Flashing and Cavitation
|
|
|
- Clarissa Mosley
- 10 years ago
- Views:
Transcription
1 As seen in the Summer 2015 issue of MAGAZINE BACK TO BASICS A high-power boiler burner in a co-generation plant Flashing and Cavitation Some of the following questions may seem unrelated, but they all involve key concepts that explain the sometimes-misunderstood phenomena of flashing and cavitation: VALVE MAGAZINE SUMMER 2015 BY BERT EVANS AND RICHARD L. RITTER III 1 䡲 How can relatively clean and clear water damage a valve? 䡲 Why does it take longer to hard boil an egg in Denver than in Los Angeles? 䡲 Why does water squirt farther out of a garden hose when I place my thumb over the end? 䡲 How can the gas in my liquid propane grill last so long? 䡲 What is that noise I hear in a pump when I fail to charge the downstream line? 䡲 Can I prevent flashing and cavitation? If not, can I minimize the damage they cause to valves? Executive Summary SUBJECT: Although flashing and cavitation are often discussed together, there are differences between the two and how they occur. Both can cause significant damage to valves and related equipment. KEY CONCEPTS: 䡲 The key distinctions 䡲 How each condition occurs 䡲 Strategies for protecting valves TAKE-AWAY: The different strategies can help to prevent or eliminate what happens. They also can be combined.
2 䡺 Figure 1. Normal post-guided plug (left) and flashing-damaged post-guided plug (right) 䡺 Figure 3. Phase diagram showing boiling and flashing (Machado, 2009) PROCESS PRESSURE AND VAPOR PRESSURE The place to begin in understanding the differences is by exploring what the terms flashing and cavitation actually mean. But to get to that point, we should first discuss another term: vapor pressure. The vapor pressure (PV) of a fluid is the pressure at which a liquid will begin the thermodynamic process of changing to vapor. Figure 3 shows a phase diagram of a single component process fluid such as water and graphically depicts the difference between flashing and boiling. Under a condition of constant temperature, a change in pressure can result in transition from one phase to another. When the local pressure (Pprocess) is reduced below the fluid PV, for example, vaporization will begin. In the process industry, if Pprocess does not recover above PV, the fluid will remain in the vapor phase. This process is flashing. Similarly, under a condition of constant pressure, a change in temperature can also result in a phase change. PV of a fluid increases as the fluid temperature increases. If the fluid temperature is increased to the point where PV exceeds the local pressure (which is often the atmospheric pressure), vaporization will occur. This process is boiling. In other words, flashing occurs when we lower the pressure at a constant temperature, and boiling occurs when we raise the temperature at a constant pressure. (This ties back to our egg example: It can take a bit longer to boil an egg in Denver than Los Angeles because the average atmospheric pressure is slightly lower Pressure Velocity Pressure Pressure Velocity 䡺 Figure 2. Cavitation damaged plug and cage 䡺 Figure 4. Bernoulli s principle and the impact of velocity on static pressure VALVE MAGAZINE Velocity SUMMER 2015 Flashing and cavitation is the answer to that very first question because it can occur with very clean and clear water with the potential to cause severe erosion damage to valves, piping and other equipment even without any erosive solids in the water. Figure 1 shows an undamaged post-guided control valve plug (left) and a damaged identical plug that has been severely eroded by flashing (right). Note how the damaged surfaces of the plug on the right appear shiny and scalloped and how the beveled seating surface (i.e., the geometry that allows the valve to shut off) is completely missing. This illustrates how severe flashing damage can be despite the pureness of the medium. Figure 2 shows a plug and cage damaged by cavitation. Notice the very different appearance: The plug is dull, dark and grainy (e.g., it looks similar to pumice or lava rock). These two figures show that, while cavitation damage looks very different compared to flashing, the result is the same: loss of throttling and shut-off capability. Both kinds of damage are the result of related, but very different, processes. 2
3 VALVE MAGAZINE SUMMER Figure 5. Pressure profile showing vaporization (flashing) of liquid propane, similar to the LP tank on a gas grill Pressure Inlet (P1) Vapor Pressure (PV) Pressure at Vena Contracta (PVC) Pressure (psia) in the Mile-high city of Denver water boils at a slightly lower temperature there than it does near sea level.) Next we look at why flashing happens in industrial processes and piping systems. When a liquid is flowing through a conduit, such as a pipe or a garden hose, and it encounters a restriction, such as a valve (or your thumb on the end of the hose), it accelerates to a higher velocity. Why does this happen? It occurs because, when a liquid encounters a smaller flow area, the liquid must accelerate to maintain continuity that is, to retain a relatively constant volumetric flow rate. This is much the same as the way a river tends to meander and run slowly when it s flowing through a wide plain, but Bubbble formation Distance Figure 6. Pressure profile showing how cavitation occurs Pressure Inlet (P1) Pressure at Vena Contracta (PVC) Pressure (psia) Vapor Pressure (PV) Distance Flashing Cavitation Bubble Formation Bubble Collapse Pressure Outlet (P2) Pressure Outlet (P2) becomes fast-moving rapids or whitewater when the river encounters a narrow canyon. Boyle s law, Bernoulli s principle and Euler s formula show us that the pressure in a restricted flow area (such as a valve) will be lower than in a larger pipe section. These ideas are shown graphically in Figure 4. Figure 7. Vapor bubble collapsing as static fluid pressure recovers to above PV FLASHING If the local pressure within the restricted flow area drops below the vapor pressure of the liquid, which is a condition called the vena contracta, vaporization occurs (i.e., vapor bubbles would form in the liquid). If the downstream pressure remains below the vapor pressure, the process is said to be a flashing service, and the outlet stream will be predominantly in a vapor phase. When this flow impinges on valve components, it can cause the kind of erosive damage shown in Figure 1. This erosion can be severe and may occur even when no abrasive solids are present in the liquid. Figure 5 shows an example of flashing that occurs when using a liquid propane (LP) gas grill. At temperatures above -44 F (-42 C), the vapor pressure of propane is greater than atmospheric pressure. However, the tank that contains the LP is typically pressurized to greater than 10 psig so the propane remains as a liquid within the tank. As the liquid passes through the tank-mounted valve and pressure regulator, fluid pressure drops well below its vapor pressure, causing the LP to flash entirely to a vapor. For typical conditions, propane has almost 300 times greater volume as a gas at standard atmospheric pressure (known as 1 atmosphere) than as a liquid within a pressurized tank. That is why the relatively small volume LP tank can last so long on a gas grill. The gas grill example would be called an open system, because it ultimately vents to the atmosphere and can exchange matter and energy with that much larger system (our atmosphere). When a liquid flows through a piping system, it often is considered a closed system, because it can exchange energy but not exchange matter with an external
4 system such as the atmosphere. In closed systems, all process conditions need close consideration to determine whether flashing may occur. Figure 8. Simple pressure drop curves for a centrifugal pump Pump Outlet Pressure CAVITATION Figure 6 depicts the pressure profile of a process fluid moving from left to right in a closed system. If the PV of the fluid is below the upstream pressure (P 1 ), above the vena contracta pressure (P VC ) and below the downstream pressure (P 2 ), vapor bubbles can form as pressure drops. In this case the bubbles can suddenly collapse or implode as the pressure recovers, a condition known as cavitation. Cavitation is often energetic, and it has great potential to damage valves in a manner similar to what is illustrated in Figure 2. The bubble implosions create micro-jets of fluid that can impinge on valve component surfaces at high velocities. The bubble collapse can also create shock waves of up to 100,000 psi. Figure 7 shows a schematic of a single vapor bubble collapsing as the surrounding fluid pressure recovers to above the vapor pressure. When shock waves from local bubble implosion impact against valve component surfaces, typical materials of construction for industrial valves can be work-hardened and fatigued. As the surfaces become brittle and less resistant to local fracture, they also are subjected to liquid micro-jets that essentially deteriorate the material with time. This process creates the grainy appearance unique to cavitation damage. Figure 8 shows how cavitation occurs in a centrifugal pump. If the pressure at the eye of the pump impeller drops below PV as shown in curve A, vapor bubbles form, then subsequently collapse downstream when system pressure recovers to above PV. A centrifugal pump requires that pressure, temperature and velocity be maintained within the pump design specifications to prevent cavitation. This prevention is essential because cavitation can cause significant damage to the pump impeller, extreme vibration and high noise levels. Ensuring a pump is operated within conditions for which it was selected will Pressure Inlet (P1) Pressure Vapor Pressure (PV) Pressure at (PVC) Pump Inlet Pressure Pressure Curve B, Cavitation Does Not Occur ensure the pump does not cavitate, as shown in curve B. In this case, the pressure at the eye of the impeller still drops below the inlet suction pressure of the pump, but the pressure of the liquid at the eye of the impeller remains above the liquid vapor pressure so no cavitation occurs. PROTECTING VALVES FROM DAMAGE Generally speaking, valve manufacturers use one or more design strategies to protect valves from the potentially detrimental effects of flashing and cavitation. These strategies can be described as resistance, isolation or elimination. Figure 9. The valve plug on the left has a very hard Alloy 6 tip; the valve plug on the right is made of a softer alloy. Both plugs were exposed to similar flashing conditions for similar durations. Centrifugal Pump Distance Pressure Curve A, Cavitation Occurs Pressure Outlet (P2) Resistance strategies use materials that are very hard, that have a high fracture toughness or fatigue strength or that are less vulnerable to erosion damage through other means. Isolation design strategies involve designing flow paths that minimize the impingement of flashing or cavitation onto critical valve surfaces. Elimination strategies include using tortuous paths or true engineered staging of pressure drops across the valve. They also include adding a valve or orifice plate to split the pressure drop across multiple devices; this creates a greater P 2 at the first device, reducing the potential for cavitation. Aspirating atmospheric air or injecting higherpressure air into a valve is a third example of an elimination strategy. Manufacturers may also combine these strategies for heightened protection against damage. Resistance Materials of construction should be chosen to resist both mechanical attack and chemical attack. Mechanical attack occurs in two forms: erosion (including abrasive, flashing and/or cavitation) and material deformation and subsequent failure. After a period of mechanical attack, many of the protective coatings of a material (films, oxides, etc.) are physically removed, SUMMER 2015 VALVE MAGAZINE 4
5 of the flow, where the vena contracta occurs downstream of the valve plug, actually occurs past the plug at the valve outlet. Again, isolation and resistance strategies can be combined by flowing in this reverse orientation and using wear-resistant materials for the seat and outlet liner. Figure 10. Angle body cutaways Figure 11. Eccentric plug reverse flow computational fluid dynamics image, showing high velocity region downstream of the plug making the base material more vulnerable to chemical attack. Figure 9 shows two valve plugs exposed to similar flashing conditions for similar durations. Liner insert passed through the trim. Ideally, most energy and potential for damage associated with flashing or cavitation will then dissipate in the flow stream rather than come in contact with the trim or other valve flow passages. Also, hardened materials can be used as liners to protect the outlet of the valve as shown in the figure. This is a way to combine the resistance and isolation strategies. Figure 11 shows a computational fluid dynamics model of an eccentric plug rotary valve, specifically designed for erosive service, in a reverse flow orientation. The high-velocity region Elimination An elimination strategy also can be used in combination with other strategies, including both resistance and isolation, to treat cavitation. Cavitation can be eliminated by creating more back pressure locally within the valve. However, this approach will not eliminate flashing because the downstream pressure will never recover above the fluid vapor pressure. In rare circumstances, the entire system pressure can be raised above the fluid vapor pressure for all process conditions. (This will eliminate flashing, but may introduce cavitation.) Still, it is much more common to use a designbased elimination strategy to minimize or prevent damaging cavitation. Drilled hole cages, tortuous paths and other trim designs are used by valve manufacturers to carefully manage the internal vena contracta pressure so it is always above the fluid vapor pressure. This minimizes or prevents the bubble formation altogether, VALVE MAGAZINE SUMMER Isolation Generally, internal wetted valve components (often called trim) are subject to the highest flow velocities as they control the flow and pressure drop across the valve. These high velocities accelerate abrasive or erosive wear so that wear is a function of duration of exposure and proximity to high-velocity flow regions. Isolation means directing the flow path in a way that prevents or minimizes impingement of the process fluid onto critical surfaces. Figure 10 shows cross-sectional views of angle body valve designs. Angle valves, when oriented so that the flow passes through the valve as shown in this figure (commonly called a flow-down orientation), allow flashing or cavitation to primarily occur after the fluid has Figure 12. Drilled-hole cage (left) and angle body with drilled-hole cage and axial pressure staging (right)
6 which eliminates the cavitation as well. Figure 12 shows a drilled hole cage (left) that combines all three design strategies: resistance (hard materials), isolation (flow down) and elimination (pressure staging). If carefully designed, the hole geometry, diameter and spacing also help to isolate the individual jets as the flow passes through the cage. A more severe cavitating service may require additional design strategies, such as those shown on the right of Figure 12. This design uses all of the approaches previously discussed with the addition of axial pressure staging as the flow passes through the valve trim. This particular design is capable of handling up to 6,000 psid pressure drops while minimizing or eliminating cavitation and associated damage. CONCLUSION Flashing and cavitation are thermodynamic processes resulting from process fluid properties and process conditions. It is important to know both the fluid properties (such as vapor pressure) and the system properties (such as process pressure and temperature) to understand whether cavitation or flashing are potential issues to address in valve selection and application. Flashing and cavitation can cause significant valve damage, even with clean fluids that do not contain any solids. Many valve design approaches will handle flashing and cavitation, but they generally can be categorized as using resistance, isolation and elimination. Understanding these three general principles can help in selecting the ideal valve design for tough applications. VM BERT EVANS is manager and RICHARD L. RITTER III is instructional designer for Emerson Process Management (www2.emersonprocess.com), Fisher Product Training. Reach Evans at [email protected]. REFERENCES 1. Fisher Controls International LLC. (2011). Control Valve Source Book Pulp & Paper. In F. C. LLC, Control Valve Source Book Pulp & Paper (pp. 4-6, 4-7). U.S.A.: ok/d103540x012.pdf. 2. Machado, G. (2009, 08 01). Polymeric Solution for Pump Cavitation. Retrieved 05 07, 2015, from Electric Power: SUMMER 2015 VALVE MAGAZINE 6
Chokes. Types Reasons Basics of Operations Application
Chokes Types Reasons Basics of Operations Application Most Common Chokes Positive: Fixed orifice Disassemble to change bean Adjustable Provides variable orifice size through external adjustment Schematic
VAL-MATIC VALVE AND MANUFACTURING CORP. 905 RIVERSIDE DRIVE, ELMHURST, IL 60126 TEL. (630) 941-7600 FAX.
Cavitation in Valves VAL-MATIC VALVE AND MANUFACTURING CORP. 905 RIVERSIDE DRIVE, ELMHURST, IL 60126 TEL. (630) 941-7600 FAX. (630) 941-8042 www.valmatic.com CAVITATION IN VALVES INTRODUCTION Cavitation
C. starting positive displacement pumps with the discharge valve closed.
KNOWLEDGE: K1.04 [3.4/3.6] P78 The possibility of water hammer in a liquid system is minimized by... A. maintaining temperature above the saturation temperature. B. starting centrifugal pumps with the
TOPIC: 191004 KNOWLEDGE: K1.01 [3.3/3.5] Which one of the following contains indications of cavitation in an operating centrifugal pump?
KNOWLEDGE: K1.01 [3.3/3.5] P21 Which one of the following contains indications of cavitation in an operating centrifugal pump? A. Low flow rate with low discharge pressure. B. Low flow rate with high discharge
Control ball valves for severe services. Author: Michele Ferrante, PARCOL S.p.A., Italy
Control ball valves for severe services Author: Michele Ferrante, PARCOL S.p.A., Italy Control valves are primarily classified according to the type of their obturator motion which can be linear or rotary.
Flow Assurance & Operability
Flow Assurance & Operability Erosion due to sand production Date Business Name Overview 1. What causes erosion? 2. Sand production and transport 3. Sand management 4. Instrumentation / monitoring of sand
Anti-Cavitation Trim. Eliminates cavitation damage Reduces noise Preserves valve and surrounding pipe systems. singervalve.com
Anti-Cavitation Trim Eliminates cavitation damage Reduces noise Preserves valve and surrounding pipe systems Say Goodbye to Cavitation Damage! Cavitation, a common problem in pumps and control valves,
Pumps: Convert mechanical energy (often developed from electrical source) into hydraulic energy (position, pressure and kinetic energy).
HYDRAULIC MACHINES Used to convert between hydraulic and mechanical energies. Pumps: Convert mechanical energy (often developed from electrical source) into hydraulic energy (position, pressure and kinetic
Minor losses include head losses through/past hydrants, couplers, valves,
Lecture 10 Minor Losses & Pressure Requirements I. Minor Losses Minor (or fitting, or local ) hydraulic losses along pipes can often be estimated as a function of the velocity head of the water within
= water horsepower WHP brake horsepower QH WHP = (222) ( 33,000 ft-lbs/min-hp)( 7.481 gal/ft ) 1 HP=0.746 kw
Lecture 11 Pumps & System Curves I. Pump Efficiency and Power Pump efficiency, E pump E pump = water horsepower WHP brake horsepower = BHP (221) where brake horsepower refers to the input power needed
Severe Service Equipment
Severe Service Equipment Introduction Pressure/Velocity Profiles in Globe Valves As a fluid travels through a conventional single-seated globe-style control valve, a vena contracta (point of narrowest
Open Cycle Refrigeration System
Chapter 9 Open Cycle Refrigeration System Copy Right By: Thomas T.S. Wan 温 到 祥 著 Sept. 3, 2008 All rights reserved An open cycle refrigeration system is that the system is without a traditional evaporator.
Fisher. Cavitation-Control Technologies Solutions to Cavitation Problems
Fisher Cavitation-Control Technologies Solutions to Cavitation Problems 2 Fisher Cavitation-Control Technologies Control Valve Cavitation Cavitation is a concern for plant operators and maintenance personnel
www.klmtechgroup.com TABLE OF CONTENT
Page : 1 of 31 Project Engineering Standard www.klmtechgroup.com KLM Technology #03-12 Block Aronia, Jalan Sri Perkasa 2 Taman Tampoi Utama 81200 Johor Bahru Malaysia TABLE OF CONTENT SCOPE 2 REFERENCES
Steam System Efficiency. Bill Lumsden Leidos Engineering
Steam System Efficiency Bill Lumsden Leidos Engineering Steam System Efficiency Steam System Efficiency Key Take-aways: Review of the properties of ice, water, and steam Learn the basics of steam trap
Specific Volume of Liquid (Column 7). The volume per unit of mass in cubic feet per pound.
Steam Tables What They Are How to Use Them The heat quantities and temperature/ pressure relationships referred to in this Handbook are taken from the Properties of Saturated Steam table. Definitions of
1805 Series Relief Valves
October 2011 1805 Series Relief Valves P1026 1805G Type 1805-2 Type 1805-4 Figure 1. Typical 1805 Relief Valves Introduction The 1805 Series relief valves are designed for use in farm tap applications
A basic introduction to steam
A basic introduction to steam FOR HOT, COLD, MOIST AND DRY, FOUR CHAMPIONS FIERCE. STRIVE HERE FOR MASTERY Milton 1666 Steam Wonderful Steam Very high heat content Recyclable Clean, non toxic Biodegradable
CCI 100 DPC DRAG Wellhead Production Choke Valve
CCI 100 DPC DRAG Wellhead Production Choke Valve 2 Severe service DRAG choke valve delivers precise wellhead pressure control with superior reliability and life. Improves well production time Enhances
Mechanical Seal Piping Plans
Mechanical Seal Piping Plans Single Seals plans 01, 02, 03, 11, 13, 14, 21, 23, 31, 32, 41 Dual Seals plans 52, 53A, 53B, 53C, 54, 55 Quench Seals plans 62, 65A, 65B, 66A, 66B Gas Seals plans 72, 74, 75,
Aeration Air & Digester Gas Flow Metering Using Thermal Mass Technology. HWEA 2011 Conference Craig S. Johnson
Aeration Air & Digester Gas Flow Metering Using Thermal Mass Technology HWEA 2011 Conference Craig S. Johnson Presentation Overview Introduction Aeration Air & Digester gas challenges Gas flow metering
CENTRIFUGAL PUMP OVERVIEW Presented by Matt Prosoli Of Pumps Plus Inc.
CENTRIFUGAL PUMP OVERVIEW Presented by Matt Prosoli Of Pumps Plus Inc. 1 Centrifugal Pump- Definition Centrifugal Pump can be defined as a mechanical device used to transfer liquid of various types. As
In-Line Air Separators
Air Elimination & Control In-Line Air Separators The AC models of air separators deliver all the quality and performance you expect from Taco products. They are built to last with shell, heads and ANSI
CENTRIFUGAL PUMP SELECTION, SIZING, AND INTERPRETATION OF PERFORMANCE CURVES
CENTRIFUGAL PUMP SELECTION, SIZING, AND INTERPRETATION OF PERFORMANCE CURVES 4.0 PUMP CLASSES Pumps may be classified in two general types, dynamic and positive displacement. Positive displacement pumps
Equipment for Engineering Education
Equipment for Engineering Education Instruction Manual Venturi Flume G.U.N.T. Gerätebau GmbH Fahrenberg 4 D-885 Barsbüttel Germany Phone: ++49 (40) 670854.0 Fax: ++49 (40) 670854.4 E-mail: [email protected]
1301 Series High-Pressure Regulators
1301 Series High-Pressure Regulators Bulletin 71.1:1301 December 2013 P10 Figure 1. Type 1301F Regulator Features Durable Stainless Steel Diaphragm For high-outlet pressure applications. Spare Valve Disk
289 Series Spring-Loaded Relief Valves
October 14 89 Series Spring-Loaded Relief Valves W187_1 W1871 TYPE 89L 1 NPT TYPES 89H AND 89HH W187 NPT TYPE 89H W187_ TYPES 89U AND 89A Figure 1. Types 89H, 89L and 89U Relief Valves Introduction The
How To Stop A Gas Leak
Natural Gas / Propane Emergencies Probationary Firefighter Academy Properties of Natural Gas / Propane Natural Gas and Propane are gaseous fossil fuels Natural Gas is primarily Methane(CH 4 ) Propane is
Float and Thermostatic Traps Series H, C and X
Hoffman Specialty Installation & Maintenance Instructions HS-(E) and Thermostatic Traps Series H, C and X Series C & NPT Series C NPT Series X NPT Series C NPT Series H Ratings Maximum Max. Operating NPT
Air Eliminators and Combination Air Eliminators Strainers
Description Air Eliminators and Combination Air Eliminator Strainers are designed to provide separation, elimination and prevention of air in piping systems for a variety of installations and conditions.
Open Channel Diffusers
Open Channel Diffusers Application Information: Open channel diffusers are used to increase mixing and absorbance efficiency of a chemical solution into the process water. Specifically designed penetrations
Principles of Direct-Operated Regulators
Principles of Direct-Operated Regulators Introduction Pressure regulators have become very familiar items over the years, and nearly everyone has grown accustomed to seeing them in factories, public buildings,
Valve Sizing. Te chnic al Bulletin. Flow Calculation Principles. Scope. Sizing Valves. Safe Product Selection. www.swagelok.com
www.swagelok.com Valve Sizing Te chnic al Bulletin Scope Valve size often is described by the nominal size of the end connections, but a more important measure is the flow that the valve can provide. And
GS-General Service Control Valves
GS-General Service Control Valves GS-General Service Valves The GS-General Service Valves continue Copes-Vulcan s tradition of designing and manufacturing control valves that provide both exceptional service
FILLING AND PURGING THE SYSTEM
FILLING INSTRUCTIONS FOR WATER HEATER OR CONDENSING BOILER (City Water) Safety tip: Before beginning, turn off power to boiler and circulator. FILLING AND PURGING Step 1: Close Return Manifold Isolation
Pump Selection and Sizing (ENGINEERING DESIGN GUIDELINE)
Guidelines for Processing Plant Page : 1 of 51 Rev 01 Feb 2007 Rev 02 Feb 2009 Rev 03 KLM Technology #03-12 Block Aronia, Jalan Sri Perkasa 2 Taman Tampoi Utama 81200 Johor Bahru. (ENGINEERING DESIGN GUIDELINE)
Evaluation Of Hybrid Air- Cooled Flash/Binary Power Cycle
INL/CON-05-00740 PREPRINT Evaluation Of Hybrid Air- Cooled Flash/Binary Power Cycle Geothermal Resources Council Annual Meeting Greg Mines October 2005 This is a preprint of a paper intended for publication
HYDRAULIC ANALYSIS OF PIPE LINED WITH MADISON S 100% SOLIDS STRUCTURAL POLYURETHANE COATINGS
HYDRAULIC ANALYSIS OF PIPE LINED WITH MADISON S 100% SOLIDS STRUCTURAL POLYURETHANE COATINGS Shiwei William Guan, Ph.D. Vice President, R&D and International Business Madison Chemical Industries Inc. 490
CONTAMINANT REMOVAL FROM CENTRIFUGAL SYSTEMS
CONTAMINANT REMOVAL FROM CENTRIFUGAL SYSTEMS BULLETIN 240-10-3 June 2004 Supersedes June 1983 Many centrifugal systems get little maintenance. As a result they operate with the refrigerant highly contaminated
Grant Agreement No. 228296 SFERA. Solar Facilities for the European Research Area SEVENTH FRAMEWORK PROGRAMME. Capacities Specific Programme
Grant Agreement No. 228296 SFERA Solar Facilities for the European Research Area SEVENTH FRAMEWORK PROGRAMME Capacities Specific Programme Research Infrastructures Integrating Activity - Combination of
PAGE 2. Figure 1: Difference between PWL ins and SPL 1m
PAGE 1 Pipe noise J.H. Granneman and R.P.M. Jansen, Peutz Consulting Engineers, The Netherlands, emphasise the need for an adequate pipe noise control procedure, with reference to the design phase, insulation
Bearing Failure: Causes and Cures
Bearing Failure: Causes and Cures bearing.ppt Page 1 Excessive loads usually cause premature fatigue. Tight fits, brinelling and improper preloading can also bring about early fatigue failure. The solution
Equivalents & Conversion Factors 406 Capacity Formulas for Steam Loads 407 Formulas for Control Valve Sizing 408-409
Engineering Data Table of Contents Page No. I II Formulas, Conversions & Guidelines Equivalents & Conversion Factors 406 Capacity Formulas for Steam Loads 407 Formulas for Control Sizing 408-409 Steam
APPENDIX A CONTROL VALVE TESTING PROCEDURES AND EQUATIONS FOR LIQUID FLOWS
APPENDIX A CONTROL VALVE TESTING PROCEDURES AND EQUATIONS FOR LIQUID FLOWS Section A.1. Flow Coefficients Definition The flow coefficient or pressure loss coefficient is used to relate the pressure loss
Cartridge Filter Application Notes
Industrial Water Purification (800) CAL-WATER Cal Water 1961 Petra Lane Placentia, CA 92870 FAX: (714) 792-0794 Web Page / Email: www.cal-water.com Cartridge Filter Application Notes Cal Water offers a
Chapter 10. Flow Rate. Flow Rate. Flow Measurements. The velocity of the flow is described at any
Chapter 10 Flow Measurements Material from Theory and Design for Mechanical Measurements; Figliola, Third Edition Flow Rate Flow rate can be expressed in terms of volume flow rate (volume/time) or mass
2003 WJTA American Waterjet Conference August 17-19, 2003 Houston, Texas Paper WATERJET NOZZLE MATERIAL TYPES
2003 WJTA American Waterjet Conference August 17-19, 2003 Houston, Texas Paper WATERJET NOZZLE MATERIAL TYPES D. Wright, J. Wolgamott, G. Zink StoneAge, Inc. Durango, Colorado, U.S.A. ABSTRACT There are
Using meters to measure steam flow
Page 1 of 6 April 1998 Plant Engineering SELECTING NEW TECHNOLOGY: PROBLEM SOLVING Using meters to measure steam flow Jesse L. Yoder, Ph.D., Senior Analyst, Automation Research Corp., Dedham, MA Key Concepts
WELL COMMANDER Versatile multi-cycle ball-activated drilling valve for mitigating downhole hazards
WELL COMMANDER Versatile multi-cycle ball-activated drilling valve for mitigating downhole hazards Note: Operating instructions updated July 2014 WELL COMMANDER: Versatile multicycle ball-activated drilling
FLUID FLOW Introduction General Description
FLUID FLOW Introduction Fluid flow is an important part of many processes, including transporting materials from one point to another, mixing of materials, and chemical reactions. In this experiment, you
CHAPTER II. This chapter contains a simplified description of the pipeline safety requirements. The complete text can be found in 49 CFR Part 192.
CHAPTER II REGULATOR AND RELIEF DEVICES This chapter contains a simplified description of the pipeline safety requirements. The complete text can be found in 49 CFR Part 192. BASIC CONCEPT In understanding
AKRON EDUCTORS TROUBLESHOOTING GUIDE OPERATION & THEORY OF EDUCTORS GENERAL OPERATING AND MAINTENANCE INSTRUCTIONS
AKRON EDUCTORS TROUBLESHOOTING GUIDE OPERATION & THEORY OF EDUCTORS GENERAL OPERATING AND MAINTENANCE INSTRUCTIONS Products Include: 60 gpm eductors Style 3060, 3061, 3062 & 3070 95 gpm eductors Style
2005 WJTA American Waterjet Conference August 21-23, 2005 Houston, Texas Paper SAFE WATERJET CLEANING OF STEEL PROCESS LINES
25 WJTA American Waterjet Conference August 21-23, 25 Houston, Texas Paper SAFE WATERJET CLEANING OF STEEL PROCESS LINES D. Wright, J. Wolgamott, G. Zink StoneAge, Inc. Durango, Colorado, U.S.A. ABSTRACT
Oil and Coolant Circulating Heating System. Model - OCSM
Oil and Coolant Circulating Heating System Model - OCSM Installation & Operation Manual 216280-000 REV 2 Identifying Your System The HOTSTART heating system is designed to heat fluids for use in marine
BASIC UNDERSTANDING OF FLOW CALCULATIONS AND ESTIMATES MAKES SIZING VALVES SIMPLER
BASIC UNDERSTANDING OF FLOW CALCULATIONS AND ESTIMATES MAKES SIZING VALVES SIMPLER Valve size often is described by the nominal size of the end connections but a more important measure is the flow that
SELECTION, APPLICATION AND MAINTENANCE
DIESEL PROTECTION SYSTEMS D-Series Engine Automatic Overspeed Shut Down Valves (Spindle Types with Air Pressure and Manual Shut Down Options) SELECTION, APPLICATION AND MAINTENANCE Valve Numbers D92-AP
Vacuum Control. Vacuum Applications. Vacuum Regulators. Vacuum Breakers (Relief Valves) Vacuum Control Devices. Vacuum Terminology
Vacuum Applications Vacuum regulators and breakers are widely used in process plants. Conventional regulators and relief valves might be suitable for service if applied correctly. This section provides
Laminar and Turbulent flow. Flow Sensors. Reynolds Number. Thermal flow Sensor. Flow and Flow rate. R = Mass Flow controllers
Flow and Flow rate. Laminar and Turbulent flow Laminar flow: smooth, orderly and regular Mechanical sensors have inertia, which can integrate out small variations due to turbulence Turbulent flow: chaotic
FIXED DISPLACEMENT HYDRAULIC VANE PUMPS BQ SERIES
BQ FIXED DISPLACEMENT HYDRAULIC VANE PUMPS BQ SERIES Versatility, power, compactness and low running costs are the main characteristics of B&C vane pumps. All the components subject to wear are contained
FIXED DISPLACEMENT HYDRAULIC VANE PUMPS BQ SERIES
BQ FIXED DISPLACEMENT HYDRAULIC VANE PUMPS BQ SERIES Versatility, power, compactness and low running costs are the main characteristics of B&C vane pumps. All the components subject to wear are contained
Commercial & Industrial Propane Regulators and Meters
Commercial & Industrial Propane Regulators and Meters Master Distributor for First Stage Regulators P32* Field adjustable 60 Mesh screen on inlet 1/4 FNPT 250 PSI Excellent stability P37* Patented balance
OPERATIONS & MAINTENANCE (O&M) FOR PROPANE STORAGE FACILITIES
OPERATIONS & MAINTENANCE (O&M) FOR PROPANE STORAGE FACILITIES Reference: National Fire Protection Association (NFPA) Pamphlet No. 58 Liquefied Petroleum Gas Code, 2001, Chapter 11 Type of Facility: Petroleum
Hot Water Boilers and Controls Why Condensing Boilers are Different. Presented Oct. 14, 2008 Long Island Chapter, ASHRAE
Hot Water Boilers and Controls Why Condensing Boilers are Different Presented Oct. 14, 2008 Long Island Chapter, ASHRAE H.W. Boilers and Controls Major types of boilers Advantages and disadvantages Resistance
OUR PRODUCTS TRH-TRS-TRM-TRV. LIQUID RING VACUUM PUMPS AND COMPRESSORS Capacity up to 2100 ACFM Vacuum to 29 Hg. Our Other Products.
Our Other Products OUR PRODUCTS Liquid Ring & Rotary Vane Vacuum Pumps and Systems Liquid Ring Vacuum Pumps: 3 CFM to,000 CFM Liquid Ring Compressors up to 1 psig Heat Transfer Pumps for hot thermal oils
Air Flow Optimization via a Venturi Type Air Restrictor
, July 3-5, 013, London, U.K. Air Flow Optimization via a Venturi Type Air Restrictor Anshul Singhal, Mallika Parveen, Member, IAENG Abstract The aim of this project is to create a flow restriction device
Mustang Series PRESSURE REDUCING CONTROL VALVE WITH PRESSURE SUSTAINING FEATURE. M115-2 (Globe) M1115-2 (Angle) Schematic. Standard Components
Schematic Throttles to reduce high upstream pressure to constant lower downstream pressure Throttles to maintain minimum upstream pressure PRESSURE REDUCING CONTROL VALVE WITH PRESSURE SUSTAINING FEATURE
2013 WJTA-IMCA Conference and Expo September 9-11, 2013 Houston, Texas Paper REFRACTORY REMOVAL BY HIGH PRESSURE WATERJET
2013 WJTA-IMCA Conference and Expo September 9-11, 2013 Houston, Texas Paper REFRACTORY REMOVAL BY HIGH PRESSURE WATERJET D. Wright StoneAge, Inc. Durango, Colorado, U.S.A. ABSTRACT The removal of refractory
DIRECT STEAM INJECTION HOT WATER SYSTEMS FOR JACKETED HEATING
By Philip Sutter Pick Heaters, Inc. DIRECT STEAM INJECTION HOT WATER SYSTEMS FOR JACKETED HEATING INTRODUCTION Many process plants currently use steam or hot water to heat jacketed devices such as tanks,
INTERNATIONAL FIRE TRAINING CENTRE FIREFIGHTER INITIAL PUMPS AND PRIMERS. Throughout this note he means he/she and his means his/hers.
INTERNATIONAL FIRE TRAINING CENTRE FIREFIGHTER INITIAL PUMPS AND PRIMERS Throughout this note he means he/she and his means his/hers. Areas of bold type are considered to be of prime importance. INTRODUCTION
Pumps 101: Operation, Maintenance and Monitoring Basics
White Paper Pumps 101: Operation, Maintenance and Monitoring Basics Daniel Kernan Manager Monitoring and Control Group, ITT Executive Summary Pumps are at the heart of most industrial processes, and the
REGULATING VALVE APPLICATIONS
REGULATING APPLICATIONS GENERAL REGULAR APPLICATION & INSTALLATION NOTES Regulator Application & Installation Notes The following are considerations for all steam regulator installations, as system operation
FIXED DISPLACEMENT HYDRAULIC VANE PUMPS BQ SERIES
BQ FIXED DISPLACEMENT HYDRAULIC VANE PUMPS BQ SERIES Versatility, power, compactness and low running costs are the main characteristics of B&C vane pumps. All the components subject to wear are contained
Assembly and Installation Procedures
Assembly and Installation Procedures for Pall Pharmaceutical Grade Capsule Assemblies 1. Introduction The following procedures must be followed for the installation of Pall pharmaceutical grade capsule
STEAM HEATING SYSTEM TROUBLESHOOTING GUIDE
Page 1 of 9 PURPOSE Steam is the most commonly used heating medium for maintaining process temperatures. Compared to other heating media, steam contains a significant amount of heat energy, and this heat
CO 2 41.2 MPa (abs) 20 C
comp_02 A CO 2 cartridge is used to propel a small rocket cart. Compressed CO 2, stored at a pressure of 41.2 MPa (abs) and a temperature of 20 C, is expanded through a smoothly contoured converging nozzle
PRESSURE REDUCING CONTROL VALVE
Schematics Throttles to reduce high upstream pressure to constant lower downstream pressure Low Flow By-Pass controls at low flows 4 PRESSURE REDUCING CONTROL VALVE with LOW FLOW BY-PASS FEATURE Main Line
SERIES ASM NEOPRENE/EPMD FLANGED SINGLE SPHERE CONNECTOR CONNECTORS. Pressures to 225 PSIG (15.51 barg) Temperatures to 230ºF (110ºC)
APPLICATIONS Process Industry Weak Acids Alkalies Compressed Air Pulp & Paper MODELS ASM - Flanged Connection OPTIONS Control Rods Oil & Gas Water & Waste Pump suction & discharge Sea water Chemical lines
SAMPLE CHAPTERS UNESCO EOLSS
STEAM TURBINE OPERATIONAL ASPECTS R.A. Chaplin Department of Chemical Engineering, University of New Brunswick, Canada Keywords: Steam Turbines, Operation, Supersaturation, Moisture, Back Pressure, Governing
OIL & GAS PRODUCTION AUDITING
OIL & GAS PRODUCTION AUDITING Wayne C. Dussel Offshore Measurement Supervisor El Paso Production GOM Basic Measurement Audit Steps I. Select location (s) to be reviewed. II. Review contracts, commingling
Ergo-Pro Single Line Solar Station Installation and Operating Instructions
Rp 3/4 Ergo-Pro Single Line Solar Station Installation and Operating Instructions Item No Pump type 677.21.70 WILO ST 15/6 13 2 4 11 Technical Specifications Max. operating pressure: 6 bar Max. operating
HS-901(A) BASIC STEAM HEATING SYSTEMS
HS-901(A) BASIC HEATING SYSTEMS One-Pipe Two-Pipe Basic Steam Heating Systems One-pipe steam heating system EQUALIZER SAFETY FACTOR STATIC HEAD PRESSURE DROP 2" HEATING UNIT 15" DRIP CONNECTION In a one-pipe,
Pump Maintenance - Repair
Pump Maintenance - Repair Brian Trombly Mo Droppers Cummins Bridgeway, Gaylord, Mi The basic centrifugal pump consists of two main elements: 1. The rotating element which includes an impeller and a shaft.
PUMPS TYPE OF PUMP PRESSURE/FLOW RATING CHARACTERISTICS. Centrifugal Low Pressure/High Flow Flow changes when
PUMPS Pumps provide the means for moving water through the system at usable working pressures. The operation and maintenance of these pumps are some of the most important duties for many water utility
Installation, Maintenance, & Repair Series 4000B/LF4000B
Installation, Maintenance, & Repair Series 4000B/LF4000B Reduced Pressure Zone Assemblies Sizes: 1 2" 2" (15 50mm) RP/IS-A-4000B 4000B/LF4000B Size: 3 /4"! WARNING Testing Read this Manual BEFORE using
V-Cone, An Alternative to Orifice Meter in Wet Gas Applications
V-Cone, An Alternative to Orifice Meter in Wet Gas Applications Stephen A. Ifft McCrometer Inc. Hemet, California, USA Abstract This paper will discuss the use of the V-Cone differential pressure flowmeter
Energy Systems Engineering Technology
College of Technology Instrumentation and Control Module # 4 Flow Measurement Document Intent: The intent of this document is to provide an example of how a subject matter expert might teach Flow Measurement.
SELECTION, APPLICATION & MAINTENANCE
DIESEL PROTECTION SYSTEMS TPZ Engine Air Intake Shut Down Valves (Combined Automatic Overspeed and Air Pressure Operated Shut Down Bendix Types) SELECTION, APPLICATION & MAINTENANCE Valve Numbers TPZ-101
Flushing and Cleaning the A/C System
Flushing and Cleaning the A/C System Once an AC system has been contaminated or has suffered a failure, the most important part of the AC service to restore the cooling performance to the system = FLUSHING
Heating Water by Direct Steam Injection
Heating Water by Direct Steam Injection Producing hot water by direct steam injection provides a solution where large volumes of hot water at precise temperatures are required, and where energy and space
VACUUM REFRIGERATION SYSTEMS
VACUUM REFRIGERATION SYSTEMS CHILL VACTOR The Croll-Reynolds CHILL-VACTOR is a chiller that uses a vapor flashing process. Water has a pressure-temperature relationship which is its boiling point. If its
CHEMICAL CLEANING UNIT Product number: 737189
CHEMICAL CLEANING UNIT Product number: 737189-1 - v.05/16 Content Page Intro 3 Specifications 4 Installation 5 Safety precautions 7 Maintenance 8 Spares and Accessories 8 Unitor Chemicals 9 Notes 10-2
Overview. Introduction Cooling Tower Basics Principles of Operation Types of Cooling Towers Common Applications Design Considerations
Stephen Lowe ASHRAE Hampton Roads Chapter Past President AECOM Design Mechanical Engineering Discipline Manager, Virginia Beach Division Professional Engineer Commonwealth of Virginia, NCEES BSME University
HOW TO SIZE A PRESSURE REGULATOR
CHOOSING THE CORRECT REGULATOR HOW TO SIZE A PRESSURE REGULATOR In order to choose the correct regulator the following information is needed: - Function: Pressure reducing or backpressure control? - Pressure:
Hydraulic control unit series 0086-372-01
Technical Product Information No. 1290 EN Hydraulic control unit series 0086-372-01 Contents Page About this Technical Product Information (TPI) 2 The ORTLINGHAUS numbering system 2 About the product 3
Installation and Operating Instructions Installation Instructions for SS EPE-316L Series
INSTR3010 0406 Installation and Operating Instructions Installation Instructions for SS EPE-316L Series Congratulations on your purchase of this Aqua-Pure high flow, single housing filtration system. This
BPW32 DN15, DN20 and DN25 Balanced Pressure Wafer Steam Trap
1263050/6 IM-P126-07 ST Issue 6 BPW32 DN15, DN20 and DN25 Balanced Pressure Wafer Steam Trap Installation and Maintenance Instructions 1. Safety information 2. General product information 3. Installation
Pumping Fuel & Fuel Oil
Pumping Fuel & Fuel Oil Fuels & Rotary Pumps Though the handling of fuel oil is not necessarily "challenging," the reliable handling of fuel oils is critical for heating and transportation systems. Rotary
Your safety and the safety of others are very important.
NATURAL GAS TO PROPANE CONVERSION KIT 090 INSTALLATION INSTRUCTIONS FOR ALTITUDES 0 -,00 FT. ONLY PROPANE CONVERSION KIT SAFETY... INSTALLATION REQUIREMENTS... Tools and Parts... LP Gas Requirements...
Steam System Best Practices Condensate System Piping
Steam System Best Practices Condensate System Piping Summary The best method for improving steam system energy efficiency, reducing chemical costs, and reducing make-up water costs is to return the maximum
It will be available soon as an 8.5 X 11 paperback. For easier navigation through the e book, use the table of contents.
The System Evaluation Manual and Chiller Evaluation Manual have been revised and combined into this new book; the Air Conditioning and Refrigeration System Evaluation Guide. It will be available soon as
