Measuring Insulation Resistance of Capacitors
|
|
|
- Letitia Henderson
- 9 years ago
- Views:
Transcription
1 Application Note Measuring Insulation Resistance of Capacitors A common use of high resistance measuring instruments (often called megohmmeters or insulation resistance testers) is measuring the insulation resistance of capacitors. Such tests are useful to quality engineers in the production of capacitive components, by design engineers to determine suitability for a particular application or at incoming inspection. By the proper application of a megohmmeter type instrument a capacitor's dielectric material can be tested and evaluated in two ways. First, the DC value of its impedance (resistance) can be determined. This is an important parameter in some types of capacitors such as ceramic or film, where a high value of insulation resistance is a primary reason in choosing them for an application. It may be that a design engineer has determined that his circuit will not work well below a certain value of insulation resistance. In addition, the DC resistance of a capacitor tells something about its quality. Wide variations from unit to unit or consistently low values may indicate a quality problem. Second, the measurement of the capacitor's insulation resistance with high voltage is an excellent way of detecting flaws in the dielectric material, which might not otherwise make themselves known until long after installation in the user's equipment. Ceramic dielectrics are subject to cracking (as are all ceramic materials), and often these cracks will not be noticed at normal voltages. However, with the application of 500 or 000 volts, breakdown along the crack edges often occurs resulting in an abnormally low value for DC resistance. Why are Capacitors hard to Test? When a capacitor with high insulation resistance is attached to the measurement terminals of the typical high resistance meter, the user may notice some very strange behavior of the instrument. Resistance readings will fluctuate widely in continuous mode, and never settle down. If a pure resistor of similar value is substituted for the capacitor, the readings usually settle down and the instrument measures the device perfectly. This situation can be exhibited on most megohmmeters, whether the instrument has the older analog display or the newer digital display. What is interesting is that, although the variation of readings may be greater on the analog meter, it may be less evident. This is because the resolution on these older instruments is less than those designed today. To the casual user the analog readout that covers one or two decades from zero to full scale will not appear to waiver much for values changing by 2:. On a digital display even though the readout may be more representative of the actual results in many cases it can be annoying and make readings unreliable to difficult. This phenomenon is caused by the way that megohmmeters measure resistance.
2 What Does That Look Like? Figure is a standard way of building an operational amplifier gain stage used in the detector circuit of many types of instruments. The input resistor (Rin) is actually the unknown (DUT). The feedback resistor () is a range resistor selected by a range switch or software when auto ranging is employed, to match the level of current flowing into the detector. This range resistor is very stable and its value must be known precisely or measured during the calibration of the instrument. The voltage out of the detector then depends upon the input voltage and the value of Rin (the unknown). The value of is known and accuracy verified when the instrument is calibrated, so Rin is the only variable. The best way to understand all this is to assume a set of test conditions, with the instrument set to its more sensitive range (na full-scale) and a feedback resistor of 2GΩ (2x0 9 Ω). If the unknown value was 200GΩ (2x0 Ω) and 00 volts applied to it, the current flowing would be 0.5nA or half scale. This results in an output voltage of V since the gain of the detector is /Rin 2GΩ/200GΩ 0.0. Rin - + Vout Rin Figure : Typical Op-Amp Circuit If the unknown is a capacitor, however, things get a little more complex. C - + Vout Figure 2: Capacitor Equivalent Circuit
3 A Real Capacitor A "real" capacitor consists of an ideal capacitor in parallel with its insulation resistance. This ideal capacitor has infinite resistance at DC. As frequency goes up, however, its reactance decreases according to: X C 2 π fc where f is the frequency in hertz, and C is the capacitance in farads. Notice that we use the symbol Xc for the reactance of the pure capacitor, to distinguish from its insulation resistance, R. In this example we'll consider a ceramic capacitor of 2.2uf (2.2x0-6 farads) with a typical minimum insulation resistance of 2GΩ. If a capacitor is tested at 200V and measures a dielectric leakage current of 0nA the insulation resistance must be 20GΩ. For 0nA the instrument would be on the 00nA full-scale range with a feedback resistor of 20MΩ. In this case the gain of the detector is 20MΩ/20GΩ, or.00. The output voltage would then be [(.00) (200V)], or 200mV. This all assumes DC. As soon as we consider AC, things change. At a frequency of Hz, the "ideal" capacitor in this unit will have a reactance, Xc, equal to: ()(2.2x0 ) 7.2x0 The AC gain of the detector would be: 20 Mohms 7.2x0 270 The source of Hz voltage on the input could be any one of several things. It could be room noise picked up by the meter leads, or small fluctuations in the instrument power supply. Even moving the leads (as on an automatic handler) can induce low frequency AC on them. Generally, the induced AC voltage will be small perhaps mv, but the detector would multiply this by 270 to give an output of 270mV. This is higher than the "true" reading of 200mV. The noise from this mv source can cause the result to vary by 35%. So What Do You Do? This situation could be improved by shielding the device under test (DUT) and the test leads from the AC noise. Indeed, at high values of resistance (above GΩ) low noise shielded cables are highly recommended. The real solution to the problem of capacitor testing comes from remembering the cause - high AC gain. If we can reduce the AC gain, we can eliminate the problem.
4 AC Gain Compensation Recall that the AC gain is /Xc. If we were to add a compensation resistor, Rc of MΩ in series with the DUT, the AC gain would become: Rc + Xc 20 Mohms 8.65 Mohm x 0 This is a lot better than 270! With the same mv of noise in, we get only 8.65mV out compared to the "true" signal of 200mV. The series resistor, Rc, has reduced the AC gain to 9.35% of the DC gain, a tolerable level. DC Errors At this point, one might worry that, although we've solved the instability problem, we've introduced an error term of MΩ. We have! But, so what? Remember, we're in the business of trying to measure 2GΩ versus an induced error of MΩ (.00GΩ). The error is.05%. At lower values of DC resistance, a MΩ resistor may be significant, so a smaller compensation resistor should be used. Capacitors with a dielectric leakage current greater than 0uA are simply too "leaky" to exhibit the fluctuations of readings in the first place. Lastly, the addition of series Rc will increase the charge time somewhat. This is unavoidable, but in most cases will be inconsequential. Procedure Using 865 Megohmmeter/IR Tester The 865 is supplied with two quieting resistors that can be placed in series with the DUT when measuring low leakage capacitors. 865 Megohmmeter IR Tester! QuadTech SHIELDED LEAD SET HIGH VOLTAGE DISPLAY MΩ Voltage 00 Mode AUTO RESISTANCE Range ua <A> SELECT ENTRY 2 3 MENU 5 6 CNCL ENTER - 0. TEST STOP START P/N G 00kΩ LO RANGE DUT Shielded Lead Set Sheathed Banana Plugs Quieting Resistor Figure 3: 865 Megohmmeter with Quieting Resistor
5 Conclusion To determine the proper adapter to use, simply measure several devices on the 865 with Auto Range selected. Generally, no resistor is required for the 00uA and ma ranges. This can be confirmed by looking for instability in the readings over a measure time of, say, ten seconds. Note that, during this time, the readings on a non-charged capacitor will change as the DUT charges up. But the reading should increase steadily, not fluctuate up and down. If the readings seem to fluctuate, a quieting resistor may be required. Refer to Table to help select the proper resistor for the measurement range being used. There may be cases (hard to predict) where a higher value compensating-resistor is required on the low current range (na). In general, the two resistors supplied with the 865 unit should suffice. The Current Range is calculated by dividing the Test Voltage by the Resistance Limit. I RANGE V TEST / R LIMIT. Table : Choosing the Correct Quieting Resistor Current Range Quieting Resistor (QR) Value na HI RANGE MΩ 0nA HI RANGE MΩ 00nA LO RANGE 00kΩ µa LO RANGE 00kΩ 0µA LO RANGE 00kΩ 00µA Not Required N/A ma Not Required N/A For complete product specifications on the 865 Megohmmeter/IR Tester or any of IET Labs products, visit us at Do you have an application specific testing need? Call us at or your questions to [email protected] and we ll work with you on a custom solution. The information presented here is subject to change and is intended for general information only IET Labs, Incorporated Printed in U.S.A. June 2003
Measurement of Capacitance
Measurement of Capacitance Pre-Lab Questions Page Name: Class: Roster Number: Instructor:. A capacitor is used to store. 2. What is the SI unit for capacitance? 3. A capacitor basically consists of two
ε: Voltage output of Signal Generator (also called the Source voltage or Applied
Experiment #10: LR & RC Circuits Frequency Response EQUIPMENT NEEDED Science Workshop Interface Power Amplifier (2) Voltage Sensor graph paper (optional) (3) Patch Cords Decade resistor, capacitor, and
LM 358 Op Amp. If you have small signals and need a more useful reading we could amplify it using the op amp, this is commonly used in sensors.
LM 358 Op Amp S k i l l L e v e l : I n t e r m e d i a t e OVERVIEW The LM 358 is a duel single supply operational amplifier. As it is a single supply it eliminates the need for a duel power supply, thus
Op-Amp Simulation EE/CS 5720/6720. Read Chapter 5 in Johns & Martin before you begin this assignment.
Op-Amp Simulation EE/CS 5720/6720 Read Chapter 5 in Johns & Martin before you begin this assignment. This assignment will take you through the simulation and basic characterization of a simple operational
Lab 7: Operational Amplifiers Part I
Lab 7: Operational Amplifiers Part I Objectives The objective of this lab is to study operational amplifier (op amp) and its applications. We will be simulating and building some basic op amp circuits,
Understanding Power Impedance Supply for Optimum Decoupling
Introduction Noise in power supplies is not only caused by the power supply itself, but also the load s interaction with the power supply (i.e. dynamic loads, switching, etc.). To lower load induced noise,
Lab E1: Introduction to Circuits
E1.1 Lab E1: Introduction to Circuits The purpose of the this lab is to introduce you to some basic instrumentation used in electrical circuits. You will learn to use a DC power supply, a digital multimeter
Reading: HH Sections 4.11 4.13, 4.19 4.20 (pgs. 189-212, 222 224)
6 OP AMPS II 6 Op Amps II In the previous lab, you explored several applications of op amps. In this exercise, you will look at some of their limitations. You will also examine the op amp integrator and
Table of Contents. The Basics of Electricity 2. Using a Digital Multimeter 4. Testing Voltage 8. Testing Current 10. Testing Resistance 12
Table of Contents The Basics of Electricity 2 Using a Digital Multimeter 4 IDEAL Digital Multimeters An Introduction The Basics of Digital Multimeters is designed to give you a fundamental knowledge of
Measuring Electric Phenomena: the Ammeter and Voltmeter
Measuring Electric Phenomena: the Ammeter and Voltmeter 1 Objectives 1. To understand the use and operation of the Ammeter and Voltmeter in a simple direct current circuit, and 2. To verify Ohm s Law for
Electrical Safety Tester Verification
Ensuring Validity of Regulatory Tests Verification of electrical safety testing equipment is a procedure that is often overlooked by manufacturers. Running test verification is crucial to ensuring that
ADC-20/ADC-24 Terminal Board. User Guide DO117-5
ADC-20/ADC-24 Terminal Board User Guide DO117-5 Issues: 1) 8.11.05 Created by JB. 2) 13.12.05 p10: added 0V connection to thermocouple schematic. 3) 22.3.06 p11: removed C1. 4) 20.8.07 New logo. 5) 29.9.08
OPERATIONAL AMPLIFIERS
INTRODUCTION OPERATIONAL AMPLIFIERS The student will be introduced to the application and analysis of operational amplifiers in this laboratory experiment. The student will apply circuit analysis techniques
Experiment #11: LRC Circuit (Power Amplifier, Voltage Sensor)
Experiment #11: LRC Circuit (Power Amplifier, Voltage Sensor) Concept: circuits Time: 30 m SW Interface: 750 Windows file: RLC.SWS EQUIPMENT NEEDED Science Workshop Interface Power Amplifier (2) Voltage
BJT Amplifier Circuits
JT Amplifier ircuits As we have developed different models for D signals (simple large-signal model) and A signals (small-signal model), analysis of JT circuits follows these steps: D biasing analysis:
Pressure Transducer to ADC Application
Application Report SLOA05 October 2000 Pressure Transducer to ADC Application John Bishop ABSTRACT Advanced Analog Products/OpAmp Applications A range of bridgetype transducers can measure numerous process
BJT Amplifier Circuits
JT Amplifier ircuits As we have developed different models for D signals (simple large-signal model) and A signals (small-signal model), analysis of JT circuits follows these steps: D biasing analysis:
Bipolar Transistor Amplifiers
Physics 3330 Experiment #7 Fall 2005 Bipolar Transistor Amplifiers Purpose The aim of this experiment is to construct a bipolar transistor amplifier with a voltage gain of minus 25. The amplifier must
Operational Amplifier - IC 741
Operational Amplifier - IC 741 Tabish December 2005 Aim: To study the working of an 741 operational amplifier by conducting the following experiments: (a) Input bias current measurement (b) Input offset
Application Note. So You Need to Measure Some Inductors?
So You Need to Measure Some nductors? Take a look at the 1910 nductance Analyzer. Although specifically designed for production testing of inductors and coils, in addition to measuring inductance (L),
Building the AMP Amplifier
Building the AMP Amplifier Introduction For about 80 years it has been possible to amplify voltage differences and to increase the associated power, first with vacuum tubes using electrons from a hot filament;
Lab 3 - DC Circuits and Ohm s Law
Lab 3 DC Circuits and Ohm s Law L3-1 Name Date Partners Lab 3 - DC Circuits and Ohm s Law OBJECTIES To learn to apply the concept of potential difference (voltage) to explain the action of a battery in
How To Calculate The Power Gain Of An Opamp
A. M. Niknejad University of California, Berkeley EE 100 / 42 Lecture 8 p. 1/23 EE 42/100 Lecture 8: Op-Amps ELECTRONICS Rev C 2/8/2012 (9:54 AM) Prof. Ali M. Niknejad University of California, Berkeley
Lock - in Amplifier and Applications
Lock - in Amplifier and Applications What is a Lock in Amplifier? In a nut shell, what a lock-in amplifier does is measure the amplitude V o of a sinusoidal voltage, V in (t) = V o cos(ω o t) where ω o
User Guide. Model 380260 Insulation Tester / Megohmmeter
User Guide Model 380260 Insulation Tester / Megohmmeter Introduction Congratulations on your purchase of Extech s Insulation Tester/Megohmmeter. The Model 380260 provides three test ranges plus continuity
EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 4 - ALTERNATING CURRENT
EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 4 - ALTERNATING CURRENT 4 Understand single-phase alternating current (ac) theory Single phase AC
High Voltage Power Supplies for Analytical Instrumentation
ABSTRACT High Voltage Power Supplies for Analytical Instrumentation by Cliff Scapellati Power supply requirements for Analytical Instrumentation are as varied as the applications themselves. Power supply
MAS.836 HOW TO BIAS AN OP-AMP
MAS.836 HOW TO BIAS AN OP-AMP Op-Amp Circuits: Bias, in an electronic circuit, describes the steady state operating characteristics with no signal being applied. In an op-amp circuit, the operating characteristic
An Overview of Practical Capacitance Bridge Functioning. by Paul Moses
An Overview of Practical Capacitance Bridge Functioning by Paul Moses INTRODUCTION The laboratory has a variety of bridges, both automatic and manual which can be used to measure the capacitance and dielectric
Physics 3330 Experiment #2 Fall 1999. DC techniques, dividers, and bridges R 2 =(1-S)R P R 1 =SR P. R P =10kΩ 10-turn pot.
Physics 3330 Experiment #2 Fall 1999 DC techniques, dividers, and bridges Purpose You will gain a familiarity with the circuit board and work with a variety of DC techniques, including voltage dividers,
Transistor Amplifiers
Physics 3330 Experiment #7 Fall 1999 Transistor Amplifiers Purpose The aim of this experiment is to develop a bipolar transistor amplifier with a voltage gain of minus 25. The amplifier must accept input
www.keithley.com LLM 6 th Edition Low Level Measurements Handbook Precision DC Current, Voltage, and Resistance Measurements
www.keithley.com LLM 6 th Edition Low Level Measurements Handbook Precision DC Current, Voltage, and Resistance Measurements Low Level Measurements Handbook Precision DC Current, Voltage, and Resistance
Lecture - 4 Diode Rectifier Circuits
Basic Electronics (Module 1 Semiconductor Diodes) Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Lecture - 4 Diode Rectifier Circuits
1587/1577. Insulation Multimeters. Technical Data. Two powerful tools in one.
1587/1577 Insulation Multimeters Technical Data Two powerful tools in one. The Fluke 1587 and 1577 Insulation Multimeters combine a digital insulation tester with a full-featured, true-rms digital multimeter
Digital to Analog Converter. Raghu Tumati
Digital to Analog Converter Raghu Tumati May 11, 2006 Contents 1) Introduction............................... 3 2) DAC types................................... 4 3) DAC Presented.............................
Application Guide Film Capacitors
Capacitance Change vs. Temperature Insulation Resistance vs. Temperature Polyester Typical Characteristics at 1 khz % Capacitance Change % Capacitance Change Polypropylene Typical Characteristics at 1
11: AUDIO AMPLIFIER I. INTRODUCTION
11: AUDIO AMPLIFIER I. INTRODUCTION The properties of an amplifying circuit using an op-amp depend primarily on the characteristics of the feedback network rather than on those of the op-amp itself. A
css Custom Silicon Solutions, Inc.
css Custom Silicon Solutions, Inc. CSS555(C) CSS555/ PART DESCRIPTION The CSS555 is a micro-power version of the popular 555 Timer IC. It is pin-for-pin compatible with the standard 555 timer and features
Tutorial on Safety Standard Compliance For Hipot Testing
Chroma Systems Solutions, Inc. Tutorial on Safety Standard Compliance For Hipot Testing 19071, 19073 Hipot Testers Keywords: Safety Issues, Electrical Shock, Fire, Hipot (Dielectric Withstand), Leakage
LABORATORY 2 THE DIFFERENTIAL AMPLIFIER
LABORATORY 2 THE DIFFERENTIAL AMPLIFIER OBJECTIVES 1. To understand how to amplify weak (small) signals in the presence of noise. 1. To understand how a differential amplifier rejects noise and common
Critical thin-film processes such as deposition and etching take place in a vacuum
WHITEPAPER INTRODUCING POWER SUPPLIES AND PLASMA Critical thin-film processes such as deposition and etching take place in a vacuum SYSTEMS chamber in the presence of a plasma. A plasma is an electrically
= V peak 2 = 0.707V peak
BASIC ELECTRONICS - RECTIFICATION AND FILTERING PURPOSE Suppose that you wanted to build a simple DC electronic power supply, which operated off of an AC input (e.g., something you might plug into a standard
Measuring Biased Inductors with the GenRad Digibridge
534 Main Street, Westbury NY 11590 www.ietlabs.com [email protected] P: 5163345959, 8008998438 pplication Note Measuring Biased Inductors with the GenRad Digibridge This note is intended for those who
PIN CONFIGURATION FEATURES ORDERING INFORMATION ABSOLUTE MAXIMUM RATINGS. D, F, N Packages
DESCRIPTION The µa71 is a high performance operational amplifier with high open-loop gain, internal compensation, high common mode range and exceptional temperature stability. The µa71 is short-circuit-protected
Insulation resistance testing. A complete solution for every person.
Insulation resistance testing. A complete solution for every person. Insulation resistance. The latest test tools from the testing experts. You asked. We responded. Now you have more insulation testing
OPERATIONAL AMPLIFIERS. o/p
OPERATIONAL AMPLIFIERS 1. If the input to the circuit of figure is a sine wave the output will be i/p o/p a. A half wave rectified sine wave b. A fullwave rectified sine wave c. A triangular wave d. A
Op Amp Circuit Collection
Op Amp Circuit Collection Note: National Semiconductor recommends replacing 2N2920 and 2N3728 matched pairs with LM394 in all application circuits. Section 1 Basic Circuits Inverting Amplifier Difference
A Practical Guide to Dielectric Testing
Chroma Systems Solutions, Inc. A Practical Guide to Dielectric Testing 19032 Series Electrical Safety Analyzer & 19050 Series Hipot Tester AC/DC/IR/SCAN Keywords: Dielectric tests, insulation resistance
Objective. To design and simulate a cascode amplifier circuit using bipolar transistors.
ascode Amplifier Design. Objective. o design and simulate a cascode amplifier circuit using bipolar transistors. Assignment description he cascode amplifier utilises the advantage of the common-emitter
Chapter 10. RC Circuits ISU EE. C.Y. Lee
Chapter 10 RC Circuits Objectives Describe the relationship between current and voltage in an RC circuit Determine impedance and phase angle in a series RC circuit Analyze a series RC circuit Determine
Constant Voltage and Constant Current Controller for Adaptors and Battery Chargers
TECHNICAL DATA Constant Voltage and Constant Current Controller for Adaptors and Battery Chargers IK3051 Description IK3051 is a highly integrated solution for SMPS applications requiring constant voltage
Conversion Between Analog and Digital Signals
ELET 3156 DL - Laboratory #6 Conversion Between Analog and Digital Signals There is no pre-lab work required for this experiment. However, be sure to read through the assignment completely prior to starting
Programmable-Gain Transimpedance Amplifiers Maximize Dynamic Range in Spectroscopy Systems
Programmable-Gain Transimpedance Amplifiers Maximize Dynamic Range in Spectroscopy Systems PHOTODIODE VOLTAGE SHORT-CIRCUIT PHOTODIODE SHORT- CIRCUIT VOLTAGE 0mV DARK ark By Luis Orozco Introduction Precision
ARRL Morse Code Oscillator, How It Works By: Mark Spencer, WA8SME
The national association for AMATEUR RADIO ARRL Morse Code Oscillator, How It Works By: Mark Spencer, WA8SME This supplement is intended for use with the ARRL Morse Code Oscillator kit, sold separately.
RLC Resonant Circuits
C esonant Circuits Andrew McHutchon April 20, 203 Capacitors and Inductors There is a lot of inconsistency when it comes to dealing with reactances of complex components. The format followed in this document
EXPERIMENT NUMBER 5 BASIC OSCILLOSCOPE OPERATIONS
1 EXPERIMENT NUMBER 5 BASIC OSCILLOSCOPE OPERATIONS The oscilloscope is the most versatile and most important tool in this lab and is probably the best tool an electrical engineer uses. This outline guides
Constructing a precision SWR meter and antenna analyzer. Mike Brink HNF, Design Technologist.
Constructing a precision SWR meter and antenna analyzer. Mike Brink HNF, Design Technologist. Abstract. I have been asked to put together a detailed article on a SWR meter. In this article I will deal
Auto-ranging Digital Multimeter 52-0052-2 INSTRUCTION MANUAL
Auto-ranging Digital Multimeter 52-0052-2 INSTRUCTION MANUAL WARNING: READ AND UNDERSTAND THIS MANUAL BEFORE USING YOUR MULTIMETER. FAILURE TO UNDERSTAND AND COMPLY WITH WARNINGS AND OPERATING INSTRUCTIONS
SELECTION GUIDE. Nominal Input
www.murata-ps.com NKE Series FEATURES RoHS Compliant Sub-Miniature SIP & DIP Styles 3kVDC Isolation UL Recognised Wide Temperature performance at full 1 Watt load, 40 C to 85 C Increased Power Density
Since any real component also has loss due to the resistive component, the average power dissipated is 2 2R
Quality factor, Q Reactive components such as capacitors and inductors are often described with a figure of merit called Q. While it can be defined in many ways, it s most fundamental description is: Q
Experiment 4 ~ Resistors in Series & Parallel
Experiment 4 ~ Resistors in Series & Parallel Objective: In this experiment you will set up three circuits: one with resistors in series, one with resistors in parallel, and one with some of each. You
Loop Calibration and Maintenance
Loop Calibration and Maintenance Application Note Introduction Process instrumentation requires periodic calibration and maintenance to ensure that it is operating correctly. This application note contains
Isolated AC Sine Wave Input 3B42 / 3B43 / 3B44 FEATURES APPLICATIONS PRODUCT OVERVIEW FUNCTIONAL BLOCK DIAGRAM
Isolated AC Sine Wave Input 3B42 / 3B43 / 3B44 FEATURES AC averaging technique used to rectify, amplify, and filter 50 Hz to 400 Hz sine-wave signals. Accepts inputs of between 20 mv to 550 V rms to give
Basic Op Amp Circuits
Basic Op Amp ircuits Manuel Toledo INEL 5205 Instrumentation August 3, 2008 Introduction The operational amplifier (op amp or OA for short) is perhaps the most important building block for the design of
Frequency Response of Filters
School of Engineering Department of Electrical and Computer Engineering 332:224 Principles of Electrical Engineering II Laboratory Experiment 2 Frequency Response of Filters 1 Introduction Objectives To
Scaling and Biasing Analog Signals
Scaling and Biasing Analog Signals November 2007 Introduction Scaling and biasing the range and offset of analog signals is a useful skill for working with a variety of electronics. Not only can it interface
Section 3. Sensor to ADC Design Example
Section 3 Sensor to ADC Design Example 3-1 This section describes the design of a sensor to ADC system. The sensor measures temperature, and the measurement is interfaced into an ADC selected by the systems
The Time Constant of an RC Circuit
The Time Constant of an RC Circuit 1 Objectives 1. To determine the time constant of an RC Circuit, and 2. To determine the capacitance of an unknown capacitor. 2 Introduction What the heck is a capacitor?
DIGITAL-TO-ANALOGUE AND ANALOGUE-TO-DIGITAL CONVERSION
DIGITAL-TO-ANALOGUE AND ANALOGUE-TO-DIGITAL CONVERSION Introduction The outputs from sensors and communications receivers are analogue signals that have continuously varying amplitudes. In many systems
WHY DIFFERENTIAL? instruments connected to the circuit under test and results in V COMMON.
WHY DIFFERENTIAL? Voltage, The Difference Whether aware of it or not, a person using an oscilloscope to make any voltage measurement is actually making a differential voltage measurement. By definition,
Inductors in AC Circuits
Inductors in AC Circuits Name Section Resistors, inductors, and capacitors all have the effect of modifying the size of the current in an AC circuit and the time at which the current reaches its maximum
CAN Bus Transceivers Operate from 3.3V or 5V and Withstand ±60V Faults
CAN Bus Transceivers Operate from 3.3V or 5V and Withstand ±6 Faults Ciaran Brennan design features The LTC2875 is a robust CAN bus transceiver that features ±6 overvoltage and ±25kV ESD tolerance to reduce
MOBILE SYSTEM FOR DIAGNOSIS OF HIGH VOLTAGE CABLES (132KV/220KV) VLF-200 HVCD
MOBILE SYSTEM FOR DIAGNOSIS OF HIGH VOLTAGE CABLES (132KV/220KV) VLF-200 HVCD VERY LOW FREQUENCY (VLF) - PARTIAL DISCHARGES AND TANGENT DELTA HV/EHV POWER CABLES DIAGNOSTIC AND ON-SITE FIELD TESTING WITH
LC103 ReZolver In-Circuit Capacitor & Inductor Analyzer
Quickly Test Capacitors & Inductors In-Circuit & Fully Analyze Capacitors & Inductors For All Of The Ways They Fail Out Of Circuit LC103 ReZolver In-Circuit Capacitor & Inductor Analyzer S Analyzing Capacitors
Diodes have an arrow showing the direction of the flow.
The Big Idea Modern circuitry depends on much more than just resistors and capacitors. The circuits in your computer, cell phone, Ipod depend on circuit elements called diodes, inductors, transistors,
NUCLEAR MAGNETIC RESONANCE. Advanced Laboratory, Physics 407, University of Wisconsin Madison, Wisconsin 53706
(revised 4/21/03) NUCLEAR MAGNETIC RESONANCE Advanced Laboratory, Physics 407, University of Wisconsin Madison, Wisconsin 53706 Abstract This experiment studies the Nuclear Magnetic Resonance of protons
Measuring Impedance and Frequency Response of Guitar Pickups
Measuring Impedance and Frequency Response of Guitar Pickups Peter D. Hiscocks Syscomp Electronic Design Limited [email protected] www.syscompdesign.com April 30, 2011 Introduction The CircuitGear
HT9170 DTMF Receiver. Features. General Description. Selection Table
DTMF Receiver Features Operating voltage: 2.5V~5.5V Minimal external components No external filter is required Low standby current (on power down mode) General Description The HT9170 series are Dual Tone
User's Guide. True RMS Industrial Multimeter
User's Guide 97650 True RMS Industrial Multimeter Ω C ã F ã 10A V µ 10A V ã ã ma A Introduction This meter measures AC/DC Voltage, AC/DC Current, Resistance, Capacitance, Frequency (electrical & electronic),
Alphasense Application Note AAN 105-03 DESIGNING A POTENTIOSTATIC CIRCUIT
AAN 10503 DESIGNING A POTENTIOSTATIC CIRCUIT Introduction In a threeelectrode sensor, each electrode has a specific use: The working electrode responds to the target gas, either oxidising or reducing the
Technical Note #3. Error Amplifier Design and Applications. Introduction
Technical Note #3 Error Amplifier Design and Applications Introduction All regulating power supplies require some sort of closed-loop control to force the output to match the desired value. Both digital
Dielectric Withstand and Ground Bond Testers For Production Line Safety Agency Compliance Testing
Dielectric Withstand and Ground Bond Testers For Production Line Safety Agency Compliance Testing U.S. patent#: 5,548,501, 6,054,865. Other patents pending. Safety agency listed. ENHANCED GRAPHIC LCD The
Physics 120 Lab 6: Field Effect Transistors - Ohmic region
Physics 120 Lab 6: Field Effect Transistors - Ohmic region The FET can be used in two extreme ways. One is as a voltage controlled resistance, in the so called "Ohmic" region, for which V DS < V GS - V
AC 2012-3923: MEASUREMENT OF OP-AMP PARAMETERS USING VEC- TOR SIGNAL ANALYZERS IN UNDERGRADUATE LINEAR CIRCUITS LABORATORY
AC 212-3923: MEASUREMENT OF OP-AMP PARAMETERS USING VEC- TOR SIGNAL ANALYZERS IN UNDERGRADUATE LINEAR CIRCUITS LABORATORY Dr. Tooran Emami, U.S. Coast Guard Academy Tooran Emami received her M.S. and Ph.D.
Precision Diode Rectifiers
by Kenneth A. Kuhn March 21, 2013 Precision half-wave rectifiers An operational amplifier can be used to linearize a non-linear function such as the transfer function of a semiconductor diode. The classic
Fundamentals of Signature Analysis
Fundamentals of Signature Analysis An In-depth Overview of Power-off Testing Using Analog Signature Analysis www.huntron.com 1 www.huntron.com 2 Table of Contents SECTION 1. INTRODUCTION... 7 PURPOSE...
Common Emitter BJT Amplifier Design Current Mirror Design
Common Emitter BJT Amplifier Design Current Mirror Design 1 Some Random Observations Conditions for stabilized voltage source biasing Emitter resistance, R E, is needed. Base voltage source will have finite
Common-Emitter Amplifier
Common-Emitter Amplifier A. Before We Start As the title of this lab says, this lab is about designing a Common-Emitter Amplifier, and this in this stage of the lab course is premature, in my opinion,
A Collection of Differential to Single-Ended Signal Conditioning Circuits for Use with the LTC2400, a 24-Bit No Latency Σ ADC in an SO-8
Application Note August 999 A Collection of Differential to Single-Ended Signal Conditioning Circuits for Use with the LTC00, a -Bit No Latency Σ ADC in an SO- By Kevin R. Hoskins and Derek V. Redmayne
Electrical Resonance
Electrical Resonance (R-L-C series circuit) APPARATUS 1. R-L-C Circuit board 2. Signal generator 3. Oscilloscope Tektronix TDS1002 with two sets of leads (see Introduction to the Oscilloscope ) INTRODUCTION
RC Circuits and The Oscilloscope Physics Lab X
Objective RC Circuits and The Oscilloscope Physics Lab X In this series of experiments, the time constant of an RC circuit will be measured experimentally and compared with the theoretical expression for
Lecture 24: Oscillators. Clapp Oscillator. VFO Startup
Whites, EE 322 Lecture 24 Page 1 of 10 Lecture 24: Oscillators. Clapp Oscillator. VFO Startup Oscillators are circuits that produce periodic output voltages, such as sinusoids. They accomplish this feat
Chapter 12: The Operational Amplifier
Chapter 12: The Operational Amplifier 12.1: Introduction to Operational Amplifier (Op-Amp) Operational amplifiers (op-amps) are very high gain dc coupled amplifiers with differential inputs; they are used
www.keithley.com LLM 6 th Edition Low Level Measurements Handbook Precision DC Current, Voltage, and Resistance Measurements
www.keithley.com LLM 6 th Edition Low Level Measurements Handbook Precision DC Current, Voltage, and Resistance Measurements Low Level Measurements Handbook Precision DC Current, Voltage, and Resistance
QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 956 24-BIT DIFFERENTIAL ADC WITH I2C LTC2485 DESCRIPTION
LTC2485 DESCRIPTION Demonstration circuit 956 features the LTC2485, a 24-Bit high performance Σ analog-to-digital converter (ADC). The LTC2485 features 2ppm linearity, 0.5µV offset, and 600nV RMS noise.
Application Note 142 August 2013. New Linear Regulators Solve Old Problems AN142-1
August 2013 New Linear Regulators Solve Old Problems Bob Dobkin, Vice President, Engineering and CTO, Linear Technology Corp. Regulators regulate but are capable of doing much more. The architecture of
Homework Assignment 03
Question 1 (2 points each unless noted otherwise) Homework Assignment 03 1. A 9-V dc power supply generates 10 W in a resistor. What peak-to-peak amplitude should an ac source have to generate the same
CMR Series Isolated 0.75W Single and Dual Output Isolated DC/DC Converters
www.murata-ps.com CMR Series SELECTION GUIDE FEATURES Single or Dual Isolated Outputs 1kVDC or 3kVDC options Wide temperature performance at full 0.75W load -40 C to 85C Industry Standard Pinouts 5V, 12V
Electricity and Magnetism, Georgia, GEOSTM (Georgian National Agency for Standards and Metrology)
single references 1 1.018 V Temperature (23 ± 3) C 6 µv 2 95% No 1 single references 10 10 V Temperature (23 ± 3) C 25 µv 2 95% No 2 low ranges DMM > 0.01 10 V Temperature (23 ± 3) C 2E-06U + 3E-06 to
Apprentice Telecommunications Technician Test (CTT) Study Guide
Apprentice Telecommunications Technician Test (CTT) Study Guide 1 05/2014 Study Guide for Pacific Gas & Electric Company Apprentice Telecommunications Technician Qualifying Test (CTT) About the Test The
