1. Define the System SDV BDV SDV SDV SDV BDV SDV SDV SDV SDV SDV SDV. Process System TO FLARE TO FLARE BDV TO FLARE
|
|
|
- Bryce Hubbard
- 9 years ago
- Views:
Transcription
1
2 1. Define the System BDV TO FLARE BDV SDV TO FLARE SDV SDV BDV TO FLARE SDV SDV SDV SDV SDV SDV 2 SDV
3 2. Calculate each system volume inventory ; both piping and equipment. Example : Piping Inventory Calculation Length Equival Internal Equivale Pipe Piping Vapour Liquid ent El. NPS Diamete nt Schedul Volume From To r Length fraction Volume Ratio e (ft) (ft) (inch) (inch) (ft) (ft 3 ) (ft 3 ) 3P-SDV V S V PSV-V S "-300# Valve 4"-B1-PHL S V PSE-V S V-60 Reducer 3" x 2" S Reducer 3" x 2" 3P-BDV S Reducer 3" x 2" 3P-PV S "-GP-3P-022-BA1 VALVE S "-B1-BD-202 3P-PV S "-B1-BD-202 VALVE S V-60 3P-SDV S V-60 3P-SDV S Total Example : Equipment Inventory Calculation ID Length Orientation HLL NLL LLL Volume HLL NLL LLL Total Wetted Wetted Wetted Tag Number Equipment Name Total HLL NLL LLL Area Area Area Area (ft) (ft) (ft) (ft) (ft) (ft 3 ) (ft 3 ) (ft 3 ) (ft 3 ) (ft 2 ) (ft 2 ) (ft 2 ) (ft 2 ) 5000-V-60 HP TEST SEPARATOR HORIZONTAL Total
4 4
5 Tool Utilities 1. Adjust massflow of related stream to achieve volume flow correspond to inventory calculation 2. Mix those stream, the result is as BASIS COMPOSITION 3. Balance it to initial pressure condition, the result is as BASIS SIMULATION Initial condition as follow : # FIRE at design pressure or PAHH # ADIABATIC at operating pressure 4. Tool/ Utilities or CTRL+U *) The higher the initial pressure, the grater the flowrate load to flare.. Because the time is set 15 minutes No matter the initial pressure 5 *) want to know more HYSYS short cut? check in my blog : Article : useful HYSYS shortcut
6 1. Depressuring Dynamic 2. Add Utility 3. View Utility 6
7 7
8 re name to : FIRE CASE Select stream BASIS SIMULATION : FIRE Select vertical vessel HYSYS model the entirely system volume as a vertical cylinder with flat both bottom and top. keep as it is Automatically calculated by HYSYS But, You can manually fill to apply some margin of total inventory volume Fill volume of liquid Based on NLL or HLL 8 HYSYS will adjust vessel size both Diameter and Height so that both the total and liquid volume are correct correspond to the input value. Is it difficult to achieve that volume? As a matter of fact, it is not. Actually, the real problem is, the wetted area based on HYSYS s vessel size is not equal with the actual wetted area. HHL result worst case. Still remember the heat input? Example : Q = 21000FA^0.82 The wetted area based on HLL bigger than NLL. (The greater the wetted area the greater the heat input rate to vessel) Now, at this stage we will skip this problem this will need long explanation I will include it in another tutorial
9 Select : Fire API 521 To be applied only if heat flux of BTU/hr ft^1.64 or Q = : Q = 21000FA^0.82 For fire case : Heat For Loss fire case = None : Heat Loss = None no heat loss should be assumed in fire case simulation for worst case other cases, such as *) 1. Jet fire, the heat flux is 94,500 BTU/ft2/hr. C1 = 94, For small system, the fraction area exposed by fire is 1.0 instead of 0.82 C2 = 1 3. For vessel with insulation, or covered by earth, the environment factor less than 1.0 ex = 0.3 Now, at this stage we will skip those other problem this will need long explanation I will include it in another tutorial 9 *)check in my blog for detail explanation : Article : fire case heat input rate
10 10 Fill Pb = 0 For initial value, Pb =0 If the vapor flow equation is SUBSONIC, the value should be updated based on flarenet study result. # Pb has no significant effect for other vapor flow equation. See table below! Select : Musoneilan See table below!, it shows the result of sensitivity test for each vapor flow equation method. Fill Cf = 1 It is critical flow factor, generally the value close to 1.0 Ex : 0.90, 0.94 Cf = 1 for worst case of peak flow Parameter Unit Musoneilan Fisher Supersonic, (Cv in inch2) Subsonic, (Cv in inch2) Pb psig Cv USGPM ( 60f, 1psi) Peak flow lb/hr The method selection has no significant effect to the result (peak flow) Now, you can choose one of the method with no worry about the result, personally, I prefer using MUSONEILAN In my opinion, Musoneilan is the most simple and easy to be used. DON T use SUBSONIC if the system is not in sub-critical condition The back pressure has significant effect only for SUBSONIC method
11 This equation show ; the back pressure has effect to the depressuring result,, Do you know,, Why the back pressure has effect only for subsonic method? *) In sub critical condition, the flowrate through control valve, nozzle, orifice, etc.,,will depends on the differential pressure between inlet and outlet. In critical condition, the flowrate through control valve, nozzle, orifice, etc.,,will only depends on the inlet pressure. MUSONEILAN Cf Flow Cv SENSIVITY test result Fill Cf = There is no worry about the result ^_^ 11 *)check in my blog : Article : critical - subcritical
12 Fill PV work : 50 % for FIRE CASE PV Work Term Contribution refers to the isentropic efficiency of the process. A reversible process should have a value of 100% and an isenthalpic process should have a value of 0% UN-CHECK will result in greater peak flow rate Recommended value For gas-filled systems 80% to 100% For liquid filled systems 50% to 70% A higher isentropic efficiency results in a lower final temperature. A lower isentropic efficiency results in a higher final peak flow rate More liquid more interaction between liquid and vapor. decrease isentropic efficiency For small system inventory ( small vessel model) more friction between fluid and the vessel wall decrease isentropic efficiency 12
13 Depressurized from design pressure*) Set depressuring time = 15 minutes *) use Calculate Cv mode Considering of the maximum reduction of the vessel stress, vessel with thickness less than 1 inch, generally requires faster depressuring rate. Consideration of limiting flare capacity, the depressuring time longer than 15 minutes may be applied RUN after READY TO CALCULATE Fill initial value HYSYS will adjust the Cv value to achieve final pressure (e.g.100psig) at depressuring time (e.g. 15 min) The longer the depressuring time, the higher the depressuring load Set final pressure = 100 psig Or 50 % design pressure *) -100 psig for thickness less than 1 inch -and 50% DP for more 13 *)check in my blog : Article : basic depressuring - why 15 minutes?
14 MAX. Cv MIN. System Temperature (during depressuring) PERFORMANCE MIN. outlet RO Temperature (during depressuring) MAX. FLOW for fire case Result in peak flow to flare = lb/hr Max Cv =
15 15
16 HYSYS Tool / Utilities or CTRL+U *) Select stream BASIS SIMULATION ADIABATIC Rename : Adiabatic Case 1 ST step 2 nd step Fill all of data similar with FIRE CASE except that volume of liquid based on LLL 16 3 rd step LLL mean lower liquid increase isentropic efficiency will result in lower final temperature (see page 12) Lower liquid lower flashed vapor formed from liquid phase will result in shorter depressuring time
17 Select : Adiabatic No heat input Select : None HYSYS does not account for any heat loss During a fire case the vessel is covered with flame. In this case, heat loss to the surrounding atmosphere determined by taking a normal atmospheric temperature is generally not correct as the vessel's surrounding temperature is very high. You should use no heat loss, select NONE for FIRE CASE NONE for ADIABATIC Can be applied if the fluid temperature is lower than the environment temperature. SIMPLE for ADIABATIC 17 Heat Loss Parameter : Use NONE for FIRE CASE Use SIMPLE for ADIABATIC except for system which is the fluid temperature lower than environment, NONE model should be applied (for lower final temperature) I suggest you to use SIMPLE heat loss model for accurate calculations. Use default values except the AMB temperature. I suggest you to use DETAILED model for accurate calculations IF ONLY you know what to do :- ) (I myself don t know how to use this option,,suusahhh cuuukkk).
18 See page.10 about Pb Fill CV as FIRE CASE result Cv = see page 14 Cf = Cf in accordance with FIRE CASE Cf
19 Fill 100% for worst case For gas-filled systems 80% to 100% For liquid filled systems 50% to 70% For small system, or liquid filled system, engineering adjustment should be used. The lower efficiency shall be used for accurate calculation 19
20 Depressurized from operating pressure*) TRIAL depressuring time to meet final pressure 0 psig HYSYS will calculate final pressure based on depressuring time use Calculate Pressure mode In some cases, the final pressure can t meet 0 psig, (slightly above 0 psig). The system can t be decrased to lower pressure. it s OK The fact, the fluid is released to flare. The pressure of the system is correspond to the back pressure. Therefore, the final pressure is slightly above atmospheric condition 20
21 Required adiabatic depressuring time Min Temperature outlet RO Min Temperature In the system Adiabatic peak flow 21
22 22
23 Select File Select : # Temperature # Pressure # Mass Flow VIEW strip chart Depressuring profile VIEW result in Table Depressuring data 23
24 also click PERFORMANCE/ STRIP CHARTS An example : show table 24
25 Aspen HYSYS does not take the volume of the vessel heads into account so the volume will be the liquid in the cylindrical portion only. Aspen HYSYS defaults the volume to be equal to the volumetric flow of the feed BASIS SIMULATION. This will be disproportionate to the total volume inventory calculation where the certain margin volume is applied. Aspen HYSYS defaults the height and diameter vessel in accordance with the volume. This may be disproportionate to the actual total wetted area calculation. At present, Aspen HYSYS does not have the option for jet fire case where the heat flux is more than BTU/hr ft^1.64. The method of spreadsheet can be used to model jet fire case. API recommends depressuring to the lower of 50% of the initial pressure or 100 psig / 6.9 barg. PV work term gas-filled systems 80% to 100% liquid filled systems 40% to 70% A higher efficiency results in a lower final temperature If one is checking that the minimum temperature of the vessel will not fall below a certain value (for example, for validating the steel alloy grade), and then 100% will give the most conservative result. 25
26 26
Saeid Rahimi. Effect of Different Parameters on Depressuring Calculation Results. 01-Nov-2010. Introduction. Depressuring parameters
Effect of Different Parameters on Depressuring Calculation Results Introduction Saeid Rahimi 01-Nov-2010 Emergency depressuring facilities are utilized to accomplish at least one of the following objectives:
Unsteady State Relief Valve Evaluation. External Pool Fire Scenario
Unsteady State Relief Valve Evaluation External Pool Fire Scenario By Rame Sulaiman Process Engineer Process Engineering Associates, LLC Copyright 2009 Process Engineering Associates, LLC. All rights reserved.
Jump Start: Storage Tank Protection in Aspen HYSYS and Aspen Plus
Jump Start: Storage Tank Protection in Aspen HYSYS and Aspen Plus A Brief Tutorial (and supplement to training and online documentation) Anum Qassam, Product Management, Aspen Technology, Inc. Jennifer
EMERGENCY VESSELS BLOWDOWN SIMULATIONS
EMERGENCY VESSELS BLOWDOWN SIMULATIONS AGENDA INTRODUCTION TYPICAL FIRST STUDIES IN TOTAL UPSTREAM INTERNAL RULES BASED ON API METHODOLOGY STUDY RESULTS DEVELOPMENT WORK - COLLABORATION BETWEEN SIMSCI
Equivalents & Conversion Factors 406 Capacity Formulas for Steam Loads 407 Formulas for Control Valve Sizing 408-409
Engineering Data Table of Contents Page No. I II Formulas, Conversions & Guidelines Equivalents & Conversion Factors 406 Capacity Formulas for Steam Loads 407 Formulas for Control Sizing 408-409 Steam
Jump Start: Aspen HYSYS Dynamics V7.3
A Brief Tutorial (and supplement to training and online documentation) Glenn Dissinger, Product Director, Aspen Technology, Inc. Julie Levine, Associate Product Marketing Professional, Aspen Technology,
Select the Right Relief Valve - Part 1 Saeid Rahimi
Select the Right Relief Valve - Part 1 Saeid Rahimi 8-Apr-01 Introduction Selecting a proper type of relief valve is an essential part of an overpressure protection system design. The selection process
VAD. Variable Area Desuperheaters
Desuperheater overview Steam used in process plants can be superheated, that is, heated to a temperature above saturation. The excess of temperature above its saturation is called 'superheat'. Desuperheated
EUROPEAN CHEMCAD SYMPOSIUM 1999
EUROPEAN CHEMCAD SYMPOSIUM 1999 RELIEF & BLOWDOWN in BATCH PROCESSES by John E. Edwards P & I Design Ltd 2 Reed Street, Thornaby, UK, TS17 7AF Page 1 of 20 Tel: 00 44 (1642) 617444 Fax: 00 44 (1642) 616447
No. Name Description Main input Data Main Output Data. cooling duty, process in/out temperature, inlet air temperature
1 AIRCOOLER Air cooler preliminary sizing cooling duty, process in/out temperature, inlet air temperature No of fans, Air cooler Dimension, bare area, no of rows, Fan Diameter, fan power 2 BLOW DOWN FACILITATOR
Setting your session preferences
What is Aspen? 7 Basic Steps 1 Setting your session preferences 2 Building the simulation 3 Entering the simulation environment 4 Using the workbook 5 Installing Unit Operations 6 Run Your Simulation 7
Water hammering in fire fighting installation
Water hammering in fire fighting installation Forward One of major problems raised in the fire fighting network installed at Pioneer company for pharmaceutical industry /Sulaymania was the high water hammering
CO 2 41.2 MPa (abs) 20 C
comp_02 A CO 2 cartridge is used to propel a small rocket cart. Compressed CO 2, stored at a pressure of 41.2 MPa (abs) and a temperature of 20 C, is expanded through a smoothly contoured converging nozzle
Valve Sizing. Te chnic al Bulletin. Flow Calculation Principles. Scope. Sizing Valves. Safe Product Selection. www.swagelok.com
www.swagelok.com Valve Sizing Te chnic al Bulletin Scope Valve size often is described by the nominal size of the end connections, but a more important measure is the flow that the valve can provide. And
1. A belt pulley is 3 ft. in diameter and rotates at 250 rpm. The belt which is 5 ins. wide makes an angle of contact of 190 over the pulley.
Sample Questions REVISED FIRST CLASS PARTS A1, A2, AND A3 (NOTE: these questions are intended as representations of the style of questions that may appear on examinations. They are not intended as study
FUNDAMENTALS OF ENGINEERING THERMODYNAMICS
FUNDAMENTALS OF ENGINEERING THERMODYNAMICS System: Quantity of matter (constant mass) or region in space (constant volume) chosen for study. Closed system: Can exchange energy but not mass; mass is constant
Calculating Volatile Organic Compounds (VOC) Flash Emissions from Crude Oil and Condensate Tanks at Oil and Gas Production Sites
Air Permit Reference Guide APDG 5942 Calculating Volatile Organic Compounds (VOC) Flash Emissions from Crude Oil and Condensate Tanks at Oil and Gas Production Sites Air Permits Division Texas Commission
A practical guide to restrictive flow orifices
Safetygram 46 A practical guide to restrictive flow orifices Restrictive flow orifices (RFOs) installed in cylinder valve outlets provide a significant safety benefit for users of hazardous gases, especially
Contents and Nomenclature
DX Coils Contents and Nomenclature Nomenclature... 1 Evaporator Coil Types EN... 2 EF... 2 ER... 2 EJ... 3 EK... 3 Evaporator Construction Connections... 4 Tubing... 4 Headers... 5 Tube Supports... 5 Coil
Learning Module 4 - Thermal Fluid Analysis Note: LM4 is still in progress. This version contains only 3 tutorials.
Learning Module 4 - Thermal Fluid Analysis Note: LM4 is still in progress. This version contains only 3 tutorials. Attachment C1. SolidWorks-Specific FEM Tutorial 1... 2 Attachment C2. SolidWorks-Specific
DEVELOPMENT OF A TWIN SCREW EXPRESSOR AS A THROTTLE VALVE REPLACEMENT FOR WATER-COOLED CHILLERS
DEVELOPMENT OF A TWIN SCREW EXPRESSOR AS A THROTTLE VALVE REPLACEMENT FOR WATER-COOLED CHILLERS J J Brasz, Carrier Corporation, Syracuse, NY, 13221, USA [email protected] I K Smith and N Stosic
Optimize Pipeline Hydraulics with Multiphase Flow Modeling
Optimize Pipeline Hydraulics with Multiphase Flow Modeling Below are questions asked by attendees during the webinar on February 22, 2012, followed by answers provided by our presenters. Will you also
Geothermal Alliance of Illinois. TXVs Theory and Fundamentals John Haug Senior Application Engineer Emerson Climate Technologies - Flow Controls
Geothermal Alliance of Illinois TXVs Theory and Fundamentals John Haug Senior Application Engineer Emerson Climate Technologies - Flow Controls Thermal Expansion Valve Topics Anatomy Operation Terms &
Liquid level measurement using hydrostatic pressure and buoyancy
iquid level measurement using hydrostatic pressure and buoyancy This worksheet and all related files are licensed under the Creative Commons Attribution icense, version 1.0. To view a copy of this license,
Sulfur Tail Gas Thermal Oxidizer Systems By Peter Pickard
Sulfur Tail Gas Thermal Oxidizer Systems By Peter Pickard Introduction SRU s (Sulfur Recovery Units) are critical pieces of equipment in refineries and gas plants. SRUs remove sulfur compounds from certain
A Table of the Most Common Standard Pipe Sizes. Nominal Bore 1/2 inch (DN 15 mm), Outside Diameter 21.34 mm
Standard Pipe Sizes Standard Pipe Sizes Except for specialist applications, commercially available pipe comes in standard sizes. Pipes in a variety of materials - including carbon steel, steel alloys,
The Unique Accelabar Flow Meter
The Unique Accelabar Flow Meter The Accelabar is a new and unique flow meter that combines two differential pressure technologies to produce operating ranges never before attainable in a single flow meter.
NFPA 30-2008: Basic Requirements for Storage Tanks
NFPA 30-2008: Basic Requirements for Storage Tanks New York City Metro Chapter Society of Fire Protection Engineers New York, NY February 22, 2011 NFPA 30, Flammable and Combustible Liquids Code Storage
Lesson. 11 Vapour Compression Refrigeration Systems: Performance Aspects And Cycle Modifications. Version 1 ME, IIT Kharagpur 1
Lesson Vapour Compression Refrigeration Systems: Performance Aspects And Cycle Modifications Version ME, IIT Kharagpur The objectives of this lecture are to discuss. Performance aspects of SSS cycle and
UNIT 2 REFRIGERATION CYCLE
UNIT 2 REFRIGERATION CYCLE Refrigeration Cycle Structure 2. Introduction Objectives 2.2 Vapour Compression Cycle 2.2. Simple Vapour Compression Refrigeration Cycle 2.2.2 Theoretical Vapour Compression
Density Measurement. Technology: Pressure. Technical Data Sheet 00816-0100-3208 INTRODUCTION. S min =1.0 S max =1.2 CONSTANT LEVEL APPLICATIONS
Technical Data Sheet 00816-0100-3208 Density Measurement Technology: Pressure INTRODUCTION Pressure and differential pressure transmitters are often used to measure the density of a fluid. Both types of
How To Design A Refrigeration System
AIRAH Refrigeration (in HVAC) Back to Basics For the First Time Terms of Reference What this session is NOT about Detailed Refrigeration Design Detailed analysis of various Refrigants properties Comparison
DIRECT STEAM INJECTION HOT WATER SYSTEMS FOR JACKETED HEATING
By Philip Sutter Pick Heaters, Inc. DIRECT STEAM INJECTION HOT WATER SYSTEMS FOR JACKETED HEATING INTRODUCTION Many process plants currently use steam or hot water to heat jacketed devices such as tanks,
APPLIED THERMODYNAMICS TUTORIAL 1 REVISION OF ISENTROPIC EFFICIENCY ADVANCED STEAM CYCLES
APPLIED THERMODYNAMICS TUTORIAL 1 REVISION OF ISENTROPIC EFFICIENCY ADVANCED STEAM CYCLES INTRODUCTION This tutorial is designed for students wishing to extend their knowledge of thermodynamics to a more
Index 11.1. Page. Pumping Systems...11.2-11.4 Intensifiers...11.5 Gas Boosters...11.6-11.7 High Pressure Generators...11.8-11.9
Pumping Systems, Intensifiers, Gas Boosters and High Pressure Generators High Pressure Equipment Company produces a number of components and systems for general industrial, elevated pressure applications.
Air Eliminators and Combination Air Eliminators Strainers
Description Air Eliminators and Combination Air Eliminator Strainers are designed to provide separation, elimination and prevention of air in piping systems for a variety of installations and conditions.
Pressure Drop Basics & Valve Sizing
Pressure Drop Basics & Valve Sizing What is Pressure Drop? The difference in pressure between two points in a system, caused by resistance to flow. What Pressure Drop is Not? Pressure drop is pressure
Chokes. Types Reasons Basics of Operations Application
Chokes Types Reasons Basics of Operations Application Most Common Chokes Positive: Fixed orifice Disassemble to change bean Adjustable Provides variable orifice size through external adjustment Schematic
Aspen Plus. User Guide Volume 2. User Guide V O L U M E 3. Version STEADY STATE SIMULATION. AspenTech
Aspen Plus User Guide Volume 2 STEADY STATE SIMULATION Version 10 User Guide AspenTech V O L U M E 3 COPYRIGHT 1981 1999 Aspen Technology, Inc. ALL RIGHTS RESERVED The flowsheet graphics and plot components
OSHA Tank Venting DEFINITIONS
OSHA Tank Venting DEFINITIONS 1910.106 - Flammable and combustible liquids. 1910.106(a)(2) (a) Definitions. As used in this section: (2) Atmospheric tank shall mean a storage tank which has been designed
4.What is the appropriate dimensionless parameter to use in comparing flow types? YOUR ANSWER: The Reynolds Number, Re.
CHAPTER 08 1. What is most likely to be the main driving force in pipe flow? A. Gravity B. A pressure gradient C. Vacuum 2.What is a general description of the flow rate in laminar flow? A. Small B. Large
Exergy Analysis of a Water Heat Storage Tank
Exergy Analysis of a Water Heat Storage Tank F. Dammel *1, J. Winterling 1, K.-J. Langeheinecke 3, and P. Stephan 1,2 1 Institute of Technical Thermodynamics, Technische Universität Darmstadt, 2 Center
Optimize Thermal & Mechanical Design for Shell & Tube Heat Exchangers
Optimize Thermal & Mechanical Design for Shell & Tube Heat Exchangers Webinar Q&A This document summarizes the responses to questions posed before and during the webinar on general Heat Exchanger Design
Chapter 3. Table E-1. Equilibrium data for SO 2 at 1 atm and 20 o C. x 0.000564.000842.001403.001965.00279.00420 y 0.0112.01855.0342.0513.0775.
Chapter 3 Example 3.2-5. ---------------------------------------------------------------------------------- Sulfur dioxide produced by the combustion of sulfur in air is absorbed in water. Pure SO 2 is
Heating Water by Direct Steam Injection
Heating Water by Direct Steam Injection Producing hot water by direct steam injection provides a solution where large volumes of hot water at precise temperatures are required, and where energy and space
INTRODUCTION TO FLUID MECHANICS
INTRODUCTION TO FLUID MECHANICS SIXTH EDITION ROBERT W. FOX Purdue University ALAN T. MCDONALD Purdue University PHILIP J. PRITCHARD Manhattan College JOHN WILEY & SONS, INC. CONTENTS CHAPTER 1 INTRODUCTION
Aeration Air & Digester Gas Flow Metering Using Thermal Mass Technology. HWEA 2011 Conference Craig S. Johnson
Aeration Air & Digester Gas Flow Metering Using Thermal Mass Technology HWEA 2011 Conference Craig S. Johnson Presentation Overview Introduction Aeration Air & Digester gas challenges Gas flow metering
C. starting positive displacement pumps with the discharge valve closed.
KNOWLEDGE: K1.04 [3.4/3.6] P78 The possibility of water hammer in a liquid system is minimized by... A. maintaining temperature above the saturation temperature. B. starting centrifugal pumps with the
Inert Gas Extinguishing System Two Minute Discharge Study. Gene Hill, P.E. Brad Stilwell
Inert Gas Extinguishing System Two Minute Discharge Study Gene Hill, P.E. Brad Stilwell Page 2 ABSTRACT Fire testing per UL 2127 and FM 5600 was done with an inert gas extinguishing system utilizing IG-100,
2 1/2 Pipe. 40 = height. the gauge pressure inside the vessel from the gauge pressure at the nozzle inlet as shown:
116eering. Engineering. Engineering. Engineering. Engineerin Engineering Information SPECIFYING SPRAY NOZZLES Spray nozzles have three basic functions: meter flow distribute liquid break up a liquid stream
Nozzle Loads, Piping Stresses, and the Effect of Piping on Equipment
Nozzle Loads, Piping Stresses, and the Effect of Piping on Equipment By Patty Brown & Mark van Ginhoven November 13, 2009 1 CA 2009 Fluor Corporation. All Rights Reserved. Topics Covered Introduction Nozzle
PIPING WORKBOOK. Solving Piping and Header Networks Using CHEMCAD. Version 6.2
PIPING WORKBOOK Solving Piping and Header Networks Using CHEMCAD Engineering advanced Version 6. Piping Simulation Methods Sizing Piping Components Pump Performance Curves Piping Networks Relief Header
Simulation of Process Conditions for Calibration of Fisher Level Controllers and Transmitters Supplement to 249 Sensor Instruction Manuals
Instruction Manual Supplement 249 Sensors Simulation of Process Conditions for Calibration of Fisher Level Controllers and Transmitters Supplement to 249 Sensor Instruction Manuals Displacer / torque tube
Engineering Problem Solving as Model Building
Engineering Problem Solving as Model Building Part 1. How professors think about problem solving. Part 2. Mech2 and Brain-Full Crisis Part 1 How experts think about problem solving When we solve a problem
Steady Heat Conduction
Steady Heat Conduction In thermodynamics, we considered the amount of heat transfer as a system undergoes a process from one equilibrium state to another. hermodynamics gives no indication of how long
Modelling and Simulation of the Freezing Systems and Heat Pumps Using Unisim Design
Modelling and Simulation of the Freezing Systems and Heat Pumps Using Unisim Design C. Patrascioiu Abstract The paper describes the modeling and simulation of the heat pumps domain processes. The main
TECHNIQUES FOR NATURAL GAS SAMPLING A DISCUSSION OF FIELD METHODS FOR OBTAINING SPOT SAMPLES. Randall Messman SW Regional Sales Manager
TECHNIQUES FOR NATURAL GAS SAMPLING A DISCUSSION OF FIELD METHODS FOR OBTAINING SPOT SAMPLES Randall Messman SW Regional Sales Manager PGI International 16101 Vallen Drive Houston, TX 77041 Purpose Natural
Desuperheater Online Program Sizing Guidance
Local regulations may restrict the use of this product to below the conditions quoted. In the interests of development and improvement of the product, we reserve the right to change the specification without
Optimizing Flare System Performance at the Valero Sunray Refinery
Engineering Excellence Webinar Series: Optimizing Flare System Performance at the Valero Sunray Refinery Presented by: James Holoboff Process Ecology April 28, 2011 2010 Aspen Technology, Inc. All rights
Comparison of Emission Calculation Methodologies for the Oil and Gas Industry. Presented by: Leanne Sills
Comparison of Emission Calculation Methodologies for the Oil and Gas Industry Presented by: Leanne Sills Trinity Consultants, Inc. Founded 1974 30+ offices nationwide with over 400 employees Environmental
Chapter. Flares and Stacks. Flares (FLR)... 16-3. Stacks (STK)... 16-9. G2 ICARUS Corporation, 1998.
Chapter 16 Flares and Stacks Flares (FLR)... 16-3 Stacks (STK)... 16-9 G2 ICARUS Corporation, 1998. 16-2 ICARUS Reference ICARUS Corporation, 1998. G2 Chapter 16: Flares and Stacks 16-3 Flares (FLR) A
HS-901(A) BASIC STEAM HEATING SYSTEMS
HS-901(A) BASIC HEATING SYSTEMS One-Pipe Two-Pipe Basic Steam Heating Systems One-pipe steam heating system EQUALIZER SAFETY FACTOR STATIC HEAD PRESSURE DROP 2" HEATING UNIT 15" DRIP CONNECTION In a one-pipe,
NATIONAL RESEARCH COUNCIL CANADA. DIVISION OF BUILn ING RESEARCH DESIGN OF EXPOSED SEWER PIPES FOR INTERMITTENT USE UNDER FREEZING CONDITIONS
NATIONAL RESEARCH COUNCIL CANADA DIVISION OF BUILn ING RESEARCH DESIGN OF EXPOSED SEWER PIPES FOR INTERMITTENT USE UNDER FREEZING CONDITIONS D,G, by Stephenson Report No, 166 of the Division of Building
API Flanged Safety Relief Valves Series 526 CATALOG
API Flanged Safety Relief Valves Series 26 CATALOG The-Safety-Valve.com 1 Valve finder How to find the right product group High operating to set pressure ratio, high backpressure or low total height? Yes
The Behaviour Of Vertical Jet Fires Under Sonic And Subsonic Regimes
The Behaviour Of Vertical Jet Fires Under Sonic And Subsonic Regimes Palacios A. and Casal J. Centre for Technological Risk Studies (CERTEC), Department of Chemical Engineering, Universitat Politècnica
SIRIUX. SINGLE AND DOUBLE HIGH EFFICIENCY CIRCULATORS Heating Air-conditioning OPERATING LIMITS APPLICATIONS. 28 m 3 /h* Heads up to: Flows up to:
OPERATING LIMITS Flows up to: m /h* Heads up to: m C Max operating pressure: bars Temperature range: - à + C Max ambient temperature: + C ND of orifices: à * m /h: parallel operation SIRIUX SINGLE AND
Mechanical Seal Piping Plans
Mechanical Seal Piping Plans Single Seals plans 01, 02, 03, 11, 13, 14, 21, 23, 31, 32, 41 Dual Seals plans 52, 53A, 53B, 53C, 54, 55 Quench Seals plans 62, 65A, 65B, 66A, 66B Gas Seals plans 72, 74, 75,
FORMATION DAMAGE AND WELL TREATMENT SYSTEM
FORMATION DAMAGE AND WELL TREATMENT SYSTEM FDWTS-10K Includes ability to test Liquid Permeability & Gas Permeability Fines migration & critical velocity Static Filtration Drilling mud invasion evaluation
Chapter 19 Purging Air from Piping and Vessels in Hydrocarbon Service
BP Lower 48 Onshore Operations Safety Manual Page 4.19 1 Chapter 19 Purging Air from Piping and Vessels in Hydrocarbon Service I. General Requirements A. After motor vehicle accidents and underground excavation
Flashing and Cavitation
As seen in the Summer 2015 issue of MAGAZINE BACK TO BASICS A high-power boiler burner in a co-generation plant Flashing and Cavitation Some of the following questions may seem unrelated, but they all
ANNUBAR FLOW CALCULATION PROGRAM (For the FloBoss 103) User Manual (QER 04Q019)
Flow Computer Division ANNUBAR FLOW CALCULATION PROGRAM (For the FloBoss 103) User Manual (QER 04Q019) Form A6159 September 2004 Revision Tracking Sheet September 2004 This manual may be revised from time
Free Floating Lever Drain Traps For Loads to 50,000 lb/hr (22,679 kg/hr)...pressures to 1,000 psig (69 bar)
Free Floating ever rain Traps For oads to 50,000 lb/hr (22,679 kg/hr)...pressures to 1,000 psig (69 bar) iquid rainers Table -14. Maximum Operating Pressures for Handling ifferent Specific Gravity iquids
Guidance Notes For Provision Of Water Expansion For 10 & 15 Litre Unvented Hot Water Heaters
Guidance Notes For Provision Of Water Expansion For 10 & 15 Litre Unvented Hot Water Heaters When water is heated, it naturally expands and allowance has to be made for this. Vented water heaters usually
Abaqus/CFD Sample Problems. Abaqus 6.10
Abaqus/CFD Sample Problems Abaqus 6.10 Contents 1. Oscillatory Laminar Plane Poiseuille Flow 2. Flow in Shear Driven Cavities 3. Buoyancy Driven Flow in Cavities 4. Turbulent Flow in a Rectangular Channel
Pressure and Temperature Controls
Pressure and Controls Pressure Reducing Armstrong pressure reducing valves (PRVs) and temperature regulators help you manage steam, air and liquid systems safely and efficiently. And assure uninterrupted
BASIC UNDERSTANDING OF FLOW CALCULATIONS AND ESTIMATES MAKES SIZING VALVES SIMPLER
BASIC UNDERSTANDING OF FLOW CALCULATIONS AND ESTIMATES MAKES SIZING VALVES SIMPLER Valve size often is described by the nominal size of the end connections but a more important measure is the flow that
Fixed or Semi-Fixed Fire Protection Systems for Storage Tanks
Fixed or Semi-Fixed Fire Protection Systems for Storage Tanks In the early years of the oil industry, fire in a storage tank was a common occurrence. Virtually all products were stored in cone roof tanks
Practice Problems on Pumps. Answer(s): Q 2 = 1850 gpm H 2 = 41.7 ft W = 24.1 hp. C. Wassgren, Purdue University Page 1 of 16 Last Updated: 2010 Oct 29
_02 A centrifugal with a 12 in. diameter impeller requires a power input of 60 hp when the flowrate is 3200 gpm against a 60 ft head. The impeller is changed to one with a 10 in. diameter. Determine the
Calculating Heat Loss by Mark Crombie, Chromalox
Calculating Heat Loss by Mark Crombie, Chromalox Posted: January 30, 2006 This article deals with the basic principles of heat transfer and the calculations used for pipes and vessels. By understanding
Column Design. Gavin Duffy School of Electrical Engineering Systems DIT, Kevin Street
Column Design Gavin Duffy School of Electrical Engineering Systems DIT, Kevin Street Learning Outcomes After this lecture you should be able to. Explain why the ratio of vapour and liquid velocities is
How To Calculate The Performance Of A Refrigerator And Heat Pump
THERMODYNAMICS TUTORIAL 5 HEAT PUMPS AND REFRIGERATION On completion of this tutorial you should be able to do the following. Discuss the merits of different refrigerants. Use thermodynamic tables for
Total Heat Versus Sensible Heat Evaporator Selection Methods & Application
Total Heat Versus Sensible Heat Evaporator Selection Methods & Application Scope The purpose of this paper is to provide specifying engineers, purchasers and users of evaporators in industrial refrigeration
CONTROL VALVE PRESSURE DROP AND SIZING
CONTENT Chapter Description Page I Purpose of Control Valve II Type and Main Components of Control Valve 3 III Power 5 IV. Pressure Drop Across Control Valve 7 V. Symbols and Units 10 VI. Unit Conversion
Measurement & Analytics. VIS Multiphase Flow Meter High gas content applications solved with no radioactive source - Measurement made easy
Measurement & Analytics VIS Multiphase Flow Meter High gas content applications solved with no radioactive source - Measurement made easy ABB s VIS Multiphase Flow Meter Easy to operate, accurate and fieldproven
Fired Heater Design and Simulation
Fired Heater Design and Simulation Mahesh N. Jethva 1, C. G. Bhagchandani 2 1 M.E. Chemical Engineering Department, L.D. College of Engineering, Ahmedabad-380 015 2 Associate Professor, Chemical Engineering
Application Guide. Compensators Hose Assemblies Expansion Joints FLEX-WELD INCORPORATED FLEX-WELD.COM. Manufactured By:
Compensators Hose Assemblies Expansion Joints Manufactured By: FLEX-WELD INCORPORATED FLEX-WELD.COM What we need to know... A. Physical / System Parameters 1 Size of Assembly: Measure Pipe size (ID) of
Steam System Best Practices Condensate System Piping
Steam System Best Practices Condensate System Piping Summary The best method for improving steam system energy efficiency, reducing chemical costs, and reducing make-up water costs is to return the maximum
EAGLE ASSET TRACKING DATABASE
EAGLE ASSET TRACKING DATABASE Eagle Inspection Technologies offers a user friendly Asset Tracking Database designed specifically for small industrial facilities (Power Plants, Chemical Plants, Tank Farms,
Performance of the Boiler and To Improving the Boiler Efficiency Using Cfd Modeling
IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X, Volume 8, Issue 6 (Sep. - Oct. 2013), PP 25-29 Performance of the Boiler and To Improving the Boiler Efficiency
API Standard 521 - Guide for Pressure-Relieving and Depressuring Systems
2.3.4 521-I-07/03 Background: The paragraph 2.3.4 Check valve Malfunction says "...In these cases, one should consider providing a secory device to minimize the potential for reversal of flow....". Should
Automatic Self-Cleaning Strainers
Applications Water and Liquid service Power Industry Cooling water Pulp & Paper Removing fibers Process Equipment Protect equipment Metal & Mining Quenching, blast furnace cooling Automatic Self-Cleaning
Figure 56. Simple mixing process with process specification for the outlet stream.
Flowsheet Analysis One of the most useful functions of process simulators is the ability to manipulate and analyze the different design variables to determine the required value or study its effect on
Twin Screw Technology. General Overview and Multiphase Boosting 11/2013. Calgary Pump Symposium 2013
Twin Screw Technology General Overview and Multiphase Boosting 11/2013 Axel Jäschke Technical Director - ITT Bornemann USA Office: Mobile: +1 832 320 2500 +49 170 576 4115 +1 832 293 7935 1 Bio Axel Jäschke
Engineering Recommendation on: Accumulators Revised 6-17-99 Issued January 10, 1979 Page 1 of 7
Issued January 10, 1979 Page 1 of 7 Accumulators have long been recognized by the industry as an effective means of maintaining good system balance by storing excess refrigerant as the condenser or evaporator
Dynamic Process Modeling. Process Dynamics and Control
Dynamic Process Modeling Process Dynamics and Control 1 Description of process dynamics Classes of models What do we need for control? Modeling for control Mechanical Systems Modeling Electrical circuits
Model DE-3 Air Release Head
SPECIFICATIONS MEASUREMENT SOLUTIONS Model Air Release Head Bulletin SS03037 Issue/Rev. 0.2 (10/15) We put you first. And keep you ahead. SMITH METER AIR ELIMINATOR The Smith Meter Model Air Release Heads
Module 5: Combustion Technology. Lecture 34: Calculation of calorific value of fuels
1 P age Module 5: Combustion Technology Lecture 34: Calculation of calorific value of fuels 2 P age Keywords : Gross calorific value, Net calorific value, enthalpy change, bomb calorimeter 5.3 Calculation
REFRIGERATION (& HEAT PUMPS)
REFRIGERATION (& HEAT PUMPS) Refrigeration is the 'artificial' extraction of heat from a substance in order to lower its temperature to below that of its surroundings Primarily, heat is extracted from
VAD Variable Area Desuperheaters
Local regulations may restrict the use of this product to below the conditions quoted. In the interests of development and improvement of the product, we reserve the right to change the specification without
