of Missouri
HØGSKOLEN I GJØVIK Avdeling for teknologi, økonomi og ledelse. Løsningsforslag for kontinuasjonseksamen i Mekanikk 4/1-10
Løsningsforslag for kontinuasjonseksamen i 4/1-10 Oppgave 1 (T betyr tension, dvs. strekk, og C betyr compression, dvs. trykk.) Side 1 av 9 Leif Erik Storm Oppgave 2 Løsning (fra http://www.public.iastate.edu/~statics/examples/vmdiags/vmdiaga.html
Type of Force 1 Axial (tension / compression) Shear. 3 Bending 4 Torsion 5 Images 6 Symbol (+ -)
Cause: external force P Force vs. Stress Effect: internal stress f 05 Force vs. Stress Copyright G G Schierle, 2001-05 press Esc to end, for next, for previous slide 1 Type of Force 1 Axial (tension /
Optimising plate girder design
Optimising plate girder design NSCC29 R. Abspoel 1 1 Division of structural engineering, Delft University of Technology, Delft, The Netherlands ABSTRACT: In the design of steel plate girders a high degree
A NEW DESIGN METHOD FOR INDUSTRIAL PORTAL FRAMES IN FIRE
Application of Structural Fire Engineering, 9-2 February 29, Prague, Czech Republic A NEW DESIGN METHOD FOR INDUSTRIAL PORTAL FRAMES IN FIRE Yuanyuan Song a, Zhaohui Huang b, Ian Burgess c, Roger Plank
Nonlinear analysis and form-finding in GSA Training Course
Nonlinear analysis and form-finding in GSA Training Course Non-linear analysis and form-finding in GSA 1 of 47 Oasys Ltd Non-linear analysis and form-finding in GSA 2 of 47 Using the GSA GsRelax Solver
Reinforced Concrete Design
FALL 2013 C C Reinforced Concrete Design CIVL 4135 ii 1 Chapter 1. Introduction 1.1. Reading Assignment Chapter 1 Sections 1.1 through 1.8 of text. 1.2. Introduction In the design and analysis of reinforced
Section 5A: Guide to Designing with AAC
Section 5A: Guide to Designing with AAC 5A.1 Introduction... 3 5A.3 Hebel Reinforced AAC Panels... 4 5A.4 Hebel AAC Panel Design Properties... 6 5A.5 Hebel AAC Floor and Roof Panel Spans... 6 5A.6 Deflection...
Mechanics of Materials Summary
Mechanics of Materials Summary 1. Stresses and Strains 1.1 Normal Stress Let s consider a fixed rod. This rod has length L. Its cross-sectional shape is constant and has area. Figure 1.1: rod with a normal
CLASSIFICATION BOUNDARIES FOR STIFFNESS OF BEAM-TO- COLUMN JOINTS AND COLUMN BASES
Nordic Steel Construction Conference 2012 Hotel Bristol, Oslo, Norway 5-7 September 2012 CLASSIFICATION BOUNDARIES FOR STIFFNESS OF BEAM-TO- COLUMN JOINTS AND COLUMN BASES Ina Birkeland a,*, Arne Aalberg
The Bending Strength of Pasta
The Bending Strength of Pasta 1.105 Lab #1 Louis L. Bucciarelli 9 September, 2003 Lab Partners: [Name1] [Name2] Data File: Tgroup3.txt On the cover page, include your name, the names of your lab partners,
Fric-3. force F k and the equation (4.2) may be used. The sense of F k is opposite
4. FRICTION 4.1 Laws of friction. We know from experience that when two bodies tend to slide on each other a resisting force appears at their surface of contact which opposes their relative motion. The
Overhang Bracket Loading. Deck Issues: Design Perspective
Deck Issues: Design Perspective Overhang Bracket Loading Deck overhangs and screed rails are generally supported on cantilever brackets during the deck pour These brackets produce an overturning couple
9.3 Two-way Slabs (Part I)
9.3 Two-way Slabs (Part I) This section covers the following topics. Introduction Analysis and Design Features in Modeling and Analysis Distribution of Moments to Strips 9.3.1 Introduction The slabs are
P4 Stress and Strain Dr. A.B. Zavatsky MT07 Lecture 3 Statically Indeterminate Structures
4 Stress and Strain Dr... Zavatsky MT07 ecture 3 Statically Indeterminate Structures Statically determinate structures. Statically indeterminate structures (equations of equilibrium, compatibility, and
MCE380: Measurements and Instrumentation Lab. Chapter 9: Force, Torque and Strain Measurements
MCE380: Measurements and Instrumentation Lab Chapter 9: Force, Torque and Strain Measurements Topics: Elastic Elements for Force Measurement Dynamometers and Brakes Resistance Strain Gages Holman, Ch.
bi directional loading). Prototype ten story
NEESR SG: Behavior, Analysis and Design of Complex Wall Systems The laboratory testing presented here was conducted as part of a larger effort that employed laboratory testing and numerical simulation
Pancake-type collapse energy absorption mechanisms and their influence on the final outcome (complete version)
Report, Structural Analysis and Steel Structures Institute, Hamburg University of Technology, Hamburg, June, 2013 Pancake-type collapse energy absorption mechanisms and their influence on the final outcome
Chapter 5: Distributed Forces; Centroids and Centers of Gravity
CE297-FA09-Ch5 Page 1 Wednesday, October 07, 2009 12:39 PM Chapter 5: Distributed Forces; Centroids and Centers of Gravity What are distributed forces? Forces that act on a body per unit length, area or
Designing a Structural Steel Beam. Kristen M. Lechner
Designing a Structural Steel Beam Kristen M. Lechner November 3, 2009 1 Introduction Have you ever looked at a building under construction and wondered how the structure was designed? What assumptions
Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar
Problem 1 Design a hand operated overhead crane, which is provided in a shed, whose details are: Capacity of crane = 50 kn Longitudinal spacing of column = 6m Center to center distance of gantry girder
Finite Element Method (ENGC 6321) Syllabus. Second Semester 2013-2014
Finite Element Method Finite Element Method (ENGC 6321) Syllabus Second Semester 2013-2014 Objectives Understand the basic theory of the FEM Know the behaviour and usage of each type of elements covered
Prepared For San Francisco Community College District 33 Gough Street San Francisco, California 94103. Prepared By
Project Structural Conditions Survey and Seismic Vulnerability Assessment For SFCC Civic Center Campus 750 Eddy Street San Francisco, California 94109 Prepared For San Francisco Community College District
Formwork for Concrete
UNIVERSITY OF WASHINGTON DEPARTMENT OF CONSTRUCTION MANAGEMENT CM 420 TEMPORARY STRUCTURES Winter Quarter 2007 Professor Kamran M. Nemati Formwork for Concrete Horizontal Formwork Design and Formwork Design
SECTION 3 DESIGN OF POST TENSIONED COMPONENTS FOR FLEXURE
SECTION 3 DESIGN OF POST TENSIONED COMPONENTS FOR FLEXURE DEVELOPED BY THE PTI EDC-130 EDUCATION COMMITTEE LEAD AUTHOR: TREY HAMILTON, UNIVERSITY OF FLORIDA NOTE: MOMENT DIAGRAM CONVENTION In PT design,
Calibration and Use of a Strain-Gage-Instrumented Beam: Density Determination and Weight-Flow-Rate Measurement
Chapter 2 Calibration and Use of a Strain-Gage-Instrumented Beam: Density Determination and Weight-Flow-Rate Measurement 2.1 Introduction and Objectives This laboratory exercise involves the static calibration
Chapter 3 - Structural Design
Chapter 3 - Structural Design 3.0 General 3.0.1 Design Overview Greenhouse buildings are a complete structure including the structural support and enclosure elements. The primary structural system includes:
APPENDIX H DESIGN CRITERIA FOR NCHRP 12-79 PROJECT NEW BRIDGE DESIGNS
APPENDIX H DESIGN CRITERIA FOR NCHRP 12-79 PROJECT NEW BRIDGE DESIGNS This appendix summarizes the criteria applied for the design of new hypothetical bridges considered in NCHRP 12-79 s Task 7 parametric
National Council of Examiners for Engineering and Surveying. Principles and Practice of Engineering Structural Examination
Structural Effective Beginning with the April 2011 The structural engineering exam is a breadth and exam examination offered in two components on successive days. The 8-hour Vertical Forces (Gravity/Other)
Introduction to Mechanical Behavior of Biological Materials
Introduction to Mechanical Behavior of Biological Materials Ozkaya and Nordin Chapter 7, pages 127-151 Chapter 8, pages 173-194 Outline Modes of loading Internal forces and moments Stiffness of a structure
The aerodynamic center
The aerodynamic center In this chapter, we re going to focus on the aerodynamic center, and its effect on the moment coefficient C m. 1 Force and moment coefficients 1.1 Aerodynamic forces Let s investigate
Seismic Risk Evaluation of a Building Stock and Retrofit Prioritization
Seismic Risk Evaluation of a Building Stock and Retrofit Prioritization Seismic risk assessment of large building stocks can be conducted at various s depending on the objectives, size of the building
BUCKLING OF BARS, PLATES, AND SHELLS. Virginia Polytechnic Institute and State University Biacksburg, Virginia 24061-0219
BUCKLING OF BARS, PLATES, AND SHELLS ROBERT M. JONES Science and Mechanics Professor Emeritus of Engineering Virginia Polytechnic Institute and State University Biacksburg, Virginia 24061-0219 Bull Ridge
CHAP 4 FINITE ELEMENT ANALYSIS OF BEAMS AND FRAMES INTRODUCTION
CHAP FINITE EEMENT ANAYSIS OF BEAMS AND FRAMES INTRODUCTION We learned Direct Stiffness Method in Chapter imited to simple elements such as D bars we will learn Energ Method to build beam finite element
