UIUC Physics 436 EM Fields & Sources II Fall Semester, 2015 Lect. Notes 10.5 Prof. Steven Errede LECTURE NOTES 10.5

Size: px
Start display at page:

Download "UIUC Physics 436 EM Fields & Sources II Fall Semester, 2015 Lect. Notes 10.5 Prof. Steven Errede LECTURE NOTES 10.5"

Transcription

1 UIUC Phscs 436 EM Felds & Suces II Fall Semeste, 5 Lect. Ntes.5 Pf. Steven Eede LECTURE NOTES.5 EM Standng Waves n Resnant Cavtes One can ceate a esnant cavt f EM waves b takng a wavegude (f abta shape) and clsng/cappng ff the tw pen ends f the wavegude. Standng EM waves est n (ected) esnant cavt (= lnea supepstn f tw cunteppagatng tavelng EM waves f same fequenc). Analgus t standng acustcal/sund waves n an acustcal enclsue. Rectangula esnant cavt use Catesan cdnates Clndcal esnant cavt use clndcal cdnates t slve the EM wave eqn. Sphecal esnant cavt use sphecal cdnates A.) Rectangula Resnant Cavt: ( LWH ab d) wth pefectl cnductng walls (.e. n dsspatn/eneg lss mechansms pesent), wth a, b, d. n.b. Agan, b cnventn: a > b > d. Snce we have ectangula smmet, we use Catesan cdnates - seek mnchmatc EM plane wave tpe slutns f the geneal fm: E t E e B t B e,,,,,,,,,, t t Mawell s Equatns (nsde the ectangula esnant cavt awa fm the walls): () Gauss Law: () N Mnples: E B E Subject t the bunda cndtns E and B at all nne sufaces. (3) Faada s Law: (4) Ampee s Law: B E E B E t B c t B B E c Take the cul f (3): = {Gauss Law} E B E E B E {usng (4) Ampee s Law} c E c E c E c E E E E E,, E E,, e.. each s a fcn,, E E,, Pfess Steven Eede, Depatment f Phscs, Unvest f Illns at Ubana-Champagn, Illns 5-5. All Rghts Reseved.

2 UIUC Phscs 436 EM Felds & Suces II Fall Semeste, 5 Lect. Ntes.5 Pf. Steven Eede F each cmpnent,, f E,, sepaatn f vaables technque:,, f,, E X Y Z we t pduct slutns and then use the E E whee subscpt,,. c X Y Z c Y Z X Z X Y X Y Z c Dvde bth sdes b X Y Z : The wave equatn becmes: fcn nl fcn nl fcn nl X Y Z X Y Z c Ths equatn must hld/be tue f abta (,, ) pts. nte t esnant cavt Ths can nl be tue f: X X Y Y Z Z k k k cnstant cnstant cnstant X Y k X ky Z kz a b d n.b. We seek scllat (nt damped) slutns!!! wth: k k k k c Geneal slutn(s) ae f the fm:,, : chaactestc equatn,, cs sn cs sn cs sn E A k B k C k D k E k F k n.b. In geneal, k, k and k shuld each have subscpt,,, but we wll shtl fnd ut that k same f all,,, k same f all,,, and k same f all,,. Pfess Steven Eede, Depatment f Phscs, Unvest f Illns at Ubana-Champagn, Illns 5-5. All Rghts Reseved.

3 UIUC Phscs 436 EM Felds & Suces II Fall Semeste, 5 Lect. Ntes.5 Pf. Steven Eede Bunda Cndtns: bundaes and bundaes: E E E, b at, d ceffcents E C, a at, d ceffcents A E, a at, b ceffcents A C and and and k n b, n,,3,... k d,,,3,... k m b, m,,3,... k d,,,3,... k m a, m,,3,... k n d, n,,3,... n.b. m =, and/ n = and/ ae nt allwed, thewse E,, (tval slutn). Thus we have (absbng cnstants/ceffcents, & dppng,, subscpts n ceffcents):,, cs sn sn sn,, sn cs sn sn,, sn sn cs sn E A k B k k k E k C k D k k E k k E k F k E E E But () Gauss Law: E Thus: sn cs sn sn k A k B k k k k sn k Csn k Dcs k sn k ksn k sn k Esn k Fcs k Ths equatn must be satsfed f an/all pnts nsde ectangula cavt esnat. In patcula, t has t be satsfed at,,,,. We see that f the lcus f pnts asscated wth ( =,,) and (, =,) and (,, = ), we must have B D F n the abve equatn. Nte als that f the lcus f pnts asscated wth m k,,, n k, and,, k whee mn,, dd nteges (, 3, 5, 7, etc. ) we must have: Ak Ck Ek. Nte futhe that ths elatn s autmatcall satsfed f mn,, and even nteges (, 4, 6, 8, etc. ). Pfess Steven Eede, Depatment f Phscs, Unvest f Illns at Ubana-Champagn, Illns 5-5. All Rghts Reseved. 3

4 UIUC Phscs 436 EM Felds & Suces II Fall Semeste, 5 Lect. Ntes.5 Pf. Steven Eede Thus: m k m,,3, 4, E,, A csksnk snk a n E,, C sn kcsk sn kk n,,3,4, b E,, Esnk snk csk k,,3, 4, d n.b.: mn smultaneusl s nt allwed! Wth: E,, E ˆE ˆE ˆ Nw use Faada s Law t detemne B : B E E E B Ek sn k csk csk Ck sn k csk csk E E B Ak csk sn k csk Ek csk sn k csk E E B Ck cskcsksn k Ak csk csk sn k : B,, B ˆB ˆB ˆ Ek ˆ Ck sn k cs k cs k Ak cs sn cs ˆ Ek k k k Ck cs cs sn ˆ Ak k k k Ths epessn f B,, (alead) autmatcall satsfes bunda cndtn () B : B at, a B at, b B at, d m n wth k wth k wth k a b d m,,, n,,,,,, 4 Pfess Steven Eede, Depatment f Phscs, Unvest f Illns at Ubana-Champagn, Illns 5-5. All Rghts Reseved.

5 UIUC Phscs 436 EM Felds & Suces II Fall Semeste, 5 Lect. Ntes.5 Pf. Steven Eede,,??? Des B B B B B,, cs cs cs cs cs cs k Ek Ck k k k k k E kkc k Ak Ek k k k kka kke kck Ak cskcskcs k kkc kka B,, YES!!! k k k cs cs cs F TE Mdes: E ceffcent E. Then Ak Ck Ek tells us that: Ak Ck : Thus: k C A k The lwest TEmn,, mde abd s: TE,,, cs sn sn t,,,3, k m E t A k k k e m a k t E,,, ta sn kcsk sn k e n k,,,3, k n b E,,, t k,,,3, d (n = s NOT allwed f TE mdes!!!) k t B t,,, A k sn k csk cske k t B,,, t ka csk sn k cske k t B t,,, A k k csk csk snke k The angula cutff fequenc f th mn,, mde f TE mdes n a ectangula cavt s: mn m n c a b d and: vg c v n dspesn. k Pfess Steven Eede, Depatment f Phscs, Unvest f Illns at Ubana-Champagn, Illns 5-5. All Rghts Reseved. 5

6 UIUC Phscs 436 EM Felds & Suces II Fall Semeste, 5 Lect. Ntes.5 Pf. Steven Eede F TM Mdes: B Ck Ak : Thus: The lwest TM mn,, mde abd s: TM k C A k t E,,, t A csksn k sn k e m k,,,3, m a k,,, t E t A snkcsk csk e n k, n,,3, k b (m = s NOT allwed f TM mdes!!!) k,,,3, d k k k t E,,, ta snksnk csk e k k k k k k B t,,, Ak k A k snkcskcske k,,, k t B t Ak Ak k csk sn k cske k k B,,, t t k k k F ethe TE TM mdes: k k k k c wth: k m n, m,, k, n,, k,,, a b d The angula cutff fequenc f th mn,, mde s the same f TE/TM mdes n a ectangula cavt: mn m n c a b d and: vg c v n dspesn. k 6 Pfess Steven Eede, Depatment f Phscs, Unvest f Illns at Ubana-Champagn, Illns 5-5. All Rghts Reseved.

7 UIUC Phscs 436 EM Felds & Suces II Fall Semeste, 5 Lect. Ntes.5 Pf. Steven Eede B.) The Sphecal Resnant Cavt: The geneal pblem f EM mdes n a sphecal cavt s mathematcall cnsdeabl me nvlved (e.g. than f the ectangula cavt) due t the vectal natue f the E and B -felds. F smplct s sake, t s cnceptuall ease t cnsde the scala wave equatn, wth a scala feld t t,, satsfng the fee-suce wave equatn t, c t t whch can be Fue-analed n the cmple tme-dman t,, e d wth each Fue cmpnent, satsfng the Helmhlt wave equatn: k, wth: k c.e. n dspesn. In sphecal cdnates, the Laplacan peat s:,,,, sn sn sn T slve ths scala wave equatn we agan t a pduct slutn f the fm: Plug ths, R, PQe t m, m f Y, m sphecal hamncs nt the abve scala wave equatn, use the sepaatn f vaables technque: d d Get adal equatn: k f whee: =,,, 3,... d d Let: f u. Then we btan Bessel s equatn wth nde v : d d k u d d m m Slutns f the (adal) Bessel s equatn ae f the fm: f J k N k A m B Bessel fcn f st Bessel fcn f nd knd f de knd f de It s custma t defne s-called sphecal Bessel functns and sphecal Hankel functns: j J whee: k n N The Y, m satsf the angula ptn f scala wave equatn Pfess Steven Eede, Depatment f Phscs, Unvest f Illns at Ubana-Champagn, Illns 5-5. All Rghts Reseved. 7

8 UIUC Phscs 436 EM Felds & Suces II Fall Semeste, 5 Lect. Ntes.5 Pf. Steven Eede and: h J N j n, n.b. If = k s eal, then h h * sn d j d d cs n d j n j n sn cs F, : j n sn cs cs sn...!! 3!!... F, : j sn n cs h h e e e e h h!! whee: The geneal slutn t Helmhlt s equatn n sphecal cdnates can be wtten as: t, Am h k Am h k Ym,, m Ceffcents ae detemned b bunda cndtns. F the case f EM waves n a sphecal esnant cavt we wll (hee) nl cnsde TM mdes, whch f sphecal gemet means that the adal cmpnent f B, B. We futhe assume (f smplct s sake) that the E and B -felds d nt have an eplct -dependence. 8 Pfess Steven Eede, Depatment f Phscs, Unvest f Illns at Ubana-Champagn, Illns 5-5. All Rghts Reseved.

9 UIUC Phscs 436 EM Felds & Suces II Fall Semeste, 5 Lect. Ntes.5 Pf. Steven Eede m! m m Hence: Ym, P cse 4 m! Wll have sme estctns mpsed n t Asscated Legendé Plnmal If B and B eplct functn f, then: B B {necessal} B But: E eques: E t TM mdes wth n eplct -dependence nvlve nl E, E and B B E Cmbnng E and B wth hamnc tme dependence t c t t e f slutns, We btan: c BB The -cmpnent f ths equatn s: B B B sn c sn B B sn sn sn sn But: snb T pduct slutns f the fm: ~Legendé equatn wth m u B P, cs Substtutng ths nt the abve equatn gves a dffeental equatn f u f the fm f: du Bessel s equatn: u wth =,,, 3,... defnng the d c angula dependence f the TM mdes. Let us cnsde a esnant sphecal cavt as tw cncentc, pefectl cnductng sphees f nne adus a and ute adus b. If u B, P cs, the adal and tangental electc felds (usng Ampee s Law) ae: c c u E, snb P cs sn c c u E, B P cs Pfess Steven Eede, Depatment f Phscs, Unvest f Illns at Ubana-Champagn, Illns 5-5. All Rghts Reseved. 9

10 UIUC Phscs 436 EM Felds & Suces II Fall Semeste, 5 Lect. Ntes.5 Pf. Steven Eede But E E whch must vansh at = a and = b u u a b The slutns f the adal Bessel equatn ae sphecal Bessel functns ( sphecal Hankel functns). u The abve adal bunda cndtns n a lead t tanscendental equatns f b the chaactestc fequences, {eeeeek}!!! Hweve {dn t panc!}, f: (b a) = h s such that h a then: And thus n ths stuatn, the slutns f Bessel s equatn: a cnstant!!! u d c a du du ku d whee: ae smpl sn (k) and cs (k)!!!.e. u AcskBsn k k c a u Then: kasn kakb cska a F b a h a u and ka kb kb kb an appmate slutn s: u Acsk ka wth: kh k b a n, n =,,,... b sn cs Thus: k n n c a h, n =,,, 3,... and =,,, 3,... The cespndng angula cutff fequenc s: n n c kn c f h a, n =,,, 3,... and =,,, 3,... a h a Because h a, we see that the mdes wth n =,, 3,... tun ut t have elatvel hgh n fequences n c h f n. Hweve, the n = mdes have elatvel lw fequences: c c f h a. a a An eact slutn (cect t fst de n (h/a) epansn) f n = s: c a h These egen-mde fequences ae knwn as Schumann esnance fequences. =,, 3,... (W.O. Schumann Z. Natufsch. 7, 49, 5 (95)) Pfess Steven Eede, Depatment f Phscs, Unvest f Illns at Ubana-Champagn, Illns 5-5. All Rghts Reseved.

11 UIUC Phscs 436 EM Felds & Suces II Fall Semeste, 5 Lect. Ntes.5 Pf. Steven Eede F n =, the EM felds ae: Ve Useful Table: ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ E, E P cs and B P cs b a ẑ ˆ, B S ˆ ˆ ˆ E ˆ, ŷ ˆ Pntng s vect: S E B P P P P ˆ ˆ ˆ cs cs cs cs 3 3 Ccumpla N-S waves! The Eath s suface and the Eath s nsphee behave as a sphecal esnant cavt (!!!) wth the Eath s suface {appmatel} as the nne sphecal suface: a 6378 km m (= Eath s mean equatal adus), the heght h (abve the suface f the Eath) 5 f the nsphee s: h km m( a ) b = a + h m. F the n = Schumann esnances: c a h f h a. : : 3: 4: 5: c h a c 6 h a c h 3 a c h 4 a c 3 h 5 a f f f f f H H H H H (... etc.) n.b. F the n = Schumann esnances: f.5 KH The n = Schumann esnances n the Eath-nsphee cavt manfest themselves as peaks n the nse pwe spectum n the VLF (Ve Lw Fequenc) ptn f the EM spectum VLF EM standng waves n the sphecal cavt f the Eath-nsphee sstem!!! Pfess Steven Eede, Depatment f Phscs, Unvest f Illns at Ubana-Champagn, Illns 5-5. All Rghts Reseved.

12 UIUC Phscs 436 EM Felds & Suces II Fall Semeste, 5 Lect. Ntes.5 Pf. Steven Eede Schumann esnances n the Eath-nsphee cavt ae ected b the adal E -feld cmpnent f lghtnng dschages (the fequenc cmpnent f EM waves pduced b lghtnng at these Schumann esnance fequences). Lghtnng dschages (anwhee n Eath) cntan a wde spectum f fequences f EM adatn the fequenc cmpnents f, f, f3, f4,.. ecte these esnant mdes the Eath lteall ngs lke a bell at these fequences!!! The n = Schumann esnances ae the lwest-lng nmal mdes f the Eath-nsphee cavt. Schumann esnances wee fst defntvel bseved n 96. (M. Balse and C.A. Wagne, Natue 88, 638 (96)). Nkla Tesla ma have bseved them befe 9!!! (Befe the nsphee was knwn t even est!!!) He als estmated the lwest mdal fequenc t be f ~ 6 H!!! n = Schumann Resnances: Pfess Steven Eede, Depatment f Phscs, Unvest f Illns at Ubana-Champagn, Illns 5-5. All Rghts Reseved.

13 UIUC Phscs 436 EM Felds & Suces II Fall Semeste, 5 Lect. Ntes.5 Pf. Steven Eede The bseved Schumann esnance fequences ae sstematcall lwe than pedcted, (pmal) due t dampng effects: Q whee Q = Qualt fact = Q f esnance, and = wdth at half mamum f pwe spectum: The Eath s suface s als nt pefectl cnductng. Seawate cnductvt C. Semens!! Nethe s the nsphee! Insphee s cnductvt C 4 7 Semens On Jul 9, 96, a nuclea eplsn (EMP) detnated at hgh alttude (4 km) ve Jhnsn Island n the Pacfc {Test Sht: Stafsh Pme, Opeatn Dmnc I}. - Measuabl affected the Eath s nsphee and adatn belts n a wld-wde scale! - Sudden decease f ~ 3 5% n Schumann fequences ncease n heght f nsphee! - Change n heght f nsphee: hh h.3.5r 4 6 km!!! - Heght changes decaed awa afte ~ seveal hus. - Atfcal adatn belts lasted seveal eas! Nte that # f lghtnng stkes, (e.g. n tpcs) s stngl celated t aveage tempeatue. Scentsts have used Schumann esnances & mnthl mean magnetc feld stengths t mnt lghtnng ates and thus mnt mnthl tempeatues the all celate ve well!!! Mntng Schumann Resnances Glbal Themmete useful f Glbal Wamng studes!! Eath Cdnate Sstem: c f h a E (nth suth) E P cs (up dwn) B P cs (east west) S P 3 cs P cs ˆ (nth suth) F the n = mdes f Schumann Resnances: E ˆ (up dwn) B ˆ (east west) S ˆ (nth suth) Pfess Steven Eede, Depatment f Phscs, Unvest f Illns at Ubana-Champagn, Illns 5-5. All Rghts Reseved. 3

14 UIUC Phscs 436 EM Felds & Suces II Fall Semeste, 5 Lect. Ntes.5 Pf. Steven Eede We can bseve Schumann esnances ght hee n twn UIUC!! Use e.g. Gbsn P-9 sngle-cl electc guta pckup LP 9 Hens, ~K tuns #4AWG cppe we f detect f Schumann waves and a spectum anale (e.g. HP 356A Dnamc Sgnal Anale) ead ut the HP 356A nt PC va GPIB. Oentatn/algnment f Gbsn P-9 electc guta pckup s mptant want as f pckup algned B ˆ (.e. ented east west) as shwn n fgue belw. n.b. nl ths entatn elded Schumann-tpe esnance sgnals {als ted the 9 entatns {up-dwn} and {nth-suth} but bseved n sgnal(s) f Schumann esnances f these.} Electc guta PU s ae ve senstve e.g. the can easl detect ca / bus taffc n steet belw fm 65 ESB (6 th Fl Lab) can easl see ca/bus sgnal fm PU n a scpe!!! n.b. PU hused n 4 clsed, gunded alumnum sheet-metal b t suppess electc nse. 4 Pfess Steven Eede, Depatment f Phscs, Unvest f Illns at Ubana-Champagn, Illns 5-5. All Rghts Reseved.

15 UIUC Phscs 436 EM Felds & Suces II Fall Semeste, 5 Lect. Ntes.5 Pf. Steven Eede Pfess Steven Eede, Depatment f Phscs, Unvest f Illns at Ubana-Champagn, Illns 5-5. All Rghts Reseved. 5

Lecture 26. Dielectric Slab Waveguides

Lecture 26. Dielectric Slab Waveguides Lectue 6 Delectc Slab Wavegudes In ths lectue yu wll lean: Delectc slab wavegudes T and TM guded mdes n delectc slab wavegudes C 303 Fall 005 Fahan Rana Cnell Unvesty T Guded Mdes n Paallel-Plate Metal

More information

Thick-Walled Cylinders and Press Fits. 2004 by W.H.Dornfeld PressCylinder:

Thick-Walled Cylinders and Press Fits. 2004 by W.H.Dornfeld PressCylinder: Thck-Walled Cylndes and Pess Fts 004 by W.H.Dnfeld PessCylnde: 1 Stesses n Thck-Walled Cylndes Thck-Walled cylndes have an aveage adus less than 0 tmes the wall thckness. σ σl They ae essuzed ntenally

More information

Optimizing Cross Slot Parameters for Circular Polarization of Rectangular Waveguide Antenna

Optimizing Cross Slot Parameters for Circular Polarization of Rectangular Waveguide Antenna ÇÒÃÊÒÃÇÔªÒ ÒþÃÐ ÍÁà ÅéÒ¾Ãй Ãà˹ Í»Õ Õè ºÑº Õè -  5 The Junal f KMTNB Vl N Jul - Sep Optzng C Slt Paaete f Ccula Plazatn f Rectangula Wavegue Antenna Pat Aaaethaln pat@tnbacth * Vech Vve vvv@tnbacth

More information

Gravitation. Definition of Weight Revisited. Newton s Law of Universal Gravitation. Newton s Law of Universal Gravitation. Gravitational Field

Gravitation. Definition of Weight Revisited. Newton s Law of Universal Gravitation. Newton s Law of Universal Gravitation. Gravitational Field Defnton of Weght evsted Gavtaton The weght of an object on o above the eath s the gavtatonal foce that the eath exets on the object. The weght always ponts towad the cente of mass of the eath. On o above

More information

s s f h s s SPH3UW Unit 7.7 Concave Lens Page 1 of 7 Notes Properties of a Converging Lens

s s f h s s SPH3UW Unit 7.7 Concave Lens Page 1 of 7 Notes Properties of a Converging Lens SPH3UW Unt 7.7 Cncave Lens Page 1 f 7 Ntes Physcs Tl bx Thn Lens s an ptcal system wth tw refractng surfaces. The mst smplest thn lens cntan tw sphercal surfaces that are clse enugh tgether that we can

More information

SOLID MECHANICS TUTORIAL FRICTION CLUTCHES

SOLID MECHANICS TUTORIAL FRICTION CLUTCHES SOLI MECHANICS TUTORIAL FRICTION CLUTCHES Ths wrk cvers elements f the syllabus fr the Edexcel mdule 17P HNC/ Mechancal Prncples OUTCOME. On cmpletn f ths shrt tutral yu shuld be able t d the fllwng. escrbe

More information

E-learning and Student Mobility in Higher Education. BEST Symposium on Education, Gothenburg 2 nd June 10 th June; 2007

E-learning and Student Mobility in Higher Education. BEST Symposium on Education, Gothenburg 2 nd June 10 th June; 2007 E-learning and Student Mobility in Higher Education BEST Symposium on Education, Gothenburg 2 nd June 10 th June; 2007 Ta b l e of Contents Board of European Students of Technology TABLE OF CONTENTS...2

More information

Electric Potential. otherwise to move the object from initial point i to final point f

Electric Potential. otherwise to move the object from initial point i to final point f PHY2061 Enched Physcs 2 Lectue Notes Electc Potental Electc Potental Dsclame: These lectue notes ae not meant to eplace the couse textbook. The content may be ncomplete. Some topcs may be unclea. These

More information

TUTORIAL No. 1 FLUID FLOW THEORY

TUTORIAL No. 1 FLUID FLOW THEORY TUTOIAL N. FLUID FLOW THEOY In de t cmlete ths tutal yu shuld aleady have cmleted level have a gd basc knwledge lud mechancs equvalent t the Engneeng Cuncl at eamnatn 03. When yu have cmleted ths tutal,

More information

Chapter 25 The Reflection of Light: Mirrors. The content contained in all sections of chapter 25 of the textbook is included on the AP Physics B exam.

Chapter 25 The Reflection of Light: Mirrors. The content contained in all sections of chapter 25 of the textbook is included on the AP Physics B exam. Chapter 25 The Reflectn f Lght: Mrrrs Chapter 25 THE REFLECTION OF LIGHT: MIRRORS PREVIEW The ray mel f lght states that lght may be represente by a straght lne alng the rectn f mtn, an ray ptcs s the

More information

Green's function integral equation methods for plasmonic nanostructures

Green's function integral equation methods for plasmonic nanostructures Geens functon ntegal equaton methods fo plasmonc nanostuctues (Ph Couse: Optcal at the Nanoscale) Thomas Søndegaad epatment of Phscs and Nanotechnolog, Aalbog Unvest, Senve 4A, K-9 Aalbog Øst, enma. Intoducton

More information

Additional File 1 - A model-based circular binary segmentation algorithm for the analysis of array CGH data

Additional File 1 - A model-based circular binary segmentation algorithm for the analysis of array CGH data 1 Addtonal Fle 1 - A model-based ccula bnay segmentaton algothm fo the analyss of aay CGH data Fang-Han Hsu 1, Hung-I H Chen, Mong-Hsun Tsa, Lang-Chuan La 5, Ch-Cheng Huang 1,6, Shh-Hsn Tu 6, Ec Y Chuang*

More information

TUTORIAL 7 STABILITY ANALYSIS

TUTORIAL 7 STABILITY ANALYSIS TUTORIAL 7 STABILITY ANALYSIS Ths tutral s specfcally wrtten fr students studyng the EC mdule D7 Cntrl System Engneerng but s als useful fr any student studyng cntrl. On cmpletn f ths tutral, yu shuld

More information

1.- L a m e j o r o p c ió n e s c l o na r e l d i s co ( s e e x p li c a r á d es p u é s ).

1.- L a m e j o r o p c ió n e s c l o na r e l d i s co ( s e e x p li c a r á d es p u é s ). PROCEDIMIENTO DE RECUPERACION Y COPIAS DE SEGURIDAD DEL CORTAFUEGOS LINUX P ar a p od e r re c u p e ra r nu e s t r o c o rt a f u e go s an t e un d es a s t r e ( r ot u r a d e l di s c o o d e l a

More information

BARTON COLLEGE PRACTICE PLACEMENT TEST. a) 4 b) 4 c) 12 d) 10.5. a) 7a 11 b) a 17 c) a 11 d) 7a 17. a) 14 b) 1 c) 66 d) 81

BARTON COLLEGE PRACTICE PLACEMENT TEST. a) 4 b) 4 c) 12 d) 10.5. a) 7a 11 b) a 17 c) a 11 d) 7a 17. a) 14 b) 1 c) 66 d) 81 . Simplify: 0 + 4 (! 8) 4 4 0.. Simplify: (a 4) + (a ) (a+) 7a a 7 a 7a 7. Evaluate the expessin: 4a! 4ab + b, when a = and b = 4 8 4. Fiefightes use the fmula S = 0.P + t cmpute the hizntal ange S in

More information

High-frequency response of a CG amplifier

High-frequency response of a CG amplifier Hgh-requency respnse a G apler between surce & grund between dran & grund w-pass lter Md-band p w-pass lter db Input Ple Output Ple n sb Hgh- respnse a G apler Exact Slutn ( db sb ( / : Nde ( / : Nde n

More information

AREA COVERAGE SIMULATIONS FOR MILLIMETER POINT-TO-MULTIPOINT SYSTEMS USING STATISTICAL MODEL OF BUILDING BLOCKAGE

AREA COVERAGE SIMULATIONS FOR MILLIMETER POINT-TO-MULTIPOINT SYSTEMS USING STATISTICAL MODEL OF BUILDING BLOCKAGE Radoengneeng Aea Coveage Smulatons fo Mllmete Pont-to-Multpont Systems Usng Buldng Blockage 43 Vol. 11, No. 4, Decembe AREA COVERAGE SIMULATIONS FOR MILLIMETER POINT-TO-MULTIPOINT SYSTEMS USING STATISTICAL

More information

Transient Voltage Suppressor SMBJ5.0 - SMBJ440CA

Transient Voltage Suppressor SMBJ5.0 - SMBJ440CA Features: Glass passivated junction Low incremental surge resistance, excellent clamping capability 600W peak pulse power capability with a 10/1,000μs waveform, repetition rate (duty cycle): 0.01% Very

More information

The Mathematical Derivation of Least Squares

The Mathematical Derivation of Least Squares Pscholog 885 Prof. Federco The Mathematcal Dervaton of Least Squares Back when the powers that e forced ou to learn matr algera and calculus, I et ou all asked ourself the age-old queston: When the hell

More information

C o a t i a n P u b l i c D e b tm a n a g e m e n t a n d C h a l l e n g e s o f M a k e t D e v e l o p m e n t Z a g e bo 8 t h A p i l 2 0 1 1 h t t pdd w w wp i j fp h D p u b l i c2 d e b td S t

More information

Perturbation Theory and Celestial Mechanics

Perturbation Theory and Celestial Mechanics Copyght 004 9 Petubaton Theoy and Celestal Mechancs In ths last chapte we shall sketch some aspects of petubaton theoy and descbe a few of ts applcatons to celestal mechancs. Petubaton theoy s a vey boad

More information

I = Prt. = P(1+i) n. A = Pe rt

I = Prt. = P(1+i) n. A = Pe rt 11 Chapte 6 Matheatcs of Fnance We wll look at the atheatcs of fnance. 6.1 Sple and Copound Inteest We wll look at two ways nteest calculated on oney. If pncpal pesent value) aount P nvested at nteest

More information

Faraday's Law of Induction

Faraday's Law of Induction Introducton Faraday's Law o Inducton In ths lab, you wll study Faraday's Law o nducton usng a wand wth col whch swngs through a magnetc eld. You wll also examne converson o mechanc energy nto electrc energy

More information

Victims Compensation Claim Status of All Pending Claims and Claims Decided Within the Last Three Years

Victims Compensation Claim Status of All Pending Claims and Claims Decided Within the Last Three Years Claim#:021914-174 Initials: J.T. Last4SSN: 6996 DOB: 5/3/1970 Crime Date: 4/30/2013 Status: Claim is currently under review. Decision expected within 7 days Claim#:041715-334 Initials: M.S. Last4SSN: 2957

More information

Govern mechanics and thermodynamics of systems Control Mass Laws. Propulsion systems generally employ fluid flow

Govern mechanics and thermodynamics of systems Control Mass Laws. Propulsion systems generally employ fluid flow Schl f Aespace Engeeg Cnsevat Equats Gven mechanics an themynamics f systems Cntl Mass Laws mass: can nt ceate esty mass (e.g., neglect nuclea eacts mmentum: Newtn s Law, ma enegy: 1st Law f themynamics,

More information

Bipolar-Junction (BJT) transistors

Bipolar-Junction (BJT) transistors Bplar-Junctn (BJT) transstrs References: Barbw (Chapter 7), Hayes & Hrwtz (pp 84-4), Rzzn (Chapters 8 & 9) A bplar junctn transstr s frmed by jnng three sectns f semcnductrs wth alternately dfferent dpngs.

More information

Vector Calculus: Are you ready? Vectors in 2D and 3D Space: Review

Vector Calculus: Are you ready? Vectors in 2D and 3D Space: Review Vecto Calculus: Ae you eady? Vectos in D and 3D Space: Review Pupose: Make cetain that you can define, and use in context, vecto tems, concepts and fomulas listed below: Section 7.-7. find the vecto defined

More information

ELEC 204 Digital System Design LABORATORY MANUAL

ELEC 204 Digital System Design LABORATORY MANUAL ELEC 204 Digital System Design LABORATORY MANUAL : Design and Implementatin f a 3-bit Up/Dwn Jhnsn Cunter Cllege f Engineering Kç University Imprtant Nte: In rder t effectively utilize the labratry sessins,

More information

21 Vectors: The Cross Product & Torque

21 Vectors: The Cross Product & Torque 21 Vectors: The Cross Product & Torque Do not use our left hand when applng ether the rght-hand rule for the cross product of two vectors dscussed n ths chapter or the rght-hand rule for somethng curl

More information

An Algorithm For Factoring Integers

An Algorithm For Factoring Integers An Algothm Fo Factong Integes Yngpu Deng and Yanbn Pan Key Laboatoy of Mathematcs Mechanzaton, Academy of Mathematcs and Systems Scence, Chnese Academy of Scences, Bejng 100190, People s Republc of Chna

More information

Chapter 14, Problem 1. Find the transfer function V o. /V i. of the RC circuit in Fig. 14.68. Express it using ω = 1/RC. Figure 14.68 For Prob. 14.1.

Chapter 14, Problem 1. Find the transfer function V o. /V i. of the RC circuit in Fig. 14.68. Express it using ω = 1/RC. Figure 14.68 For Prob. 14.1. Chapter 4, Prblem. Fnd the traner unctn V /V the C crcut n Fg. 4.68. Expre t ung /C. Fgure 4.68 Fr Prb. 4.. Chapter 4, Slutn. V H ( ) V H() jc jc jc j 0 j 0, where 0 C H 0 π - H ( ) φ H ( ) tan ( 0 ) 0

More information

Lecture 10: TEM, TE, and TM Modes for Waveguides. Rectangular Waveguide.

Lecture 10: TEM, TE, and TM Modes for Waveguides. Rectangular Waveguide. Whites, EE 481/581 Lecture 10 Page 1 of 10 Lecture 10: TEM, TE, and TM Modes for Waveguides. Rectangular Waveguide. We will now generalie our discussion of transmission lines by considering EM waveguides.

More information

CITY AND GUILDS 9210 Level 6 Module - Unit 129 FLUID MECHANICS

CITY AND GUILDS 9210 Level 6 Module - Unit 129 FLUID MECHANICS ITY AND GUILDS 90 Level 6 Mdule - Unt 9 FLUID MEHANIS OUTOME - TUTOIAL FLUID FLOW ALULATIONS Ths mdule has Leanng Outcmes. Ths s the secnd tutal utcme Outcme Pem lud lw calculatns The leane can:. Slve

More information

CUSTOMER'S SPECIFICATION 650TVL WIDE DYNAMIC DIGITAL BOARD COLOR CAMERA

CUSTOMER'S SPECIFICATION 650TVL WIDE DYNAMIC DIGITAL BOARD COLOR CAMERA CUSTMER'S SPECFCATN 60TV WDE DYNAMC DGTA BARD CR CAMERA Color camera with /" SNY Super HAD CCD Sensor. Super high resolution : Achieve over 60 TV. Pixel number: NTSC= 70K / PA= 0K. High Sensitivity, 0.06

More information

Mechanics 1: Motion in a Central Force Field

Mechanics 1: Motion in a Central Force Field Mechanics : Motion in a Cental Foce Field We now stud the popeties of a paticle of (constant) ass oving in a paticula tpe of foce field, a cental foce field. Cental foces ae ve ipotant in phsics and engineeing.

More information

Oblique incidence: Interface between dielectric media

Oblique incidence: Interface between dielectric media lecrmagnec Felds Oblque ncdence: Inerface beween delecrc meda Cnsder a planar nerface beween w delecrc meda. A plane wave s ncden a an angle frm medum. The nerface plane defnes he bundary beween he meda.

More information

I n la n d N a v ig a t io n a co n t r ib u t io n t o eco n o m y su st a i n a b i l i t y

I n la n d N a v ig a t io n a co n t r ib u t io n t o eco n o m y su st a i n a b i l i t y I n la n d N a v ig a t io n a co n t r ib u t io n t o eco n o m y su st a i n a b i l i t y and KB rl iak s iol mi a, hme t a ro cp hm a5 a 2k p0r0o 9f i,e ls hv oa nr t ds eu rmv oedye l o nf dae cr

More information

!"#$%&'()%"*#%*+,-./-*+01.2(.*3+456789*!"#$%&"'()'*+,-."/01&2#."'3424,'

!#$%&'()%*#%*+,-./-*+01.2(.*3+456789*!#$%&'()'*+,-./01&2#.'3424,' "#$()"*#*+,-./-*+01.2(.*3+456789* "#$"()*+,-."/012#."3424, Dr. Peter T. Gallagher Astrphysics Research Grup Trinity Cllege Dublin :2";,

More information

YOU ARE RECEIVING THIS NOTICE AS REQUIRED BY THE NEW NATIONAL HEALTH REFORM LAW (ALSO KNOWN AS THE AFFORDABLE CARE ACT OR ACA)

YOU ARE RECEIVING THIS NOTICE AS REQUIRED BY THE NEW NATIONAL HEALTH REFORM LAW (ALSO KNOWN AS THE AFFORDABLE CARE ACT OR ACA) YOU ARE RECEIVING THIS NOTICE AS REQUIRED BY THE NEW NATIONAL HEALTH REFORM LAW (ALSO KNOWN AS THE AFFORDABLE CARE ACT OR ACA) On January 1, 2014, the Affrdable Care Act (ACA) wll be mplemented n Massachusetts

More information

Sun Synchronous Orbits for the Earth Solar Power Satellite System

Sun Synchronous Orbits for the Earth Solar Power Satellite System Sun Synchrnus Orbts fr th Earth Sar Pwr Satt Systm Sm f th mst prmsng rbts fr th Earth Sar Pwr Systm ar crcuar Sun synchrnus rbts whch nvr ntr Earth's shaw. In ths rbts, gravty grant stabz "pwr twrs" w

More information

Graphs of Equations. A coordinate system is a way to graphically show the relationship between 2 quantities.

Graphs of Equations. A coordinate system is a way to graphically show the relationship between 2 quantities. Gaphs of Equations CHAT Pe-Calculus A coodinate sstem is a wa to gaphicall show the elationship between quantities. Definition: A solution of an equation in two vaiables and is an odeed pai (a, b) such

More information

NURBS Drawing Week 5, Lecture 10

NURBS Drawing Week 5, Lecture 10 CS 43/585 Compute Gaphics I NURBS Dawing Week 5, Lectue 1 David Been, William Regli and Maim Pesakhov Geometic and Intelligent Computing Laboato Depatment of Compute Science Deel Univesit http://gicl.cs.deel.edu

More information

(a) The centripetal acceleration of a point on the equator of the Earth is given by v2. The velocity of the earth can be found by taking the ratio of

(a) The centripetal acceleration of a point on the equator of the Earth is given by v2. The velocity of the earth can be found by taking the ratio of Homewok VI Ch. 7 - Poblems 15, 19, 22, 25, 35, 43, 51. Poblem 15 (a) The centipetal acceleation of a point on the equato of the Eath is given by v2. The velocity of the eath can be found by taking the

More information

HEAT TRANSFER HEAT EXCHANGERS

HEAT TRANSFER HEAT EXCHANGERS HET EXCHNGER Types f Heat Exchangers Heat exchangers are classfed accrdng t flw arrangement and type f cnstructn.. Duble-ppe heat exchanger ne flud flws thrugh the smaller ppe whle the ther flud flws thrugh

More information

CODES FOR PHARMACY ONLINE CLAIMS PROCESSING

CODES FOR PHARMACY ONLINE CLAIMS PROCESSING S FOR PHARMACY ONLINE CLAIMS PROCESSING The following is a list of error and warning codes that may appear when processing claims on the online system. The error codes are bolded. CODE AA AB AI AR CB CD

More information

So far circuit analysis has been performed on single-

So far circuit analysis has been performed on single- Three phase systems ntrdctn S far crct analyss has been perfrmed n sngle- phase crcts,.e. there has been ne crct wth a nmber f dfferent vltage and crrent srces whch were nt synchrnsed n any prpsefl way.

More information

Getting started with Android

Getting started with Android Getting started with Andrid Befre we begin, there is a prerequisite, which is t plug the Andrid device int yur cmputer, and lad the drivers fr the OS. In writing this article, I was using Windws XP, 7

More information

CSSE463: Image Recognition Day 27

CSSE463: Image Recognition Day 27 CSSE463: Image Recogto Da 27 Ths week Toda: Alcatos of PCA Suda ght: roject las ad relm work due Questos? Prcal Comoets Aalss weght grth c ( )( ) ( )( ( )( ) ) heght sze Gve a set of samles, fd the drecto(s)

More information

Connecting to Email: Live@edu

Connecting to Email: Live@edu Cnnecting t Email: Live@edu Minimum Requirements fr Yur Cmputer We strngly recmmend yu upgrade t Office 2010 (Service Pack 1) befre the upgrade. This versin is knwn t prvide a better service and t eliminate

More information

Getting Your Fingers In On the Action

Getting Your Fingers In On the Action Rry Garfrth Getting Yur Fingers In On the Actin Once yu are able t strum with yur fingers, yu can begin fingerpicking! The first task is t learn yur hand psitin and t learn which fingers are used n which

More information

Gauss Law. Physics 231 Lecture 2-1

Gauss Law. Physics 231 Lecture 2-1 Gauss Law Physics 31 Lectue -1 lectic Field Lines The numbe of field lines, also known as lines of foce, ae elated to stength of the electic field Moe appopiately it is the numbe of field lines cossing

More information

n + d + q = 24 and.05n +.1d +.25q = 2 { n + d + q = 24 (3) n + 2d + 5q = 40 (2)

n + d + q = 24 and.05n +.1d +.25q = 2 { n + d + q = 24 (3) n + 2d + 5q = 40 (2) MATH 16T Exam 1 : Part I (In-Class) Solutons 1. (0 pts) A pggy bank contans 4 cons, all of whch are nckels (5 ), dmes (10 ) or quarters (5 ). The pggy bank also contans a con of each denomnaton. The total

More information

4. SHAFT SENSORLESS FORCED DYNAMICS CONTROL OF RELUCTANCE SYNCHRONOUS MOTOR DRIVES

4. SHAFT SENSORLESS FORCED DYNAMICS CONTROL OF RELUCTANCE SYNCHRONOUS MOTOR DRIVES 4. SHAFT SENSORLESS FORCED DYNAMICS CONTROL OF RELUCTANCE SYNCHRONOUS MOTOR DRIVES 4.. VECTOR CONTROLLED RELUCTANCE SYNCHRONOUS MOTOR DRIVES WITH PRESCRIBED CLOSED-LOOP SPEED DYNAMICS Abstact: A new spee

More information

W Cisco Kompetanse eek end 2 0 0 8 SMB = Store Mu ll ii gg hh eter! Nina Gullerud ng ulleru@ c is c o. c o m 1 Vår E n t e r p r i s e e r f a r i n g... 2 S m å o g M e llo m s t o r e B e d r i f t e

More information

Operational Amplifier Circuits Comparators and Positive Feedback

Operational Amplifier Circuits Comparators and Positive Feedback Operatinal Amplifier Circuits Cmparatrs and Psitive Feedback Cmparatrs: Open Lp Cnfiguratin The basic cmparatr circuit is an p-amp arranged in the pen-lp cnfiguratin as shwn n the circuit f Figure. The

More information

FORT WAYNE COMMUNITY SCHOOLS 12 00 SOUTH CLINTON STREET FORT WAYNE, IN 468 02 6:02 p.m. Ma r c h 2 3, 2 015 OFFICIAL P ROCEED ING S Ro l l Ca l l e a r d o f h o o l u e e o f t h e r t y m m u t y h o

More information

Episode 401: Newton s law of universal gravitation

Episode 401: Newton s law of universal gravitation Episode 401: Newton s law of univesal gavitation This episode intoduces Newton s law of univesal gavitation fo point masses, and fo spheical masses, and gets students pactising calculations of the foce

More information

PCA vs. Varimax rotation

PCA vs. Varimax rotation PCA vs. Vamax otaton The goal of the otaton/tansfomaton n PCA s to maxmze the vaance of the new SNP (egensnp), whle mnmzng the vaance aound the egensnp. Theefoe the dffeence between the vaances captued

More information

. The torque at the rear sprocket is what actually accelerates the bicycle, and so R R

. The torque at the rear sprocket is what actually accelerates the bicycle, and so R R CHAPTE 8: anal Mn Answes Quesns. The dmee desgned 7-nch wheels nceases s eadng by he ccumeence a 7-nch wheel 7 " eey elun he wheel. a 4-nch wheel s used, he dmee wll sll egse 7 " eey elun, bu nly 4 " lnea

More information

Leads and Signals. All things being equal, we tend to be on defense about half the time; and leading about half of this time

Leads and Signals. All things being equal, we tend to be on defense about half the time; and leading about half of this time Leads and Signals All things being equal, we tend t be n defense abut half the time; and leading abut half f this time Opening lead frequently sets up the pattern n defense Cperatin between partners n

More information

B I N G O B I N G O. Hf Cd Na Nb Lr. I Fl Fr Mo Si. Ho Bi Ce Eu Ac. Md Co P Pa Tc. Uut Rh K N. Sb At Md H. Bh Cm H Bi Es. Mo Uus Lu P F.

B I N G O B I N G O. Hf Cd Na Nb Lr. I Fl Fr Mo Si. Ho Bi Ce Eu Ac. Md Co P Pa Tc. Uut Rh K N. Sb At Md H. Bh Cm H Bi Es. Mo Uus Lu P F. Hf Cd Na Nb Lr Ho Bi Ce u Ac I Fl Fr Mo i Md Co P Pa Tc Uut Rh K N Dy Cl N Am b At Md H Y Bh Cm H Bi s Mo Uus Lu P F Cu Ar Ag Mg K Thomas Jefferson National Accelerator Facility - Office of cience ducation

More information

2 1k 0 3k 2 0 1 4 S 5 7 P a s t w a c z ł o n k o w s k i e - Z a m ó w i e n i e p u b l i c z n e n a u s ł u g- i O g ł o s z e n i e o d o b r o w o l n e j p r z e j r z y s t o c i e x - a nnt e

More information

Coordinate Systems L. M. Kalnins, March 2009

Coordinate Systems L. M. Kalnins, March 2009 Coodinate Sstems L. M. Kalnins, Mach 2009 Pupose of a Coodinate Sstem The pupose of a coodinate sstem is to uniquel detemine the position of an object o data point in space. B space we ma liteall mean

More information

Unit cell refinement from powder diffraction data: the use of regression diagnostics

Unit cell refinement from powder diffraction data: the use of regression diagnostics Unit cell efinement fm pwde diffactin data: the use f egessin diagnstics T. J. B. HLLAND AND S. A. T. REDFERN Deptatment f Eath Sciences, Univesity f Cambidge, Dwning Steet, Cambidge, CB2 3EQ, UK Abstact

More information

LINES ON BRIESKORN-PHAM SURFACES

LINES ON BRIESKORN-PHAM SURFACES LIN ON BRIKORN-PHAM URFAC GUANGFNG JIANG, MUTUO OKA, DUC TAI PHO, AND DIRK IRMA Abstact By usng toc modfcatons and a esult of Gonzalez-pnbeg and Lejeune- Jalabet, we answe the followng questons completely

More information

Earthquake Hazard Zones: The relative risk of damage to Canadian buildings

Earthquake Hazard Zones: The relative risk of damage to Canadian buildings Earthquake Hazard Zones: The relative risk of damage to Canadian buildings by Paul Kovacs Executive Director, Institute for Catastrophic Loss Reduction Adjunct Research Professor, Economics, Univ. of Western

More information

Cold-Chain Logistics Solution (Pharmaceuticals)

Cold-Chain Logistics Solution (Pharmaceuticals) Cld-Chan Lgsts Slutn (Phamaeutals) Wkflw The faty dues the Phamaeutals and laes them n a Lgsts C. Cld-Chan Bx. The faty lgs nt the Lgsts C. Pku and Delvey Webste, entes the equed ku and delvey nfmatn (dut

More information

Gauss Law. AP Physics C

Gauss Law. AP Physics C Gauss Law AP Physics C lectric Flux A Let's start be defining an area n the surface f an bject. The magnitude is A and the directin is directed perpendicular t the area like a frce nrmal. Flux ( r FLOW)

More information

Federation of State Boards of Physical Therapy Jurisdiction Licensure Reference Guide Topic: Continuing Competence

Federation of State Boards of Physical Therapy Jurisdiction Licensure Reference Guide Topic: Continuing Competence This document reports CEU requirements for renewal. It describes: Number of required for renewal Who approves continuing education Required courses for renewal Which jurisdictions require active practice

More information

Module 2. AC to DC Converters. Version 2 EE IIT, Kharagpur 1

Module 2. AC to DC Converters. Version 2 EE IIT, Kharagpur 1 Mdule AC t DC Cnverters Versn EE IIT, Kharagpur 1 Lessn 9 Sngle Phase Uncntrlled Rectfer Versn EE IIT, Kharagpur Operatn and Analyss f sngle phase uncntrlled rectfers Instructnal Objectves On cmpletn the

More information

Bishaash. o k j. k k k k k j. k k. k k k e j k k k j k k k j. - one's ask - ing if I know the spell - ing of "Help"...

Bishaash. o k j. k k k k k j. k k. k k k e j k k k j k k k j. - one's ask - ing if I know the spell - ing of Help... Dedcated t the vctm f Raa Plaza (2013) Spra Alt Ter Ba Bhaah a d G =80 d 4 4 4 4 4 d a d 4 4 M b d 4 d4 4 Lab Kamal / E.K. Nrhar / Saad Chwdhury Pa Cell a d T d4 4 b d T d 4 e 4 l l l l 4 5 l l l l d d

More information

m Future of learning Zehn J a hr e N et A c a d ei n E r f o l g s p r o g r a m Cisco E x p o 2 0 0 7 2 6. J u n i 2 0 0 7, M e sse W ie n C. D or n in g e r, b m u k k 1/ 12 P r e n t t z d e r p u t

More information

esupport Quick Start Guide

esupport Quick Start Guide esupprt Quick Start Guide Last Updated: 5/11/10 Adirndack Slutins, Inc. Helping Yu Reach Yur Peak 908.725.8869 www.adirndackslutins.cm 1 Table f Cntents PURPOSE & INTRODUCTION... 3 HOW TO LOGIN... 3 SUBMITTING

More information

Lecture 16: 11.04.05 Single-Component phase diagrams continued; Thermodynamics of solutions

Lecture 16: 11.04.05 Single-Component phase diagrams continued; Thermodynamics of solutions Lecture 16: 11.04.05 Single-Cmpnent phase diagrams cntinued; Thermdynamics f slutins Tday: LAST TIME...2 Single-cmpnent phase diagrams and the Gibbs phase rule...2 Cnstraints n the shape f phase bundaries

More information

Description of the Force Method Procedure. Indeterminate Analysis Force Method 1. Force Method con t. Force Method con t

Description of the Force Method Procedure. Indeterminate Analysis Force Method 1. Force Method con t. Force Method con t Indeternate Analyss Force Method The force (flexblty) ethod expresses the relatonshps between dsplaceents and forces that exst n a structure. Prary objectve of the force ethod s to deterne the chosen set

More information

Luby s Alg. for Maximal Independent Sets using Pairwise Independence

Luby s Alg. for Maximal Independent Sets using Pairwise Independence Lecture Notes for Randomzed Algorthms Luby s Alg. for Maxmal Independent Sets usng Parwse Independence Last Updated by Erc Vgoda on February, 006 8. Maxmal Independent Sets For a graph G = (V, E), an ndependent

More information

Standardized Coefficients

Standardized Coefficients Standadized Coefficient Ta. How do ou decide which of the X ae mot impotant fo detemining? In thi handout, we dicu one poile (and contoveial) anwe to thi quetion - the tandadized egeion coefficient. Fomula.

More information

How to Subnet a Network How to use this paper Absolute Beginner: Read all Sections 1-4 N eed a q uick rev iew : Read Sections 2-4 J ust need a little h elp : Read Section 4 P a r t I : F o r t h e I P

More information

14.74 Lecture 5: Health (2)

14.74 Lecture 5: Health (2) 14.74 Lecture 5: Health (2) Esther Duflo February 17, 2004 1 Possble Interventons Last tme we dscussed possble nterventons. Let s take one: provdng ron supplements to people, for example. From the data,

More information

Remote Desktop Tutorial. By: Virginia Ginny Morris

Remote Desktop Tutorial. By: Virginia Ginny Morris Remte Desktp Tutrial By: Virginia Ginny Mrris 2008 Remte Desktp Tutrial Virginia Ginny Mrris Page 2 Scpe: The fllwing manual shuld accmpany my Remte Desktp Tutrial vide psted n my website http://www.ginnymrris.cm

More information

Physics 235 Chapter 5. Chapter 5 Gravitation

Physics 235 Chapter 5. Chapter 5 Gravitation Chapte 5 Gavitation In this Chapte we will eview the popeties of the gavitational foce. The gavitational foce has been discussed in geat detail in you intoductoy physics couses, and we will pimaily focus

More information

Keywords: Transportation network, Hazardous materials, Risk index, Routing, Network optimization.

Keywords: Transportation network, Hazardous materials, Risk index, Routing, Network optimization. IUST Intenatonal Jounal of Engneeng Scence, Vol. 19, No.3, 2008, Page 57-65 Chemcal & Cvl Engneeng, Specal Issue A ROUTING METHODOLOGY FOR HAARDOUS MATIALS TRANSPORTATION TO REDUCE THE RISK OF ROAD NETWORK

More information

Magnetic Field and Magnetic Forces. Young and Freedman Chapter 27

Magnetic Field and Magnetic Forces. Young and Freedman Chapter 27 Magnetic Field and Magnetic Foces Young and Feedman Chapte 27 Intoduction Reiew - electic fields 1) A chage (o collection of chages) poduces an electic field in the space aound it. 2) The electic field

More information

Small-Signal Analysis of BJT Differential Pairs

Small-Signal Analysis of BJT Differential Pairs 5/11/011 Dfferental Moe Sall Sgnal Analyss of BJT Dff Par 1/1 SallSgnal Analyss of BJT Dfferental Pars Now lets conser the case where each nput of the fferental par conssts of an entcal D bas ter B, an

More information

Put the human back in Human Resources.

Put the human back in Human Resources. Put the human back in Human Resources A Co m p l et e Hu m a n Ca p i t a l Ma n a g em en t So l u t i o n t h a t em p o w er s HR p r o f essi o n a l s t o m eet t h ei r co r p o r a t e o b j ect

More information

Multiple stage amplifiers

Multiple stage amplifiers Multple stage amplfers Ams: Examne a few common 2-transstor amplfers: -- Dfferental amplfers -- Cascode amplfers -- Darlngton pars -- current mrrors Introduce formal methods for exactly analysng multple

More information

David Drivers Revit One-sheets: Linked Project Positioning and shared coordinates

David Drivers Revit One-sheets: Linked Project Positioning and shared coordinates This paper discusses the fllwing features f Revit Building Shared Crdinates Named lcatins Publish and acquire Vs Saving lcatins Shared Crdinates and wrkset enabled files Revisin 1 (Versin 9.0) David Driver.

More information

Recurrence. 1 Definitions and main statements

Recurrence. 1 Definitions and main statements Recurrence 1 Defntons and man statements Let X n, n = 0, 1, 2,... be a MC wth the state space S = (1, 2,...), transton probabltes p j = P {X n+1 = j X n = }, and the transton matrx P = (p j ),j S def.

More information

How do I evaluate the quality of my wireless connection?

How do I evaluate the quality of my wireless connection? Hw d I evaluate the quality f my wireless cnnectin? Enterprise Cmputing & Service Management A number f factrs can affect the quality f wireless cnnectins at UCB. These include signal strength, pssible

More information

1. Oblast rozvoj spolků a SU UK 1.1. Zvyšování kvalifikace Školení Zapojení do projektů Poradenství 1.2. Financování 1.2.1.

1. Oblast rozvoj spolků a SU UK 1.1. Zvyšování kvalifikace Školení Zapojení do projektů Poradenství 1.2. Financování 1.2.1. 1. O b l a s t r o z v o j s p o l k a S U U K 1. 1. Z v y š o v á n í k v a l i f i k a c e Š k o l e n í o S t u d e n t s k á u n i e U n i v e r z i t y K a r l o v y ( d á l e j e n S U U K ) z í

More information

Comparison Of A One- Dimensional Model Of A High-Temperature Solid- Oxide Electrolysis Stack With CFD And Experimental Results

Comparison Of A One- Dimensional Model Of A High-Temperature Solid- Oxide Electrolysis Stack With CFD And Experimental Results INL/EXT-05-00398 EINT Cmparsn Of A One- Dmensnal Mdel Of A Hgh-Temperature Sld- Oxde Electrlyss Stack Wth CFD And Expermental esults 005 ASME Internatnal Mechancal Engneerng Cngress And Expstn J. E. O

More information

Wireless Light-Level Monitoring

Wireless Light-Level Monitoring Wireless Light-Level Mnitring ILT1000 ILT1000 Applicatin Nte Wireless Light-Level Mnitring 1 Wireless Light-Level Mnitring ILT1000 The affrdability, accessibility, and ease f use f wireless technlgy cmbined

More information

Orbit dynamics and kinematics with full quaternions

Orbit dynamics and kinematics with full quaternions bt dynamcs and knematcs wth full quatenons Davde Andes and Enco S. Canuto, Membe, IEEE Abstact Full quatenons consttute a compact notaton fo descbng the genec moton of a body n the space. ne of the most

More information

PHYSICS 161 EXAM III: Thursday December 04, 2003 11:00 a.m.

PHYSICS 161 EXAM III: Thursday December 04, 2003 11:00 a.m. PHYS 6: Eam III Fall 003 PHYSICS 6 EXAM III: Thusda Decembe 04, 003 :00 a.m. Po. N. S. Chan. Please pn ou name and ene ou sea numbe o den ou and ou eamnaon. Suden s Pned Name: Recaon Secon Numbe: Sea Numbe:.

More information