The Behaviour Of Vertical Jet Fires Under Sonic And Subsonic Regimes
|
|
|
- Madlyn Ryan
- 10 years ago
- Views:
Transcription
1 The Behaviour Of Vertical Jet Fires Under Sonic And Subsonic Regimes Palacios A. and Casal J. Centre for Technological Risk Studies (CERTEC), Department of Chemical Engineering, Universitat Politècnica de Catalunya. Diagonal 647, Barcelona, Catalonia, Spain. Accidental release scenarios such as flammable gas leaks or ruptures of pipes and pressurised process-equipment normally originate high velocity jets which, if ignited, give rise to jet fires. Although the direct effects of jet fires are considered to be relatively smaller than that associated to other types of fires, they are characterized by high heat fluxes and, especially if there is flame impingement, they can originate a domino effect, leading to a larger accident. A recent historical analysis has shown that in approximately 50% of the jet fire events registered in accident data bases another event with severe effects is originated. Nevertheless, jet fires are not well known, since most of the experimental work concerns small jet fires (up to 2.5 m in length), subsonic flames or flares. This communication presents the analysis of the measurements performed on relatively large-scale turbulent vertical jet diffusion flames of propane in still air (flame lengths of up to 10 m). The test conditions analyzed covered sonic and subsonic flows, the use of six different-sized interchangeable nozzles, three heat flow sensors located at different radial distances from the flame axis and the use of thermographic and video cameras, which images were used to determine the length and shape of jet fires. The results obtained show the flame length to increase with the orifice diameter and the fuel mass flow rate. The flame length under sonic and subsonic regimes can be predicted as a function of Reynolds number (Eq. (1)). The shape of the present vertical sonic and subsonic jet flames seems to correspond to a cylinder. The thermal radiation intensity (I) from jet fires decreases as the heat flow sensors radial distance from the flame axis increases and increases with the mass flow rate. 1. Introduction Although jet fires have a relatively shorter distance of influence than that associated to other major accidents that can take place in processing plants or in the transportation of hazardous materials, they are of particular interest, since they can frequently be considered as the first stage of subsequent major accidents, due to their effects on the near-by equipment through flame impingement and heat radiation. This is known as a domino effect. A recent historical analysis has shown that one of two jet fire events registered in accident data bases originated a secondary accident, generally an explosion (Gómez-Mares et al., 2008). Although several expressions have been suggested to estimate the probable jet fire size, most of them have been obtained through
2 experimental studies concerning laboratory small-scale flames or subsonic jet flames (Hawthorne et al., 1949; Schuller, 1983; Kalghatgi, 1984; Sonju and Hustad, 1984; McCaffrey, 1989; Rokee et al., 1994; Santos and Costa, 2005; Kiran and Mishra, 2007). However, these conditions significantly differ from those found in real accidental jet fires, as the flames are much larger and the jet usually exits at sonic velocity. In this communication, the experimental measurements (i.e. flame length, shape and thermal radiation intensity) performed on vertical jet fires of propane issuing into still air, with flame lengths up to 10 m at sonic and subsonic regimes are presented. 2. Experimental method Turbulent vertical jet diffusion flames of propane issuing into still air have been obtained with sonic and subsonic flows during field tests. Release interchangeable circular nozzles diameters were between 10 and 43.1 mm (the last orifice diameter represented the full rupture of the pipeline), resulting in observed flames lengths up to 10 m. The pressure at 0.05 m upstream the release point was measured using an electronic pressure transmitter; this was taken to be the upstream stagnation pressure of the flow. The static pressure at the outlet orifice, the jet velocity at the outlet orifice, and the mass flow rate for both sonic and subsonic regimes, were calculated by applying the appropriate thermodynamic relations. The use of thermographic and video cameras let the flame length and shape to be determined. The thermal radiation intensity from jet fires was also measured through three heat flow sensors located at 1 m, 3 m and 5 m from the flame axis, respectively. When the 15 mm outlet orifice diameter was employed, the heat flow sensors were located at 3 m, 5 m and 10 m, respectively. A schematic of the experimental set-up is shown in Fig. 1. Fig.1. Schematic diagram of experimental set-up.
3 3. Flame length and shape For each operating condition, infrared and visible images of the flame were taken with exposure times of four and 25 images per second, respectively. The flame length (L), defined as the distance from the base of the lifted flame to the flame tip, and flame shape were obtained from the analysis of each visible and infrared image, corresponding to the stationary state, using a criterion of temperature. After testing several different temperatures, a temperature of 800 K was selected to define the jet flame surface in the infrared images. At this temperature, both the visible and infrared jet flame images overlapped with a fairly good agreement. 3.1 Flame shape The shape of jet flames is affected by diverse factors, such as the fuel release orientation and the presence or absence of wind during the attainment of flames. Concerning vertical flames, several studies have suggested different shapes to define the visible jet flame form. Some of them have suggested a cylindrical shape, based on theoretical and experimental studies on subsonic jet flames (Schuller, 1983; Sonju and Hustad, 1984; Hustad and Sonju, 1986; Bagster and Schubach, 1996); other authors have proposed a figure similar to a frustum of a cone (Gollahalli et al., 1975; Kalghatgi, 1983; Chamberlain, 1987), however, although this last shape can represent the form of turbulent diffusion flames in a cross-wind or flares under the influence of wind fairly accurately, it does not correspond to the shape of a real accidental jet fire in still air. In fact, through the analysis of both visible and infrared images, the shape of the present vertical jet flames could be approximated to the previously suggested cylindrical shape (Fig. 2) (Schuller, 1983; Sonju and Hustad, 1984; Hustad and Sonju, 1986; Bagster and Schubach, 1996). Fig. 2. Successive images of jet flames issuing from a mm outlet orifice diameter. A temperature of 800 K defines the jet flame contour. The time interval between the successive images is 0.25 s. The height at which the outlet orifice diameter (d) was located coincides with the bottom of each figure.
4 3.2 Flame length The flame length (L) was found to be a function of the mass flow rate (m) (Fig. 3). Although the dependence on the orifice exit diameter (d) is hidden in this kind of loglog plot (except for the data corresponding to d = 43.1 mm, which show a light different trend), it was found that L depends on both variables, increasing with m and d (Palacios et al., 2009). This had been already noticed by Kalghatgi (1984), with subsonic hydrocarbon jet flames and sonic hydrogen jet flames up to 2 m in length d (mm) L (m) m (kg/s) Fig 3. Variation in the sonic and subsonic propane flame lengths (L) as a function of fuel mass flow rate (m), for various orifice outlet diameters (d). The non-dimensional flame length (L/d) was also correlated as a function of the Reynolds number (Re). L/d was found to scale approximately with the 0.27 power of Re (Eq. 1), showing again flame length dependence on both variables: mass flow rate and orifice exit diameter. L/d = 6.73 Re 0.27 (1) 4. Radiation The thermal radiation intensity from jet flames was measured by using three heat flow sensors located at different radial distances from the flame axis. The distances were 1 m, 3 m and 5 m, respectively, except for the 15 mm outlet orifice diameter, where the heat flow sensors were located at 3 m, 5 m and 10 m, respectively. Fig. 4 shows the variation of I from jet fires issuing through a 15 mm orifice exit diameter as a function of the distance. The results show that as the distance increases, I decreases. This is due to the absorption of radiant heat by the atmosphere and to the variation of the view factor. From Fig. 4 it can also be seen that for a given distance, I
5 increases with the mass flow rate (m). Similar results were obtained with the other circular nozzles ) /m W (k 1.5 I m = 0.28 kg/s m = 0.27 kg/s m = 0.26 kg/s m = 0.25 kg/s m = 0.24 kg/s m = 0.22 kg/s m = 0.20 kg/s m = 0.18 kg/s m = 0.16 kg/s m = 0.15 kg/s m = 0.14 kg/s Heat flow sensors radial positions from the flame axis (m) Fig. 4. Variation of the thermal radiation intensity (I) as a function of the distance from the flame axis, for a 15 mm orifice outlet diameter. 5. Conclusions Jet fires can originate domino effect essentially when there is flame impingement on some equipment. To foresee this, the prediction of length and shape of jet fires is essential. Although several expression have been suggested for predicting the flames size, most of them are based on experimental work concerning small-scale jet fires or subsonic flow, while in practice a real accidental jet fire will be probably sonic. The experimental data obtained with vertical sonic and subsonic jet fires of propane up to 10 m in length, have shown that the flame length increases with the orifice diameter and the fuel mass flow rate. An expression, Eq. (1), has been suggested for predicting the flame length under sonic and subsonic regimes, as a function of Reynolds number. The shape of vertical sonic and subsonic jet flames in still air can be approximated to a cylinder. As for the thermal radiation intensity (I) arising from propane jet fires, it has been shown that it decreases as the distance from the flame increases, and it increases with the mass flow rate. Nomenclature d orifice or outlet diameter (m) [mm] I incident radiation heat (kw/m 2 ) L flame length, from the base of the lifted flame to the flame tip (m) m fuel mass flow rate (kg/s) Re Reynolds number (d V ρ/μ) (-) S lift-off distance (m) V velocity in the jet at the gas outlet (m/s) μ dynamic viscosity at the outlet orifice (kg/m s) ρ density at the outlet orifice (kg/m 3 )
6 References Bagster D.F. and Schubach S.A., 1996, The prediction of jet-fire dimensions, Journal of Loss Prevention in the Process Industries. 9(3), Chamberlain G.A., 1987, Developments in design methods for predicting thermal radiation from flares, Chemical Engineering Research and Development. 65, Gollahalli S.R., Brzustowski T.A. and Sullivan H.F., 1975, Characteristics of a turbulent propane diffusion flame in a cross-wind, Transactions of the CSME. 3(4), Gómez-Mares M., Zárate L. and Casal J., 2008, Jet fires and the domino effect, Fire Safety Journal. 43(8), Hawthorne W.R., Weddell D.S. and Hottel H.C., 1949, Mixing and combustion in turbulent gas jets, In: Third Symposium on Combustion Flame and Explosions Phenomena. 3, Hustad J.E. and Sonju O.K., 1986, Radiation and size scaling of large gas and gas/oil diffusion flames, Dynamics of Flames and Reactive Systems: AAIA Progress in Aeronautics and Aeronautics. 105, Kalghatgi G.T., 1983, The visible shape and size of a turbulent hydrocarbon jet diffusion flame in a cross-wind, Combustion and Flame. 52(1), Kalghatgi G.T., 1984, Lift-off heights and visible lengths of vertical turbulent jet diffusion flames in still air, Combustion Science and Technology. 41, Kiran D.Y. and Mishra D.P., 2007, Experimental studies of flame stability and emission characteristics of simple LPG jet diffusion flame, Fuel. 86, McCaffrey B.J., 1989, Momentum diffusion flame characteristics and the effects of water spray, Combustion Science and Technology. 63, Palacios A., Muñoz M. and Casal J., 2009, Jet Fires: An experimental study of the main geometrical features of the flame in subsonic and sonic regimes. AIChEJ. 55, Rokke N.A., Hustad J.E. and Sonju O.K., 1994, A study of partially premixed unconfined propane flames, Combustion and Flame. 97, Santos A. and Costa M., 2005, Reexamination of the scaling laws for NOx emissions from hydrocarbon turbulent jet diffusion flames, Combustion and Flame. 142, Schuller R.B., Nylund J., Sonju O.K. and Hustad J. 1983, ASME, Heat Transfer Division. 25, Sonju O.K. and Hustad J., 1984, An experimental study of turbulent jet diffusion flames, Norweg Marit Res. 4, 2-11.
INITIAL ASSESSMENT OF THE IMPACT OF JET FLAME HAZARD FROM HYDROGEN CARS IN ROAD TUNNELS AND THE IMPLICATION ON HYDROGEN CAR DESIGN
INITIAL ASSESSMENT OF THE IMPACT OF JET FLAME HAZARD FROM HYDROGEN CARS IN ROAD TUNNELS AND THE IMPLICATION ON HYDROGEN CAR DESIGN Wu, Y Department of Chemical and Process Engineering, University of Sheffield,
Experiment 3 Pipe Friction
EML 316L Experiment 3 Pipe Friction Laboratory Manual Mechanical and Materials Engineering Department College of Engineering FLORIDA INTERNATIONAL UNIVERSITY Nomenclature Symbol Description Unit A cross-sectional
Safety issues of hydrogen in vehicles Frano Barbir Energy Partners 1501 Northpoint Pkwy, #102 West Palm Beach, FL 33407, U.S.A.
Safety issues of hydrogen in vehicles Frano Barbir Energy Partners 1501 Northpoint Pkwy, #102 West Palm Beach, FL 33407, U.S.A. Properties of hydrogen Hydrogen is an odorless, colorless gas. With molecular
LNG SAFETY MYTHS and LEGENDS
LNG SAFETY MYTHS and LEGENDS Doug Quillen ChevronTexaco Corp. Natural Gas Technology Investment in a Healthy U.S. Energy Future May 14-15, 2002 Houston Introduction North America is Becoming the Focal
A Response Surface Model to Predict Flammable Gas Cloud Volume in Offshore Modules. Tatiele Dalfior Ferreira Sávio Souza Venâncio Vianna
A Response Surface Model to Predict Flammable Gas Cloud Volume in Offshore Modules Tatiele Dalfior Ferreira Sávio Souza Venâncio Vianna PRESENTATION TOPICS Research Group Overview; Problem Description;
Explosion Hazards of Hydrogen-Air Mixtures. Professor John H.S. Lee McGill University, Montreal, Canada
Explosion Hazards of Hydrogen-Air Mixtures Professor John H.S. Lee McGill University, Montreal, Canada Hydrogen Safety Issues Wide spread use of hydrogen requires significant efforts to resolve safety
International Journal of Latest Research in Science and Technology Volume 4, Issue 2: Page No.161-166, March-April 2015
International Journal of Latest Research in Science and Technology Volume 4, Issue 2: Page No.161-166, March-April 2015 http://www.mnkjournals.com/ijlrst.htm ISSN (Online):2278-5299 EXPERIMENTAL STUDY
PAGE 2. Figure 1: Difference between PWL ins and SPL 1m
PAGE 1 Pipe noise J.H. Granneman and R.P.M. Jansen, Peutz Consulting Engineers, The Netherlands, emphasise the need for an adequate pipe noise control procedure, with reference to the design phase, insulation
Turbulence Modeling in CFD Simulation of Intake Manifold for a 4 Cylinder Engine
HEFAT2012 9 th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics 16 18 July 2012 Malta Turbulence Modeling in CFD Simulation of Intake Manifold for a 4 Cylinder Engine Dr MK
HEAT TRANSFER ANALYSIS IN A 3D SQUARE CHANNEL LAMINAR FLOW WITH USING BAFFLES 1 Vikram Bishnoi
HEAT TRANSFER ANALYSIS IN A 3D SQUARE CHANNEL LAMINAR FLOW WITH USING BAFFLES 1 Vikram Bishnoi 2 Rajesh Dudi 1 Scholar and 2 Assistant Professor,Department of Mechanical Engineering, OITM, Hisar (Haryana)
Calculation of Liquefied Natural Gas (LNG) Burning Rates
Calculation of Liquefied Natural Gas (LNG) Burning Rates Carolina Herrera, R. Mentzer, M. Sam Mannan, and S. Waldram Mary Kay O Connor Process Safety Center Artie McFerrin Department of Chemical Engineering
The ADREA-HF CFD code An overview
The ADREA-HF CFD code An overview Dr. A.G. Venetsanos Environmental Research Laboratory (EREL) National Centre for Scientific Research Demokritos, Greece [email protected] Slide 2 Computational
INTRODUCTION TO FLUID MECHANICS
INTRODUCTION TO FLUID MECHANICS SIXTH EDITION ROBERT W. FOX Purdue University ALAN T. MCDONALD Purdue University PHILIP J. PRITCHARD Manhattan College JOHN WILEY & SONS, INC. CONTENTS CHAPTER 1 INTRODUCTION
CFD SIMULATION OF SDHW STORAGE TANK WITH AND WITHOUT HEATER
International Journal of Advancements in Research & Technology, Volume 1, Issue2, July-2012 1 CFD SIMULATION OF SDHW STORAGE TANK WITH AND WITHOUT HEATER ABSTRACT (1) Mr. Mainak Bhaumik M.E. (Thermal Engg.)
DIESEL ENGINE IN-CYLINDER CALCULATIONS WITH OPENFOAM
DIESEL ENGINE IN-CYLINDER CALCULATIONS WITH OPENFOAM 1 Ervin Adorean *, 1 Gheorghe-Alexandru Radu 1 Transilvania University of Brasov, Romania KEYWORDS - diesel, engine, CFD, simulation, OpenFOAM ABSTRACT
A MODEL FOR PREDICTING THERMAL RADIATION HAZARDS FROM LARGE-SCALE LNG POOL FIRES
A MODEL FOR PREDICTING THERMAL RADIATION HAZARDS FROM LARGE-SCALE LNG POOL FIRES A.D. Johnson Shell Research Ltd., Thornton Research Centre, P.O. Box 1, Chester CHI 3SH A major accidental release of refrigerated
INTERNATIONAL JOURNAL OF RESEARCH IN AERONAUTICAL AND MECHANICAL ENGINEERING
ISSN (ONLINE): 2321-3051 INTERNATIONAL JOURNAL OF RESEARCH IN AERONAUTICAL AND MECHANICAL ENGINEERING Study of forced convection heat transfer With DAQ & ANSYS First Authors Moopanar karthikeyan 1, Raote
Chapter. Flares and Stacks. Flares (FLR)... 16-3. Stacks (STK)... 16-9. G2 ICARUS Corporation, 1998.
Chapter 16 Flares and Stacks Flares (FLR)... 16-3 Stacks (STK)... 16-9 G2 ICARUS Corporation, 1998. 16-2 ICARUS Reference ICARUS Corporation, 1998. G2 Chapter 16: Flares and Stacks 16-3 Flares (FLR) A
FLARE SELECTION AND SIZING (ENGINEERING DESIGN GUIDELINE)
Page : 1 of 54 Guidelines for Processing Plant www.klmtechgroup.com July 2007 KLM Technology Unit 23-04 Menara Landmark 12 Jalan Ngee Heng 80000 Johor Bahru, Malaysia (ENGINEERING DESIGN GUIDELINE) Author:
Influence of fire source locations on the actuation of wet-type sprinklers in an office fire
Influence of fire source locations on the actuation of wet-type sprinklers in an office fire Ko-Jen Chen 1 Chun-Ta Tzeng 2 Chi-ming Lai 3 Abstract An experiment is conducted on a full-scale model office
TOXIC AND FLAMMABLE GAS CLOUD DETECTORS LAYOUT OPTIMIZATION USING CFD
Introduction to the case Gas detectors are commonly installed in process facilities to automatically alarm and trigger safety measures in response to hazardous leaks. Without effective leak detection,
Consequence Analysis: Comparison of Methodologies under API Standard and Commercial Software
511 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 36, 2014 Guest Editors: Valerio Cozzani, Eddy de Rademaeker Copyright 2014, AIDIC Servizi S.r.l., ISBN 978-88-95608-27-3; ISSN 2283-9216 The
Enhancement of heat transfer of solar air heater roughened with circular transverse RIB
Enhancement of heat transfer of solar air heater roughened with circular transverse RIB Gurpreet Singh 1, Dr. G. S. Sidhu 2 Lala Lajpat Rai Institute of Engineering and Technology, Moga Punjab, India 1,2
Head Loss in Pipe Flow ME 123: Mechanical Engineering Laboratory II: Fluids
Head Loss in Pipe Flow ME 123: Mechanical Engineering Laboratory II: Fluids Dr. J. M. Meyers Dr. D. G. Fletcher Dr. Y. Dubief 1. Introduction Last lab you investigated flow loss in a pipe due to the roughness
On-Site Risk Management Audit Checklist for Program Level 3 Process
On-Site Risk Management Audit Checklist for Program Level 3 Process Auditor name: Date: I. Facility Information: Facility name: Facility location: County: Contact name: RMP Facility I.D. Phone Number:
Steady Flow: Laminar and Turbulent in an S-Bend
STAR-CCM+ User Guide 6663 Steady Flow: Laminar and Turbulent in an S-Bend This tutorial demonstrates the flow of an incompressible gas through an s-bend of constant diameter (2 cm), for both laminar and
FLUID FLOW Introduction General Description
FLUID FLOW Introduction Fluid flow is an important part of many processes, including transporting materials from one point to another, mixing of materials, and chemical reactions. In this experiment, you
Performance of the Boiler and To Improving the Boiler Efficiency Using Cfd Modeling
IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X, Volume 8, Issue 6 (Sep. - Oct. 2013), PP 25-29 Performance of the Boiler and To Improving the Boiler Efficiency
Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli 620 015, Tamil Nadu, India
Experimental Thermal and Fluid Science 32 (2007) 92 97 www.elsevier.com/locate/etfs Studies on heat transfer and friction factor characteristics of laminar flow through a circular tube fitted with right
DEVELOPMENT OF HIGH SPEED RESPONSE LAMINAR FLOW METER FOR AIR CONDITIONING
DEVELOPMENT OF HIGH SPEED RESPONSE LAMINAR FLOW METER FOR AIR CONDITIONING Toshiharu Kagawa 1, Yukako Saisu 2, Riki Nishimura 3 and Chongho Youn 4 ABSTRACT In this paper, we developed a new laminar flow
A MTR FUEL ELEMENT FLOW DISTRIBUTION MEASUREMENT PRELIMINARY RESULTS
A MTR FUEL ELEMENT FLOW DISTRIBUTION MEASUREMENT PRELIMINARY RESULTS W. M. Torres, P. E. Umbehaun, D. A. Andrade and J. A. B. Souza Centro de Engenharia Nuclear Instituto de Pesquisas Energéticas e Nucleares
CASL-U-2013-0193-000
L3:THM.CFD.P7.06 Implementation and validation of the new RPI boiling models using STAR-CCM+ as CFD Platform Victor Petrov, Annalisa Manera UMICH September 30, 2013 EXECUTIVE SUMMARY This milestone is
Flow distribution and turbulent heat transfer in a hexagonal rod bundle experiment
Flow distribution and turbulent heat transfer in a hexagonal rod bundle experiment K. Litfin, A. Batta, A. G. Class,T. Wetzel, R. Stieglitz Karlsruhe Institute of Technology Institute for Nuclear and Energy
HEAT TRANSFER ENHANCEMENT AND FRICTION FACTOR ANALYSIS IN TUBE USING CONICAL SPRING INSERT
HEAT TRANSFER ENHANCEMENT AND FRICTION FACTOR ANALYSIS IN TUBE USING CONICAL SPRING INSERT Rahul M. Gupta 1, Bhushan C. Bissa 2 1 Research Scholar, Department of Mechanical Engineering, Shri Ramdeobaba
Hydrogen Detection in Oil Refineries
Hydrogen Detection in Oil Refineries Because every life has a purpose... Hydrogen Detection in Oil Refineries MSA Gas Detection: Hydrogen Gas Detection in Oil Refineries Oil refineries are large producers
HEAT TRANSFER AUGMENTATION THROUGH DIFFERENT PASSIVE INTENSIFIER METHODS
HEAT TRANSFER AUGMENTATION THROUGH DIFFERENT PASSIVE INTENSIFIER METHODS P.R.Hatwar 1, Bhojraj N. Kale 2 1, 2 Department of Mechanical Engineering Dr. Babasaheb Ambedkar College of Engineering & Research,
Iterative calculation of the heat transfer coefficient
Iterative calculation of the heat transfer coefficient D.Roncati Progettazione Ottica Roncati, via Panfilio, 17 44121 Ferrara Aim The plate temperature of a cooling heat sink is an important parameter
THE USE OF AIR ATOMIZING NOZZLES TO PRODUCE SPRAYS WITH FINE DROPLETS
14th International Water Mist Conference THE USE OF AIR ATOMIZING NOZZLES TO PRODUCE SPRAYS WITH FINE DROPLETS Dr.Gökhan BALIK Etik Muhendislik Danismanlik Tasarim ve Egitim Hizmetleri Ltd.Şti. Istanbul
Experimental Study of Free Convection Heat Transfer From Array Of Vertical Tubes At Different Inclinations
Experimental Study of Free Convection Heat Transfer From Array Of Vertical Tubes At Different Inclinations A.Satyanarayana.Reddy 1, Suresh Akella 2, AMK. Prasad 3 1 Associate professor, Mechanical Engineering
CO 2 41.2 MPa (abs) 20 C
comp_02 A CO 2 cartridge is used to propel a small rocket cart. Compressed CO 2, stored at a pressure of 41.2 MPa (abs) and a temperature of 20 C, is expanded through a smoothly contoured converging nozzle
FREESTUDY HEAT TRANSFER TUTORIAL 3 ADVANCED STUDIES
FREESTUDY HEAT TRANSFER TUTORIAL ADVANCED STUDIES This is the third tutorial in the series on heat transfer and covers some of the advanced theory of convection. The tutorials are designed to bring the
Technical documentation and software quality assurance for project Eagle-ALOHA
Technical documentation and software quality assurance for project Eagle-ALOHA A project to add fire and explosive capability to ALOHA FEBRUARY 2006 This report summarizes the technical details and quality
Battery Thermal Management System Design Modeling
Battery Thermal Management System Design Modeling Gi-Heon Kim, Ph.D Ahmad Pesaran, Ph.D ([email protected]) National Renewable Energy Laboratory, Golden, Colorado, U.S.A. EVS October -8, 8, 006 Yokohama,
Grant Agreement No. 228296 SFERA. Solar Facilities for the European Research Area SEVENTH FRAMEWORK PROGRAMME. Capacities Specific Programme
Grant Agreement No. 228296 SFERA Solar Facilities for the European Research Area SEVENTH FRAMEWORK PROGRAMME Capacities Specific Programme Research Infrastructures Integrating Activity - Combination of
Model F822 thru F834 Mulsifyre Directional Spray Nozzles, Open, High Velocity General Description
Worldwide Contacts www.tyco-fire.com Model F thru F3 Mulsifyre Directional Spray Nozzles, Open, High Velocity General Description The Mulsifyre Nozzles are open (nonautomatic) nozzles and they are designed
Gas Standards and Safety. Guidance Note GAS INSTALLATIONS SUPPLIED FROM BIOGAS FACILITIES - ACCEPTANCE REQUIREMENTS GAS ACT 2000
Gas Standards and Safety Guidance Note January 2015 (GN106) Version 1.0 GAS INSTALLATIONS SUPPLIED FROM BIOGAS FACILITIES - ACCEPTANCE REQUIREMENTS GAS ACT 2000 A guide to assist in the design of biogas
Numerical Investigation of Heat Transfer Characteristics in A Square Duct with Internal RIBS
merical Investigation of Heat Transfer Characteristics in A Square Duct with Internal RIBS Abhilash Kumar 1, R. SaravanaSathiyaPrabhahar 2 Mepco Schlenk Engineering College, Sivakasi, Tamilnadu India 1,
Low Emission - Low Maintenance Burner Design
Reliability & Maintenance Conference & Exhibition May 24-27, 2005 Ernest N. Morial Convention Center New Orleans, Louisiana Low Emission - Low Maintenance Burner Design Presented By: Scott D. Reed Vice
An Experimental Study on Industrial Boiler Burners Applied Low NOx Combustion Technologies
Journal of Clean Energy Technologies, Vol. 4, No. 6, November 16 An Experimental Study on Industrial Boiler Burners Applied Low NOx Combustion Technologies Changyeop Lee, Sewon Kim, and Minjun Kwon Abstract
Engine Heat Transfer. Engine Heat Transfer
Engine Heat Transfer 1. Impact of heat transfer on engine operation 2. Heat transfer environment 3. Energy flow in an engine 4. Engine heat transfer Fundamentals Spark-ignition engine heat transfer Diesel
Saeid Rahimi. Effect of Different Parameters on Depressuring Calculation Results. 01-Nov-2010. Introduction. Depressuring parameters
Effect of Different Parameters on Depressuring Calculation Results Introduction Saeid Rahimi 01-Nov-2010 Emergency depressuring facilities are utilized to accomplish at least one of the following objectives:
Lecture 3 Fluid Dynamics and Balance Equa6ons for Reac6ng Flows
Lecture 3 Fluid Dynamics and Balance Equa6ons for Reac6ng Flows 3.- 1 Basics: equations of continuum mechanics - balance equations for mass and momentum - balance equations for the energy and the chemical
HEAVY-DUTY HAND CUTTING TORCHES AND ACCESSORIES. Page 1 Version no.: V0-090902
Page 1 HEAVY-DUTY HAND CUTTING TORCHES AND ACCESSORIES Page 2 Heavy-Duty Hand Cutting Torch HCT 663: With lever-operated valve for cutting oxygen, for cutting duties involving high thermal loads on slabs,
GT2011 46090 ANALYSIS OF A MICROGASTURBINE FED BY NATURAL GAS AND SYNTHESIS GAS: MGT TEST BENCH AND COMBUSTOR CFD ANALYSIS
ASME Turbo Expo 2011 June 6 10, 2011 Vancouver, Canada GT 2011 46090 ANALYSIS OF A MICROGASTURBINE FED BY NATURAL GAS AND SYNTHESIS GAS: MGT TEST BENCH AND COMBUSTOR CFD ANALYSIS M. Cadorin 1,M. Pinelli
Metal alkyls and their solutions
Metal alkyls and their solutions Burning properties Introduction AkzoNobel supplies a wide range of metal alkyls and their solutions to the olefin polymerization and other industries. The principal ones
Jet Impingement Cooling
Jet Impingement Cooling Colin Glynn*, Tadhg O Donovan and Darina B. Murray* *CTVR (Centre for Telecommunications Value-Chain-Driven Research), Department of Mechanical and Manufacturing Engineering, Trinity
FLOW MEASUREMENT 2001 INTERNATIONAL CONFERENCE DERIVATION OF AN EXPANSIBILITY FACTOR FOR THE V-CONE METER
FLOW MEASUREMENT 200 INTERNATIONAL CONFERENCE DERIVATION OF AN EXPANSIBILITY FACTOR FOR THE V-CONE METER Dr D G Stewart, NEL Dr M Reader-Harris, NEL Dr R J W Peters, McCrometer Inc INTRODUCTION The V-Cone
ACETYLENE AIR DIFFUSION FLAME COMPUTATIONS; COMPARISON OF STATE RELATIONS VERSUS FINITE RATE KINETICS
ACETYLENE AIR DIFFUSION FLAME COMPUTATIONS; COMPARISON OF STATE RELATIONS VERSUS FINITE RATE KINETICS by Z Zhang and OA Ezekoye Department of Mechanical Engineering The University of Texas at Austin Austin,
Supporting document to NORSOK Standard C-004, Edition 2, May 2013, Section 5.4 Hot air flow
1 of 9 Supporting document to NORSOK Standard C-004, Edition 2, May 2013, Section 5.4 Hot air flow A method utilizing Computational Fluid Dynamics (CFD) codes for determination of acceptable risk level
CFD MODELLING OF TOP SUBMERGED LANCE GAS INJECTION
CFD MODELLING OF TOP SUBMERGED LANCE GAS INJECTION Nazmul Huda PhD Student Faculty of Engineering and Industrial Science Swinburne University of Technology Melbourne, Australia Supervised by Dr. Jamal
2. CHRONOLOGICAL REVIEW ABOUT THE CONVECTIVE HEAT TRANSFER COEFFICIENT
ANALYSIS OF PCM SLURRIES AND PCM EMULSIONS AS HEAT TRANSFER FLUIDS M. Delgado, J. Mazo, C. Peñalosa, J.M. Marín, B. Zalba Thermal Engineering Division. Department of Mechanical Engineering University of
How To Calculate The Performance Of A Refrigerator And Heat Pump
THERMODYNAMICS TUTORIAL 5 HEAT PUMPS AND REFRIGERATION On completion of this tutorial you should be able to do the following. Discuss the merits of different refrigerants. Use thermodynamic tables for
Flare Pilot System Safety
Flare Pilot System Safety John Bellovich, Jim Franklin, and Bob Schwartz John Zink Company, LLC, 11920 East Apache, Tulsa, OK 74116; [email protected] (for correspondence) Published online 30
Control Device Requirements Charts For Oil and Gas Handling and Production Facilities
Device Charts For Oil and Gas Handling and Production Facilities Purpose/Scope: The purpose of this document is to provide standardized guidance for use by the regulated community and air permit reviewers,
Andrea Basti* Italian National Institute of Nuclear Physics (INFN) Gran Sasso National Laboratory (LNGS) *Research Grant Holder
Evaluation of the possibility to use waterscreen for people evacuation from the Gran Sasso National Laboratory inside the Gran Sasso highway tunnel in case of fire The case of The Gran Sasso National Laboratory
HAZARDOUS AREA CLASSIFICATION OF LOW PRESSURE NATURAL GAS SYSTEMS USING CFD PREDICTIONS
HAZARDOUS AREA CLASSIFICATION OF LOW PRESSURE NATURAL GAS SYSTEMS USING CFD PREDICTIONS Gant S.E. 1, Ivings M.J. 1, Jones A. 2, and Santon R. 1 1 Health and Safety Laboratory, Harpur Hill, Buxton, SK17
Graduate Certificate Program in Energy Conversion & Transport Offered by the Department of Mechanical and Aerospace Engineering
Graduate Certificate Program in Energy Conversion & Transport Offered by the Department of Mechanical and Aerospace Engineering Intended Audience: Main Campus Students Distance (online students) Both Purpose:
RESPONSE TIME INDEX OF SPRINKLERS
, Number l, p.1-6, 29 RESPONSE TIME INDEX OF SPRINKLERS C.K. Sze Department of Building Services Engineering, The Hong Kong Polytechnic University, Hong Kong, China ABSTRACT The Plunge test would be carried
APPLICATION OF TRANSIENT WELLBORE SIMULATOR TO EVALUATE DELIVERABILITY CURVE ON HYPOTHETICAL WELL-X
PROCEEDINGS, Thirty-Third Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 8-30, 008 SGP-TR-185 APPLICATION OF TRANSIENT WELLBORE SIMULATOR TO EVALUATE DELIVERABILITY
VIII.1 Hydrogen Behavior and Quantitative Risk Assessment
VIII.1 Hydrogen Behavior and Quantitative Risk Assessment Katrina Groth (Primary Contact), Ethan Hecht, Chris LaFleur, Alice Muna, John Reynolds (SAIC) Sandia National Laboratories (SNL) P.O. Box 5800
STORE HAZARDOUS SUBSTANCES SAFELY. incompatibles gas cylinders
STORE HAZARDOUS SUBSTANCES SAFELY Suitable containers incompatibles gas cylinders Oxy-Acetylene welding flammable substances 35 36 STORE HAZARDOUS SUBSTANCES SAFELY STORE HAZARDOUS SUBSTANCES SAFELY Storing
POROUS BURNER - A New Approach to Infrared
Page: 1 POROUS BURNER - A New Approach to Infrared 1. Preface There are several possibilities to produce infrared radiation in the technical sense. Regarding the source of energy you can distinguish between
CFD ANALAYSIS OF FLOW THROUGH A CONICAL EXHAUST DIFFUSER
CFD ANALAYSIS OF FLOW THROUGH A CONICAL EXHAUST DIFFUSER R.Prakash 1, D.Christopher 2, K.Kumarrathinam 3 1 Assistant Professor, Department of Mechanical Engineering, SSN College of Engineering, Tamil Nadu,
The Unique Accelabar Flow Meter
The Unique Accelabar Flow Meter The Accelabar is a new and unique flow meter that combines two differential pressure technologies to produce operating ranges never before attainable in a single flow meter.
Major Hazard Risk Assessment on Ammonia Storage at Jordan Phosphate Mines Company (JPMC) in Aqaba, Jordan
Major Hazard Risk Assessment on Ammonia Storage at Jordan Phosphate Mines Company (JPMC) in Aqaba, Jordan Jehan Haddad, Salah Abu Salah, Mohammad Mosa, Royal Scientific Society, Jordan Pablo Lerena, Swiss
Chapter 10. Flow Rate. Flow Rate. Flow Measurements. The velocity of the flow is described at any
Chapter 10 Flow Measurements Material from Theory and Design for Mechanical Measurements; Figliola, Third Edition Flow Rate Flow rate can be expressed in terms of volume flow rate (volume/time) or mass
SECTION 1: GENERAL INFORMATION
Part 1B: Physical Chemical Properties of Selected Fuels SECTION 1: GENERAL INFORMATION DOT Number UN 1049 UN 1966 CH 4 8399%; C 2H 6 113% UN 1971 UN 1075 UN 1978 C 4C 12 C 8C 25 UN 1230 UN 1170 UN 1203
Effect of design parameters on temperature rise of windings of dry type electrical transformer
Effect of design parameters on temperature rise of windings of dry type electrical transformer Vikas Kumar a, *, T. Vijay Kumar b, K.B. Dora c a Centre for Development of Advanced Computing, Pune University
Fluid Mechanics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur
Fluid Mechanics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture - 20 Conservation Equations in Fluid Flow Part VIII Good morning. I welcome you all
Comparative Analysis of Gas Turbine Blades with and without Turbulators
Comparative Analysis of Gas Turbine Blades with and without Turbulators Sagar H T 1, Kishan Naik 2 1 PG Student, Dept. of Studies in Mechanical Engineering, University BDT College of Engineering, Davangere,
Eco Pelmet Modelling and Assessment. CFD Based Study. Report Number 610.14351-R1D1. 13 January 2015
EcoPelmet Pty Ltd c/- Geoff Hesford Engineering 45 Market Street FREMANTLE WA 6160 Version: Page 2 PREPARED BY: ABN 29 001 584 612 2 Lincoln Street Lane Cove NSW 2066 Australia (PO Box 176 Lane Cove NSW
CHAPTER 4: OFFSITE CONSEQUENCE ANALYSIS
CHAPTER 4: OFFSITE CONSEQUENCE ANALYSIS RMP OFFSITE CONSEQUENCE ANALYSIS GUIDANCE This chapter is intended for people who plan to do their own air dispersion modeling. If you plan to do your own modeling,
Challenges for Use of Fixed Fire Suppression Systems in Road Tunnel Fire Protection
Challenges for Use of Fixed Fire Suppression Systems in Road Tunnel Fire Protection Z. G. Liu *, A. Kashef, G. Lougheed, and A. K. Kim Fire Research Program, Institute for Research in Construction National
Problem Statement In order to satisfy production and storage requirements, small and medium-scale industrial
Problem Statement In order to satisfy production and storage requirements, small and medium-scale industrial facilities commonly occupy spaces with ceilings ranging between twenty and thirty feet in height.
CFD STUDY OF TEMPERATURE AND SMOKE DISTRIBUTION IN A RAILWAY TUNNEL WITH NATURAL VENTILATION SYSTEM
CFD STUDY OF TEMPERATURE AND SMOKE DISTRIBUTION IN A RAILWAY TUNNEL WITH NATURAL VENTILATION SYSTEM J. Schabacker, M. Bettelini, Ch. Rudin HBI Haerter AG Thunstrasse 9, P.O. Box, 3000 Bern, Switzerland
Process Safety Management of Highly Hazardous & Explosive Chemicals. Safe Work Practices
Process Safety Management of Highly Hazardous & Explosive Chemicals Safe Work Practices Safe Work Practices 1910.119(f)(1) The employer shall develop and implement safe work practices to provide for the
ME 239: Rocket Propulsion. Over- and Under-expanded Nozzles and Nozzle Configurations. J. M. Meyers, PhD
ME 239: Rocket Propulsion Over- and Under-expanded Nozzles and Nozzle Configurations J. M. Meyers, PhD 1 Over- and Underexpanded Nozzles Underexpanded Nozzle Discharges fluid at an exit pressure greater
HEAT TRANSFER IM0245 3 LECTURE HOURS PER WEEK THERMODYNAMICS - IM0237 2014_1
COURSE CODE INTENSITY PRE-REQUISITE CO-REQUISITE CREDITS ACTUALIZATION DATE HEAT TRANSFER IM05 LECTURE HOURS PER WEEK 8 HOURS CLASSROOM ON 6 WEEKS, HOURS LABORATORY, HOURS OF INDEPENDENT WORK THERMODYNAMICS
TECHNICAL INFORMATION
Page: 1/6 This checklist recognizes the major accident hazards found by experience of previous HAZID studies. It is not intended to be totally exhaustive and feedback from users should be incorporated
Advantage of Using Water-Emulsified Fuel on Combustion and Emission Characteristics
Advantage of Using Water-Emulsified Fuel on Combustion and Emission Characteristics T. Yatsufusa *1, T. Kumura, Y. Nakagawa, Y. Kidoguchi The University of Tokushima Abstract In the present study, the
LIQUEFIED PETROLEUM GASES
CHAPTER 38 LIQUEFIED PETROLEUM GASES SECTION 3801 GENERAL 3801.1 Scope. Storage, handling and transportation of liquefied petroleum gas (LP-gas) and the installation of LP-gas equipment pertinent to systems
Full scale tunnel fire tests of VID Fire-Kill Low Pressure Water Mist Tunnel Fire Protection System in Runehamar test tunnel, spring 2009
Full scale tunnel fire tests of VID Fire-Kill Low Pressure Water Mist Tunnel Fire Protection System in Runehamar test tunnel, spring 2009 By Carsten Palle, VID Fire-Fill, www.vid.eu Presented at ISTSS
Diesel injection, ignition, and fuel air mixing
Diesel injection, ignition, and fuel air mixing 1. Fuel spray phenomena. Spontaneous ignition 3. Effects of fuel jet and charge motion on mixingcontrolled combustion 4. Fuel injection hardware 5. Challenges
Fire & Gas Detection; Reducing Risks in Rail Loading/Unloading Facilities. By Todd Spicer Technical Specialist Spartan Controls Fire & Security
Fire & Gas Detection; Reducing Risks in Rail Loading/Unloading Facilities By Todd Spicer Technical Specialist Spartan Controls Fire & Security Reality Rail Loading/Unloading Facilities Rail loading/unloading
DIMEG - University of L Aquila ITALY EXPERIMENTAL ACTIVITY ENGINE LABORATORY
DIMEG - University of L Aquila ITALY EXPERIMENTAL ACTIVITY ENGINE LABORATORY Torre di Raffreddamento Bilan cia Combustibile DIMEG:ENGINE LABORATORY PLANTS Torre di Raffreddamento P C o o z l z d o P C
Basic Equations, Boundary Conditions and Dimensionless Parameters
Chapter 2 Basic Equations, Boundary Conditions and Dimensionless Parameters In the foregoing chapter, many basic concepts related to the present investigation and the associated literature survey were
SIMULATION MODEL OF THE SINGLECYLINDER COMBUSTION ENGINE MZ125
SIMULATION MODEL OF THE SINGLECYLINDER COMBUSTION ENGINE MZ125 Pavel Dresler 1, Michal Richtář 2 Summary: The use of one-dimensional CFD engine simulation is an essential tool to the engine development
