# Precision Diode Rectifiers

Size: px
Start display at page:

Transcription

1 by Kenneth A. Kuhn March 21, 2013 Precision half-wave rectifiers An operational amplifier can be used to linearize a non-linear function such as the transfer function of a semiconductor diode. The classic half-wave rectifier circuit shown in Figure 1 exhibits considerable distortion and truncation when the input signal level is low. Figure 1: Simple half-wave rectifier with large signal input to minimize output distortion If the diode is placed in the feedback of an operational amplifier the linearity at small signal levels is greatly improved as a result of the high amplifier gain. At high signal levels the circuit functions practically as if perfect. Signals at low frequencies down to a few millivolts peak will be accurately half-wave rectified. The only limit is the open loop gain and slew rate of the operational amplifier at the highest significant harmonic of the half-wave signal. Higher gain leads to more accurate rectification. Figure 2 illustrates the classic precision half-wave rectifier. Series capacitor, C 1, blocks DC from the circuit and R 1 provides a path for bias current to operational amplifier, U 1. Diode, D 1, conducts when V IN is positive and unity-gain amplifier, U 2, buffers the rectified signal. Diode, D 2, is reversed biased and therefore not part of the circuit when the input signal is positive. Feedback from U 2 is applied to the inverting input of U 1. The action of the output of U 1 is to go to such a voltage that the signal at the inverting input matches the signal at the non-inverting input. Thus, since D 1 is in the long feedback loop of U 1, the output of U 2 matches V IN during the time that V IN is positive i.e. output waveform matches input waveform even when V IN is only in the low millivolt range. When V IN is negative then the output of U 1 is negative and D 1 is reversed biased thus the noninverting input to U 2 is zero and V O is zero. Diode, D 2, is now forward biased and again the output of U 1 goes to the required voltage so that its inverting input matches its non-inverting input. During this time there is a voltage drop across R 3 since V O is zero and the inverting input to U 1 is negative. The waveform at the output of U 1 requires a very high slew rate as the output transitions from forward bias on one diode to forward bias on the other diode note the rapid jumps in voltage at the zero crossings. When the amplifier is not capable of slewing fast enough then the leading edge of the half-cycle is truncated. A common error in using this circuit is overlooking the 1

2 bandwidth requirement of the amplifiers. As a rough guide the gain-bandwidth product of the amplifier should be at least 100 times the frequency of the sine wave or noticeable waveform distortion will occur particularly for low amplitude input signals. With ordinary operational amplifiers the circuits shown here operate up to a few khz and a few tens of khz with wider bandwidth amplifiers. Accurate higher frequency operation requires advanced methods beyond the scope of this note. Figure 2: Precision half-wave rectifier An alternate form of the precision half-wave rectifier is shown in Figure 3. U 1 is an inverting amplifier so the V O output of U 2 is the negative portion of V IN. D 1 conducts when V IN is negative thus making a positive voltage across R 2 which is buffered by U 2. Diode, D 2, provides a feedback path when V IN is positive. Figure 3: Alternate precision half-wave rectifier Figure 4 shows a modified version of the circuit in Figure 3 to provide smooth the half-wave rectified signal into a steady DC voltage. Circuits like this are known as average responding and are often used in low-cost non-true-rms responding AC voltmeters. Average responding detectors are generally calibrated to produce a voltage corresponding to the rms of a sine wave and will be inaccurate for any other waveform. The average value of the rectified signal is across C 2. For a sine wave the half-wave DC average voltage is given by Equation 1. This 2

3 equation is only true for sine waves. Square wave, triangle waves, and other waveforms have different factors. The time constant of R 3 C 2 should generally be several hundred milliseconds. = ߨ = 2 ௦ ߨ = ௦ (1) Figure 4: Precision half-wave rectifier with DC smoothing filter. Precision full-wave rectifiers, a.k.a. absolute value circuits A useful signal processing function is the absolute value circuit. The name, full-wave rectifier, is a special case application where the input signal is AC coupled to remove any DC component. That is the only distinction between the two names the circuits are the same. The more general absolute value circuit operates from DC up to its maximum frequency and is not thought of as a rectifier although it will obviously perform that task. The classic absolute value circuit is shown in Figure 5. Although the circuit might look complicated the analysis is simple when broken into its parts. The circuit around U 1 is just like that in Figure 3 except that the diodes are reversed so the voltage waveform at point X is inverted. U 2 and resistors, R 3, R 4, and R 5 is an inverting summer with a gain of -1 to V IN and a gain of -2 to the voltage at point X. Note that when V IN is negative the voltage at point X is zero, as D 2 is reversed biased and D 1 is forward biased. In that case the output voltage of U 2, V O, is the inverted magnitude of V IN the voltage at point X is zero and contributes nothing. When V IN is positive the voltage at point X is the negative of V IN. The output of U 2 is then the negative of V IN minus twice the negative of V IN since the gain of U 2 to the voltage at point X is -R 5 /R 4 which is -2. Expressed as an equation, = ( 2) =. For proper operation all the resistors should be matched and the 5K should be very accurately half the 10K. Otherwise there will be waveform distortions and there will be considerable error for operation at low voltages in the tens of millivolts and less. 3

4 Figure 5: Classic absolute value circuit An absolute value circuit based on a dual half-wave circuit is shown in Figure 6. Analysis of the circuit is simple although a common error is omitting the effect of R 3. For this circuit to work properly it is important that R 2 and R 3 be matched in resistance and that R 4 and R 5 be matched as well. Ideally all four resistors match. R 1 just sets a scale factor and can be higher or lower than the other resistors as shown in a subsequent example. The analysis will be performed with all five resistors the identical value as shown in the figure. Operation is as follows. When V IN is positive the output of U 1 goes negative so that the voltage at the anode of D 2 is V IN and the voltage at the cathode of D 1 is zero. Thus, U 2 acts as an inverting amplifier and V O = V IN. When V IN is negative the output of U 1 goes positive so that the voltage at the cathode of D 1 goes positive an error is to assume it goes to V IN keep in mind the path through R 3. Let us call that voltage V X. We note that the voltage at the inverting input of U 2 must also be V X. We then note that the total feedback current to the inverting input of U 1 is ܫ = ଶ + ( ଷ + ସ) = (3 2)(.(ܭ 10 Since this current is identical to ܭ 10 then = (2 3). The noninverting gain of U 2 is 1.5 (remember that R 3 is in the circuit) so V O = -V IN, a positive voltage. 4

5 Figure 6: Alternate absolute value circuit One undesirable trait of the circuits in Figures 5 and 6 is that considerable resistor matching is required for proper operation. Mismatching of the resistors results in a variety of distortions as shown in Figure 7. In the first case the gain is different for the two half-cycles. In the second and third cases the crossover points do not lineup in addition of gain mismatch. Figure 7: Examples of distortion caused by resistors not being matched The circuit shown in Figure 8 is believed to be the simplest possible absolute value circuit and has the feature that only two resistors, R 1, and R 2, need to be matched. R 3 is nominally the same resistance but does not need to match. When V IN is positive D 2 is forward biased (D 1 is reversed biased) and U 2 acts as a unity gain buffer to V O. Feedback through R 1 and R 2 to U 1 causes V O to match V IN. When V IN is negative then D 1 is forward biased (D 2 is reversed biased) and the output of U 1 goes to the required voltage so that its inverting input matches V IN. U 2 is now an inverting amplifier so that V O is V IN i.e. always positive. One negative aspect of the circuit is that U 2 is in the feedback of U 1 for V IN positive. The small time delay or phase lag through that path can cause a loop oscillation. Capacitor, C 1, compensates for the phase lag introduced when U 2 is in the feedback of U 1. The required capacitance is inversely proportional to the bandwidth of the amplifiers and will typically be in the range of several tens to perhaps over a hundred picofarads. It is best determined by experimentation with the actual physical circuit. If the capacitance is too small some oscillation may be observed on portions of the V O waveform when V IN is positive. If the capacitance is too 5

6 large, there will be errors at high frequencies. The correct amount of capacitance is as small as possible consistent with no oscillation on the V O waveform. R1 4.99K R2 4.99K U1 D1 C1 D2 U2 VO VIN R3 4.99K Figure 8: Simplest possible absolute value circuit Figure 9 shows a precision full-wave rectifier with DC smoothing. As shown, V O is a DC voltage equal to the rms voltage of V IN provided that V IN is a sine wave. That relation will not hold true for other waveforms. The smoothing time constant set by the 330K and 1 uf capacitors is one-third of a second which gives a full settling time of about 2 seconds. C 2 and C 3 should be smaller to reduce that time. (R 4 /R 2 ) and correspondingly (R 5 /R 3 ) should be large as shown to minimize the effect of stored charge on the smoothing capacitors from affecting operation of U 1. U 1 should have wide bandwidth. U 2 and U 3 should be precision DC amplifiers and have very low input bias currents preferably less than 1 na. The voltage across R 2 is a positive half-cycle and the voltage across R 3 is a negative half-cycle. Those half-cycles are DC averaged by filters, R 4 C 2 and R 5 C 3. The difference amplifier provides a gain a two. With V IN a sine wave of rms voltage, Vrms, the DC output voltage, V O is found as follows. The two factors of 2 account for the difference amplifier applying a gain of two on the difference between the positive DC average and the negative DC average. = ൬ ൰ቆ 2 ߨ ቇ(2)(2) = (2) 6

7 Figure 9: Full-wave rectifier with DC smoothing filter See the following web links for more information. About the simplest possible absolute value circuit. An interesting absolute value circuit. An interesting method of achieving absolute value using single supply op-amps. 7

### The full wave rectifier consists of two diodes and a resister as shown in Figure

The Full-Wave Rectifier The full wave rectifier consists of two diodes and a resister as shown in Figure The transformer has a centre-tapped secondary winding. This secondary winding has a lead attached

### Diode Applications. by Kenneth A. Kuhn Sept. 1, 2008. This note illustrates some common applications of diodes.

by Kenneth A. Kuhn Sept. 1, 2008 This note illustrates some common applications of diodes. Power supply applications A common application for diodes is converting AC to DC. Although half-wave rectification

### OPERATIONAL AMPLIFIERS. o/p

OPERATIONAL AMPLIFIERS 1. If the input to the circuit of figure is a sine wave the output will be i/p o/p a. A half wave rectified sine wave b. A fullwave rectified sine wave c. A triangular wave d. A

### LABORATORY 10 TIME AVERAGES, RMS VALUES AND THE BRIDGE RECTIFIER. Bridge Rectifier

LABORATORY 10 TIME AVERAGES, RMS VALUES AND THE BRIDGE RECTIFIER Full-wave Rectification: Bridge Rectifier For many electronic circuits, DC supply voltages are required but only AC voltages are available.

### ANADOLU UNIVERSITY DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

ANADOLU UNIVERSITY DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EEM 102 INTRODUCTION TO ELECTRICAL ENGINEERING EXPERIMENT 9: DIODES AND DC POWER SUPPLY OBJECTIVE: To observe how a diode functions

### DIODE CIRCUITS LABORATORY. Fig. 8.1a Fig 8.1b

DIODE CIRCUITS LABORATORY A solid state diode consists of a junction of either dissimilar semiconductors (pn junction diode) or a metal and a semiconductor (Schottky barrier diode). Regardless of the type,

### Lecture - 4 Diode Rectifier Circuits

Basic Electronics (Module 1 Semiconductor Diodes) Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Lecture - 4 Diode Rectifier Circuits

### Homework Assignment 03

Question 1 (2 points each unless noted otherwise) Homework Assignment 03 1. A 9-V dc power supply generates 10 W in a resistor. What peak-to-peak amplitude should an ac source have to generate the same

### Chapter 3. Diodes and Applications. Introduction [5], [6]

Chapter 3 Diodes and Applications Introduction [5], [6] Diode is the most basic of semiconductor device. It should be noted that the term of diode refers to the basic p-n junction diode. All other diode

### LM 358 Op Amp. If you have small signals and need a more useful reading we could amplify it using the op amp, this is commonly used in sensors.

LM 358 Op Amp S k i l l L e v e l : I n t e r m e d i a t e OVERVIEW The LM 358 is a duel single supply operational amplifier. As it is a single supply it eliminates the need for a duel power supply, thus

### MAS.836 HOW TO BIAS AN OP-AMP

MAS.836 HOW TO BIAS AN OP-AMP Op-Amp Circuits: Bias, in an electronic circuit, describes the steady state operating characteristics with no signal being applied. In an op-amp circuit, the operating characteristic

### Basic Op Amp Circuits

Basic Op Amp ircuits Manuel Toledo INEL 5205 Instrumentation August 3, 2008 Introduction The operational amplifier (op amp or OA for short) is perhaps the most important building block for the design of

### electronics fundamentals

electronics fundamentals circuits, devices, and applications THOMAS L. FLOYD DAVID M. BUCHLA Lesson 1: Diodes and Applications Center-Tapped Full-wave Rectifier The center-tapped (CT) full-wave rectifier

### Use and Application of Output Limiting Amplifiers (HFA1115, HFA1130, HFA1135)

Use and Application of Output Limiting Amplifiers (HFA111, HFA110, HFA11) Application Note November 1996 AN96 Introduction Amplifiers with internal voltage clamps, also known as limiting amplifiers, have

### The D.C Power Supply

The D.C Power Supply Voltage Step Down Electrical Isolation Converts Bipolar signal to Unipolar Half or Full wave Smoothes the voltage variation Still has some ripples Reduce ripples Stabilize the output

### Reading: HH Sections 4.11 4.13, 4.19 4.20 (pgs. 189-212, 222 224)

6 OP AMPS II 6 Op Amps II In the previous lab, you explored several applications of op amps. In this exercise, you will look at some of their limitations. You will also examine the op amp integrator and

### Rectifier circuits & DC power supplies

Rectifier circuits & DC power supplies Goal: Generate the DC voltages needed for most electronics starting with the AC power that comes through the power line? 120 V RMS f = 60 Hz T = 1667 ms) = )sin How

### See Horenstein 4.3 and 4.4

EE 462: Laboratory # 4 DC Power Supply Circuits Using Diodes by Drs. A.V. Radun and K.D. Donohue (2/14/07) Department of Electrical and Computer Engineering University of Kentucky Lexington, KY 40506 Updated

### Chapter 12: The Operational Amplifier

Chapter 12: The Operational Amplifier 12.1: Introduction to Operational Amplifier (Op-Amp) Operational amplifiers (op-amps) are very high gain dc coupled amplifiers with differential inputs; they are used

### Properties of electrical signals

DC Voltage Component (Average voltage) Properties of electrical signals v(t) = V DC + v ac (t) V DC is the voltage value displayed on a DC voltmeter Triangular waveform DC component Half-wave rectifier

### CHAPTER 2B: DIODE AND APPLICATIONS. D.Wilcher

CHAPTER 2B: DIODE AND APPLICATIONS D.Wilcher 1 CHAPTER 2B: OBJECTIVES Analyze the operation of 3 basic types of rectifiers Describe the operation of rectifier filters and IC regulators Analyze the operation

### Fundamentals of Microelectronics

Fundamentals of Microelectronics CH1 Why Microelectronics? CH2 Basic Physics of Semiconductors CH3 Diode Circuits CH4 Physics of Bipolar Transistors CH5 Bipolar Amplifiers CH6 Physics of MOS Transistors

### Lab 7: Operational Amplifiers Part I

Lab 7: Operational Amplifiers Part I Objectives The objective of this lab is to study operational amplifier (op amp) and its applications. We will be simulating and building some basic op amp circuits,

### A Low-Cost VCA Limiter

The circuits within this application note feature THAT218x to provide the essential function of voltage-controlled amplifier (VCA). Since writing this note, THAT has introduced a new dual VCA, as well

### AC Direct Off-Line Power Supplies

AC Direct Off-Line Power Supplies r Introduction Many DC power supplies found in electronic systems, including those in this Tech School, rectify the 120 volts available at an electric outlet. The initial

### = V peak 2 = 0.707V peak

BASIC ELECTRONICS - RECTIFICATION AND FILTERING PURPOSE Suppose that you wanted to build a simple DC electronic power supply, which operated off of an AC input (e.g., something you might plug into a standard

### Operational Amplifier - IC 741

Operational Amplifier - IC 741 Tabish December 2005 Aim: To study the working of an 741 operational amplifier by conducting the following experiments: (a) Input bias current measurement (b) Input offset

### POWER SYSTEM HARMONICS. A Reference Guide to Causes, Effects and Corrective Measures AN ALLEN-BRADLEY SERIES OF ISSUES AND ANSWERS

A Reference Guide to Causes, Effects and Corrective Measures AN ALLEN-BRADLEY SERIES OF ISSUES AND ANSWERS By: Robert G. Ellis, P. Eng., Rockwell Automation Medium Voltage Business CONTENTS INTRODUCTION...

### 3. Diodes and Diode Circuits. 3. Diodes and Diode Circuits TLT-8016 Basic Analog Circuits 2005/2006 1

3. Diodes and Diode Circuits 3. Diodes and Diode Circuits TLT-8016 Basic Analog Circuits 2005/2006 1 3.1 Diode Characteristics Small-Signal Diodes Diode: a semiconductor device, which conduct the current

### Experiment # (4) AM Demodulator

Islamic University of Gaza Faculty of Engineering Electrical Department Experiment # (4) AM Demodulator Communications Engineering I (Lab.) Prepared by: Eng. Omar A. Qarmout Eng. Mohammed K. Abu Foul Experiment

### TESTS OF 1 MHZ SIGNAL SOURCE FOR SPECTRUM ANALYZER CALIBRATION 7/8/08 Sam Wetterlin

TESTS OF 1 MHZ SIGNAL SOURCE FOR SPECTRUM ANALYZER CALIBRATION 7/8/08 Sam Wetterlin (Updated 7/19/08 to delete sine wave output) I constructed the 1 MHz square wave generator shown in the Appendix. This

### Op Amp Circuit Collection

Op Amp Circuit Collection Note: National Semiconductor recommends replacing 2N2920 and 2N3728 matched pairs with LM394 in all application circuits. Section 1 Basic Circuits Inverting Amplifier Difference

### 5B5BBasic RC Oscillator Circuit

5B5BBasic RC Oscillator Circuit The RC Oscillator which is also called a Phase Shift Oscillator, produces a sine wave output signal using regenerative feedback from the resistor-capacitor combination.

### Yrd. Doç. Dr. Aytaç Gören

H2 - AC to DC Yrd. Doç. Dr. Aytaç Gören ELK 2018 - Contents W01 Basic Concepts in Electronics W02 AC to DC Conversion W03 Analysis of DC Circuits W04 Transistors and Applications (H-Bridge) W05 Op Amps

### FREQUENCY CONTROLLED AC MOTOR DRIVE

FREQUENCY CONTROLLED AC MOTOR DRIVE 1.0 Features of Standard AC Motors The squirrel cage induction motor is the electrical motor motor type most widely used in industry. This leading position results mainly

### Power Supplies. 1.0 Power Supply Basics. www.learnabout-electronics.org. Module

Module 1 www.learnabout-electronics.org Power Supplies 1.0 Power Supply Basics What you ll learn in Module 1 Section 1.0 Power Supply Basics. Basic functions of a power supply. Safety aspects of working

### Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 13, 2006

Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 13, 2006 1 Purpose To measure and understand the common emitter transistor characteristic curves. To use the base current gain

### Chapter 19 Operational Amplifiers

Chapter 19 Operational Amplifiers The operational amplifier, or op-amp, is a basic building block of modern electronics. Op-amps date back to the early days of vacuum tubes, but they only became common

### Current vs. Voltage Feedback Amplifiers

Current vs. ltage Feedback Amplifiers One question continuously troubles the analog design engineer: Which amplifier topology is better for my application, current feedback or voltage feedback? In most

### Transistor Characteristics and Single Transistor Amplifier Sept. 8, 1997

Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 8, 1997 1 Purpose To measure and understand the common emitter transistor characteristic curves. To use the base current gain

### GenTech Practice Questions

GenTech Practice Questions Basic Electronics Test: This test will assess your knowledge of and ability to apply the principles of Basic Electronics. This test is comprised of 90 questions in the following

### Lab 1 Diode Characteristics

Lab 1 Diode Characteristics Purpose The purpose of this lab is to study the characteristics of the diode. Some of the characteristics that will be investigated are the I-V curve and the rectification properties.

### Line Reactors and AC Drives

Line Reactors and AC Drives Rockwell Automation Mequon Wisconsin Quite often, line and load reactors are installed on AC drives without a solid understanding of why or what the positive and negative consequences

### Analog & Digital Electronics Course No: PH-218

Analog & Digital Electronics Course No: PH-18 Lec 3: Rectifier and Clipper circuits Course nstructors: Dr. A. P. VAJPEY Department of Physics, ndian nstitute of Technology Guwahati, ndia 1 Rectifier Circuits:

### OBJECTIVE QUESTIONS IN ANALOG ELECTRONICS

1. The early effect in a bipolar junction transistor is caused by (a) fast turn-on (c) large collector-base reverse bias (b)fast turn-off (d) large emitter-base forward bias 2. MOSFET can be used as a

### Op-Amp Simulation EE/CS 5720/6720. Read Chapter 5 in Johns & Martin before you begin this assignment.

Op-Amp Simulation EE/CS 5720/6720 Read Chapter 5 in Johns & Martin before you begin this assignment. This assignment will take you through the simulation and basic characterization of a simple operational

### Diode Applications. As we have already seen the diode can act as a switch Forward biased or reverse biased - On or Off.

Diode Applications Diode Switching As we have already seen the diode can act as a switch Forward biased or reverse biased - On or Off. Voltage Rectifier A voltage rectifier is a circuit that converts an

### Experiment 2 Diode Applications: Rectifiers

ECE 3550 - Practicum Fall 2007 Experiment 2 Diode Applications: Rectifiers Objectives 1. To investigate the characteristics of half-wave and full-wave rectifier circuits. 2. To recognize the usefulness

### Laboratory 4: Feedback and Compensation

Laboratory 4: Feedback and Compensation To be performed during Week 9 (Oct. 20-24) and Week 10 (Oct. 27-31) Due Week 11 (Nov. 3-7) 1 Pre-Lab This Pre-Lab should be completed before attending your regular

### UNDERSTANDING POWER FACTOR AND INPUT CURRENT HARMONICS IN SWITCHED MODE POWER SUPPLIES

UNDERSTANDING POWER FACTOR AND INPUT CURRENT HARMONICS IN SWITCHED MODE POWER SUPPLIES WHITE PAPER: TW0062 36 Newburgh Road Hackettstown, NJ 07840 Feb 2009 Alan Gobbi About the Author Alan Gobbi Alan Gobbi

### Design of op amp sine wave oscillators

Design of op amp sine wave oscillators By on Mancini Senior Application Specialist, Operational Amplifiers riteria for oscillation The canonical form of a feedback system is shown in Figure, and Equation

### AMZ-FX Guitar effects. (2007) Mosfet Body Diodes. http://www.muzique.com/news/mosfet-body-diodes/. Accessed 22/12/09.

Pulse width modulation Pulse width modulation is a pulsed DC square wave, commonly used to control the on-off switching of a silicon controlled rectifier via the gate. There are many types of SCR s, most

### POWER SUPPLY MODEL XP-15. Instruction Manual ELENCO

POWER SUPPLY MODEL XP-15 Instruction Manual ELENCO Copyright 2013 by Elenco Electronics, Inc. REV-A 753020 All rights reserved. No part of this book shall be reproduced by any means; electronic, photocopying,

### Transistor Amplifiers

Physics 3330 Experiment #7 Fall 1999 Transistor Amplifiers Purpose The aim of this experiment is to develop a bipolar transistor amplifier with a voltage gain of minus 25. The amplifier must accept input

### Unit/Standard Number. High School Graduation Years 2010, 2011 and 2012

1 Secondary Task List 100 SAFETY 101 Demonstrate an understanding of State and School safety regulations. 102 Practice safety techniques for electronics work. 103 Demonstrate an understanding of proper

### Positive Feedback and Oscillators

Physics 3330 Experiment #6 Fall 1999 Positive Feedback and Oscillators Purpose In this experiment we will study how spontaneous oscillations may be caused by positive feedback. You will construct an active

### HALF-WAVE & FULL-WAVE RECTIFICATION

HALF-WAE & FULL-WAE RECTIFICATION Objectives: HALF-WAE & FULL-WAE RECTIFICATION To recognize a half-wave rectified sinusoidal voltage. To understand the term mean value as alied to a rectified waveform.

### Chapter 2 MENJANA MINDA KREATIF DAN INOVATIF

Chapter 2 DIODE part 2 MENJANA MINDA KREATIF DAN INOATIF objectives Diode with DC supply circuit analysis serial & parallel Diode d applications the DC power supply & Clipper Analysis & Design of rectifier

### Bipolar Transistor Amplifiers

Physics 3330 Experiment #7 Fall 2005 Bipolar Transistor Amplifiers Purpose The aim of this experiment is to construct a bipolar transistor amplifier with a voltage gain of minus 25. The amplifier must

### Programmable-Gain Transimpedance Amplifiers Maximize Dynamic Range in Spectroscopy Systems

Programmable-Gain Transimpedance Amplifiers Maximize Dynamic Range in Spectroscopy Systems PHOTODIODE VOLTAGE SHORT-CIRCUIT PHOTODIODE SHORT- CIRCUIT VOLTAGE 0mV DARK ark By Luis Orozco Introduction Precision

### Single-Stage High Power Factor Flyback for LED Lighting

Application Note Stockton Wu AN012 May 2014 Single-Stage High Power Factor Flyback for LED Lighting Abstract The application note illustrates how the single-stage high power factor flyback converter uses

### Diode Circuits. Operating in the Reverse Breakdown region. (Zener Diode)

Diode Circuits Operating in the Reverse Breakdown region. (Zener Diode) In may applications, operation in the reverse breakdown region is highly desirable. The reverse breakdown voltage is relatively insensitive

### Tamura Closed Loop Hall Effect Current Sensors

Tamura Closed Loop Hall Effect Current Sensors AC, DC, & Complex Currents Galvanic Isolation Fast Response Wide Frequency Bandwidth Quality & Reliability RoHs Compliance Closed Loop Hall Effect Sensors

### How To Calculate The Power Gain Of An Opamp

A. M. Niknejad University of California, Berkeley EE 100 / 42 Lecture 8 p. 1/23 EE 42/100 Lecture 8: Op-Amps ELECTRONICS Rev C 2/8/2012 (9:54 AM) Prof. Ali M. Niknejad University of California, Berkeley

### 6.101 Final Project Report Class G Audio Amplifier

6.101 Final Project Report Class G Audio Amplifier Mark Spatz 4/3/2014 1 1 Introduction For my final project, I designed and built a 150 Watt audio amplifier to replace the underpowered and unreliable

### Fully Differential CMOS Amplifier

ECE 511 Analog Electronics Term Project Fully Differential CMOS Amplifier Saket Vora 6 December 2006 Dr. Kevin Gard NC State University 1 Introduction In this project, a fully differential CMOS operational

### Operational Amplifiers

Module 6 Amplifiers Operational Amplifiers The Ideal Amplifier What you ll learn in Module 6. Section 6.0. Introduction to Operational Amplifiers. Understand Concept of the Ideal Amplifier and the Need

### Frequency Response of Filters

School of Engineering Department of Electrical and Computer Engineering 332:224 Principles of Electrical Engineering II Laboratory Experiment 2 Frequency Response of Filters 1 Introduction Objectives To

### Single Supply Op Amp Circuits Dr. Lynn Fuller

ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING Single Supply Op Amp Circuits Dr. Lynn Fuller Webpage: http://people.rit.edu/lffeee 82 Lomb Memorial Drive Rochester, NY 146235604 Tel (585)

### Fundamentals of Power Electronics. Robert W. Erickson University of Colorado, Boulder

Robert W. Erickson University of Colorado, Boulder 1 1.1. Introduction to power processing 1.2. Some applications of power electronics 1.3. Elements of power electronics Summary of the course 2 1.1 Introduction

### Lock - in Amplifier and Applications

Lock - in Amplifier and Applications What is a Lock in Amplifier? In a nut shell, what a lock-in amplifier does is measure the amplitude V o of a sinusoidal voltage, V in (t) = V o cos(ω o t) where ω o

### Fig. 1 :Block diagram symbol of the operational amplifier. Characteristics ideal op-amp real op-amp

Experiment: General Description An operational amplifier (op-amp) is defined to be a high gain differential amplifier. When using the op-amp with other mainly passive elements, op-amp circuits with various

### LM101A LM201A LM301A Operational Amplifiers

LM101A LM201A LM301A Operational Amplifiers General Description The LM101A series are general purpose operational amplifiers which feature improved performance over industry standards like the LM709 Advanced

### Operational Amplifier as mono stable multi vibrator

Page 1 of 5 Operational Amplifier as mono stable multi vibrator Aim :- To construct a monostable multivibrator using operational amplifier 741 and to determine the duration of the output pulse generated

### LM118/LM218/LM318 Operational Amplifiers

LM118/LM218/LM318 Operational Amplifiers General Description The LM118 series are precision high speed operational amplifiers designed for applications requiring wide bandwidth and high slew rate. They

### An FET Audio Peak Limiter

1 An FET Audio Peak Limiter W. Marshall Leach, Jr., Professor Georgia Institute of Technology School of Electrical and Computer Engineering Atlanta, Georgia 30332-0250 USA email: mleach@ee.gatech.edu Copyright

### Digital to Analog Converter. Raghu Tumati

Digital to Analog Converter Raghu Tumati May 11, 2006 Contents 1) Introduction............................... 3 2) DAC types................................... 4 3) DAC Presented.............................

### Electronics for Analog Signal Processing - II Prof. K. Radhakrishna Rao Department of Electrical Engineering Indian Institute of Technology Madras

Electronics for Analog Signal Processing - II Prof. K. Radhakrishna Rao Department of Electrical Engineering Indian Institute of Technology Madras Lecture - 18 Wideband (Video) Amplifiers In the last class,

### LABORATORY 2 THE DIFFERENTIAL AMPLIFIER

LABORATORY 2 THE DIFFERENTIAL AMPLIFIER OBJECTIVES 1. To understand how to amplify weak (small) signals in the presence of noise. 1. To understand how a differential amplifier rejects noise and common

### Electronics. Discrete assembly of an operational amplifier as a transistor circuit. LD Physics Leaflets P4.2.1.1

Electronics Operational Amplifier Internal design of an operational amplifier LD Physics Leaflets Discrete assembly of an operational amplifier as a transistor circuit P4.2.1.1 Objects of the experiment

### X-ray Imaging System. X-Ray Circuit. Principles of Imaging Science II (RAD 120) X-ray Imaging System Circuitry

Principles of Imaging Science II (RAD 120) X-ray Imaging System Circuitry X-ray Imaging System Operating console Set x-ray tube current (quantity) and voltage (quality) Controls line compensation, kvp,

### Signal Limiter for Power Amplifiers

Design Note 03 (formerly Application Note 03) Signal Limiter for Power Amplifiers The circuits within this application note feature THAT430 Analog Engine to provide the essential elements of voltage-controlled

### CYCLOCONVERTERS. Fig.1 Block diagram of a cycloconverter

CYCLOCONVERTERS Burak Ozpineci, Leon M. Tolbert Department of Electrical and Computer Engineering University of Tennessee-Knoxville Knoxville, TN 37996-2100 In industrial applications, two forms of electrical

### 7-41 POWER FACTOR CORRECTION

POWER FTOR CORRECTION INTRODUCTION Modern electronic equipment can create noise that will cause problems with other equipment on the same supply system. To reduce system disturbances it is therefore essential

### Loop Bandwidth and Clock Data Recovery (CDR) in Oscilloscope Measurements. Application Note 1304-6

Loop Bandwidth and Clock Data Recovery (CDR) in Oscilloscope Measurements Application Note 1304-6 Abstract Time domain measurements are only as accurate as the trigger signal used to acquire them. Often

### Power Electronics. Prof. K. Gopakumar. Centre for Electronics Design and Technology. Indian Institute of Science, Bangalore.

Power Electronics Prof. K. Gopakumar Centre for Electronics Design and Technology Indian Institute of Science, Bangalore Lecture - 1 Electric Drive Today, we will start with the topic on industrial drive

### Switch Mode Power Supply Topologies

Switch Mode Power Supply Topologies The Buck Converter 2008 Microchip Technology Incorporated. All Rights Reserved. WebSeminar Title Slide 1 Welcome to this Web seminar on Switch Mode Power Supply Topologies.

### Design of a TL431-Based Controller for a Flyback Converter

Design of a TL431-Based Controller for a Flyback Converter Dr. John Schönberger Plexim GmbH Technoparkstrasse 1 8005 Zürich 1 Introduction The TL431 is a reference voltage source that is commonly used

### ε: Voltage output of Signal Generator (also called the Source voltage or Applied

Experiment #10: LR & RC Circuits Frequency Response EQUIPMENT NEEDED Science Workshop Interface Power Amplifier (2) Voltage Sensor graph paper (optional) (3) Patch Cords Decade resistor, capacitor, and

### LM139/LM239/LM339 A Quad of Independently Functioning Comparators

LM139/LM239/LM339 A Quad of Independently Functioning Comparators INTRODUCTION The LM139/LM239/LM339 family of devices is a monolithic quad of independently functioning comparators designed to meet the

### Measuring Impedance and Frequency Response of Guitar Pickups

Measuring Impedance and Frequency Response of Guitar Pickups Peter D. Hiscocks Syscomp Electronic Design Limited phiscock@ee.ryerson.ca www.syscompdesign.com April 30, 2011 Introduction The CircuitGear

### EXPERIMENT NUMBER 8 CAPACITOR CURRENT-VOLTAGE RELATIONSHIP

1 EXPERIMENT NUMBER 8 CAPACITOR CURRENT-VOLTAGE RELATIONSHIP Purpose: To demonstrate the relationship between the voltage and current of a capacitor. Theory: A capacitor is a linear circuit element whose

### Eliminate Ripple Current Error from Motor Current Measurement

Eliminate ipple Current Error from Motor Current Measurement Eric Persson, Toshio Takahashi Advanced Development Group International ectifier Corp. U..A. INTODUCTION Most motor drives today use measured

### Section 3. Sensor to ADC Design Example

Section 3 Sensor to ADC Design Example 3-1 This section describes the design of a sensor to ADC system. The sensor measures temperature, and the measurement is interfaced into an ADC selected by the systems

### Panasonic Microwave Oven Inverter HV Power Supply

Panasonic Microwave Oven Inverter HV Power Supply David Smith VK3HZ (vk3hz (*at*) wia.org.au) This particular power supply comes from a circa-2000 Panasonic Microwave model NN-S550WF. Nearly all Panasonic

### Introduction to Power Supplies

Introduction to Power Supplies INTRODUCTION Virtually every piece of electronic equipment e g computers and their peripherals calculators TV and hi-fi equipment and instruments is powered from a DC power

### In a stereo, radio, or television, the input signal is small. After several. stages of voltage gain, however, the signal becomes large and uses the

chapter 12 Power Amplifiers In a stereo, radio, or television, the input signal is small. After several stages of voltage gain, however, the signal becomes large and uses the entire load line. In these

### Semiconductor Diode. It has already been discussed in the previous chapter that a pn junction conducts current easily. Principles of Electronics

76 6 Principles of Electronics Semiconductor Diode 6.1 Semiconductor Diode 6.3 Resistance of Crystal Diode 6.5 Crystal Diode Equivalent Circuits 6.7 Crystal Diode Rectifiers 6.9 Output Frequency of Half-Wave

### LF412 Low Offset Low Drift Dual JFET Input Operational Amplifier

LF412 Low Offset Low Drift Dual JFET Input Operational Amplifier General Description These devices are low cost high speed JFET input operational amplifiers with very low input offset voltage and guaranteed

### Figure 1. Diode circuit model

Semiconductor Devices Non-linear Devices Diodes Introduction. The diode is two terminal non linear device whose I-V characteristic besides exhibiting non-linear behavior is also polarity dependent. The