Clarify Outline. Installation
|
|
|
- Amberly Harrison
- 9 years ago
- Views:
Transcription
1 Clarfy Outlne Installaton The Basc Idea of Smulaton (and why t makes sense for substante nterpretaton) Components of Clarfy estsmp setx smq A Real Le Example Logt odel Contnuous IVs Bnary IVs Concludng Ponts odels Supported How to Clarfy other odels Installaton Type: net from
2 Installaton Type: net nstall clarfy Installaton clarfy wll ether nstall or tell you t s already nstalled.
3 The Basc Idea of Smulaton So you estmate a model and you want to say somethng substante wth quanttes of nterest: Predcted or Expected Values of DV = Frst Dfferences = X X + σ µ X µ The problem s that our s are uncertan! The soluton s we know how uncertan. ( σ) The Basc Idea of Smulaton: Parameters In order to capture the uncertanty we draw smulated s from the multarate* normal dstrbuton. Standard Deaton = σ Then we use these smulated parameters to calculate many draws of the same quantty of nterest. 3
4 4 = γ ( ) = γ V L L L we smulate parameters wth draws from the multarate normal dstrbuton ( ) V N γ γ L. Choose a startng scenaro X c.. Draw one alue of and compute. 3. Smulate the outcome by takng a random draw from. 4. Repeat tmes to get the dstrbuton of. γ ( ) θ c X c g = c Y ( ) θ c f Y c ( ) ( ) θ θ X g f Y = ( ) ( ) L = = 0 µ σ µ X X X g N Y The Basc Idea of Smulaton: Quanttes of Interest In practce Components of Clarfy estsmp estmates the model and smulates the parameters Ths command must precede your regresson command e.g.: estsmp logt y x x x3 x4 Ths wll sae smulated s to your dataset! setx sets the alues for the IVs (the Xs) Used after model estmaton to set alues of the Xs e.g.: setx x mean x p0 x3.4 x4[6] nocwdel functons = mean medan mn max p# math # macro arname[#] reset alues by re-ssung the command e.g.: setx x medan smq smulates the quanttes of nterest Automates the smulaton of quanttes of nterest for the X alues you just set. e.g.: smq pral() e.g.: smq fd(pral()) changex(x4 p5 p75) There are lots of optons: Explore on your own!
5 Onto the achnes. clear the current data. Increase memory Type: set mem 50m 3. Re-open the NES data set Type: use "I:\general\Spost&Clarfy\NES 99.dta " We ll do a Smple Logt Type: estsmp logt ote pd deology gulfwarworth educaton sms(500) genname(smb) Note that Clarfy has added 5 new arables to our data set. 5
6 . Summarze the new arables to see that they make sense.. Then set all Xs to ther means so we can start.. Type: sum smb-smb5. Type: setx mean Tables of Frst Dfferences Type: smq pral() Type: setx pd -3 Type: smq pral() Type: setx pd - Type: smq pral() Or Type: fd(pral()) changex(pd 3 )) 6
7 Probablty of Bush Vote as PID Vares Party ID P(Bush) % CI (.05.09) (.056.4) (..3) ( ) ( ) ( ) (.63.88) And snce we know P(Bush) s.73(..339) when eery arable s held at ts mean we can calculate percentage changes ourseles to ncrease substante nterpretablty. But a pcture s worth a thousand words so t would be nce to use Clarfy to generate pctures lke ths: From Kng et al. AJPS 000 Adanced Graphng wth Clarfy 7
8 P(Bush) Vote Educaton phwar/plowar phnowar/plonowar mdwar mdnowar erson 8.0 set more off # delmt; gen plowar=.; gen phwar=.; gen eduaxs = _n + 5 n /; setx gulfwarworth deology mean pd mean; local = 6; whle `' <= 7 {; setx educaton `'; smq pral() genpr(p); _pctle p p(.597.5); replace plowar = r(r) feduaxs==`'; replace phwar = r(r) feduaxs==`'; drop p; local = `'+; }; gen plonowar=.; gen phnowar=.; setx gulfwarworth 0 deology mean pd mean; local = 6; whle `' <= 7 {; setx educaton `'; smq pral() genpr(p); _pctle p p(.597.5); replace plonowar = r(r) feduaxs==`'; replace phnowar = r(r) feduaxs==`'; drop p; local = `'+; }; gen eduaxs = eduaxs -.; sort eduaxs; gen mdwar = (plowar+phwar)/; gen mdnowar = (plonowar+phnowar)/; graph twoway rspke phwar plowar eduaxs lne mdwar eduaxs rspke phnowar plonowar eduaxs lne mdnowar eduaxs yttle(p(bush) Vote) xttle(educaton); 8
9 Concluson odels Currently Supported by Clarfy regress logt probt ologt oprobt mlogt posson nbreg sureg webull But you really don t need Clarfy to do ths so you can smulate quanttes of nterest for any model! Easy to smulate parameters because Stata saes them after estmaton! Program the correct lnk functon yourself! 9
What is Candidate Sampling
What s Canddate Samplng Say we have a multclass or mult label problem where each tranng example ( x, T ) conssts of a context x a small (mult)set of target classes T out of a large unverse L of possble
THE METHOD OF LEAST SQUARES THE METHOD OF LEAST SQUARES
The goal: to measure (determne) an unknown quantty x (the value of a RV X) Realsaton: n results: y 1, y 2,..., y j,..., y n, (the measured values of Y 1, Y 2,..., Y j,..., Y n ) every result s encumbered
Hedging Interest-Rate Risk with Duration
FIXED-INCOME SECURITIES Chapter 5 Hedgng Interest-Rate Rsk wth Duraton Outlne Prcng and Hedgng Prcng certan cash-flows Interest rate rsk Hedgng prncples Duraton-Based Hedgng Technques Defnton of duraton
Chapter 15: Debt and Taxes
Chapter 15: Debt and Taxes-1 Chapter 15: Debt and Taxes I. Basc Ideas 1. Corporate Taxes => nterest expense s tax deductble => as debt ncreases, corporate taxes fall => ncentve to fund the frm wth debt
Portfolio Loss Distribution
Portfolo Loss Dstrbuton Rsky assets n loan ortfolo hghly llqud assets hold-to-maturty n the bank s balance sheet Outstandngs The orton of the bank asset that has already been extended to borrowers. Commtment
Causal, Explanatory Forecasting. Analysis. Regression Analysis. Simple Linear Regression. Which is Independent? Forecasting
Causal, Explanatory Forecastng Assumes cause-and-effect relatonshp between system nputs and ts output Forecastng wth Regresson Analyss Rchard S. Barr Inputs System Cause + Effect Relatonshp The job of
PSYCHOLOGICAL RESEARCH (PYC 304-C) Lecture 12
14 The Ch-squared dstrbuton PSYCHOLOGICAL RESEARCH (PYC 304-C) Lecture 1 If a normal varable X, havng mean µ and varance σ, s standardsed, the new varable Z has a mean 0 and varance 1. When ths standardsed
Binomial Link Functions. Lori Murray, Phil Munz
Bnomal Lnk Functons Lor Murray, Phl Munz Bnomal Lnk Functons Logt Lnk functon: ( p) p ln 1 p Probt Lnk functon: ( p) 1 ( p) Complentary Log Log functon: ( p) ln( ln(1 p)) Motvatng Example A researcher
Peak Inverse Voltage
9/13/2005 Peak Inerse Voltage.doc 1/6 Peak Inerse Voltage Q: I m so confused! The brdge rectfer and the fullwae rectfer both prode full-wae rectfcaton. Yet, the brdge rectfer use 4 juncton dodes, whereas
NPAR TESTS. One-Sample Chi-Square Test. Cell Specification. Observed Frequencies 1O i 6. Expected Frequencies 1EXP i 6
PAR TESTS If a WEIGHT varable s specfed, t s used to replcate a case as many tmes as ndcated by the weght value rounded to the nearest nteger. If the workspace requrements are exceeded and samplng has
Forecasting the Direction and Strength of Stock Market Movement
Forecastng the Drecton and Strength of Stock Market Movement Jngwe Chen Mng Chen Nan Ye [email protected] [email protected] [email protected] Abstract - Stock market s one of the most complcated systems
Internet topology dynamics in ten minutes
Internet topology dynamcs n ten mnutes Sergey Krgzov under the supervson of Clémence Magnen Complex Networks LIP6 (UPMC CNRS) 4 March 2014 Outlne 1 What do we observe? 2 Why t s so mportant? 3 How do we
How To Evaluate A Dia Fund Suffcency
DI Fund Suffcency Evaluaton Methodologcal Recommendatons and DIA Russa Practce Andre G. Melnkov Deputy General Drector DIA Russa THE DEPOSIT INSURANCE CONFERENCE IN THE MENA REGION AMMAN-JORDAN, 18 20
7.5. Present Value of an Annuity. Investigate
7.5 Present Value of an Annuty Owen and Anna are approachng retrement and are puttng ther fnances n order. They have worked hard and nvested ther earnngs so that they now have a large amount of money on
Lecture 14: Implementing CAPM
Lecture 14: Implementng CAPM Queston: So, how do I apply the CAPM? Current readng: Brealey and Myers, Chapter 9 Reader, Chapter 15 M. Spegel and R. Stanton, 2000 1 Key Results So Far All nvestors should
Lecture 3: Force of Interest, Real Interest Rate, Annuity
Lecture 3: Force of Interest, Real Interest Rate, Annuty Goals: Study contnuous compoundng and force of nterest Dscuss real nterest rate Learn annuty-mmedate, and ts present value Study annuty-due, and
Section 5.4 Annuities, Present Value, and Amortization
Secton 5.4 Annutes, Present Value, and Amortzaton Present Value In Secton 5.2, we saw that the present value of A dollars at nterest rate per perod for n perods s the amount that must be deposted today
An Alternative Way to Measure Private Equity Performance
An Alternatve Way to Measure Prvate Equty Performance Peter Todd Parlux Investment Technology LLC Summary Internal Rate of Return (IRR) s probably the most common way to measure the performance of prvate
The OC Curve of Attribute Acceptance Plans
The OC Curve of Attrbute Acceptance Plans The Operatng Characterstc (OC) curve descrbes the probablty of acceptng a lot as a functon of the lot s qualty. Fgure 1 shows a typcal OC Curve. 10 8 6 4 1 3 4
In our example i = r/12 =.0825/12 At the end of the first month after your payment is received your amount in the account, the balance, is
Payout annutes: Start wth P dollars, e.g., P = 100, 000. Over a 30 year perod you receve equal payments of A dollars at the end of each month. The amount of money left n the account, the balance, earns
Lecture 2: Single Layer Perceptrons Kevin Swingler
Lecture 2: Sngle Layer Perceptrons Kevn Sngler [email protected] Recap: McCulloch-Ptts Neuron Ths vastly smplfed model of real neurons s also knon as a Threshold Logc Unt: W 2 A Y 3 n W n. A set of synapses
An Interest-Oriented Network Evolution Mechanism for Online Communities
An Interest-Orented Network Evoluton Mechansm for Onlne Communtes Cahong Sun and Xaopng Yang School of Informaton, Renmn Unversty of Chna, Bejng 100872, P.R. Chna {chsun,yang}@ruc.edu.cn Abstract. Onlne
Regression Models for a Binary Response Using EXCEL and JMP
SEMATECH 997 Statstcal Methods Symposum Austn Regresson Models for a Bnary Response Usng EXCEL and JMP Davd C. Trndade, Ph.D. STAT-TECH Consultng and Tranng n Appled Statstcs San Jose, CA Topcs Practcal
INVESTIGATION OF VEHICULAR USERS FAIRNESS IN CDMA-HDR NETWORKS
21 22 September 2007, BULGARIA 119 Proceedngs of the Internatonal Conference on Informaton Technologes (InfoTech-2007) 21 st 22 nd September 2007, Bulgara vol. 2 INVESTIGATION OF VEHICULAR USERS FAIRNESS
1. Measuring association using correlation and regression
How to measure assocaton I: Correlaton. 1. Measurng assocaton usng correlaton and regresson We often would lke to know how one varable, such as a mother's weght, s related to another varable, such as a
Analysis of Premium Liabilities for Australian Lines of Business
Summary of Analyss of Premum Labltes for Australan Lnes of Busness Emly Tao Honours Research Paper, The Unversty of Melbourne Emly Tao Acknowledgements I am grateful to the Australan Prudental Regulaton
Luby s Alg. for Maximal Independent Sets using Pairwise Independence
Lecture Notes for Randomzed Algorthms Luby s Alg. for Maxmal Independent Sets usng Parwse Independence Last Updated by Erc Vgoda on February, 006 8. Maxmal Independent Sets For a graph G = (V, E), an ndependent
benefit is 2, paid if the policyholder dies within the year, and probability of death within the year is ).
REVIEW OF RISK MANAGEMENT CONCEPTS LOSS DISTRIBUTIONS AND INSURANCE Loss and nsurance: When someone s subject to the rsk of ncurrng a fnancal loss, the loss s generally modeled usng a random varable or
Logistic Regression. Lecture 4: More classifiers and classes. Logistic regression. Adaboost. Optimization. Multiple class classification
Lecture 4: More classfers and classes C4B Machne Learnng Hlary 20 A. Zsserman Logstc regresson Loss functons revsted Adaboost Loss functons revsted Optmzaton Multple class classfcaton Logstc Regresson
Linear Circuits Analysis. Superposition, Thevenin /Norton Equivalent circuits
Lnear Crcuts Analyss. Superposton, Theenn /Norton Equalent crcuts So far we hae explored tmendependent (resste) elements that are also lnear. A tmendependent elements s one for whch we can plot an / cure.
8.4. Annuities: Future Value. INVESTIGATE the Math. 504 8.4 Annuities: Future Value
8. Annutes: Future Value YOU WILL NEED graphng calculator spreadsheet software GOAL Determne the future value of an annuty earnng compound nterest. INVESTIGATE the Math Chrstne decdes to nvest $000 at
Using Series to Analyze Financial Situations: Present Value
2.8 Usng Seres to Analyze Fnancal Stuatons: Present Value In the prevous secton, you learned how to calculate the amount, or future value, of an ordnary smple annuty. The amount s the sum of the accumulated
) of the Cell class is created containing information about events associated with the cell. Events are added to the Cell instance
Calbraton Method Instances of the Cell class (one nstance for each FMS cell) contan ADC raw data and methods assocated wth each partcular FMS cell. The calbraton method ncludes event selecton (Class Cell
STATISTICAL DATA ANALYSIS IN EXCEL
Mcroarray Center STATISTICAL DATA ANALYSIS IN EXCEL Lecture 6 Some Advanced Topcs Dr. Petr Nazarov 14-01-013 [email protected] Statstcal data analyss n Ecel. 6. Some advanced topcs Correcton for
Module 2 LOSSLESS IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur
Module LOSSLESS IMAGE COMPRESSION SYSTEMS Lesson 3 Lossless Compresson: Huffman Codng Instructonal Objectves At the end of ths lesson, the students should be able to:. Defne and measure source entropy..
Statistical Methods to Develop Rating Models
Statstcal Methods to Develop Ratng Models [Evelyn Hayden and Danel Porath, Österrechsche Natonalbank and Unversty of Appled Scences at Manz] Source: The Basel II Rsk Parameters Estmaton, Valdaton, and
Recurrence. 1 Definitions and main statements
Recurrence 1 Defntons and man statements Let X n, n = 0, 1, 2,... be a MC wth the state space S = (1, 2,...), transton probabltes p j = P {X n+1 = j X n = }, and the transton matrx P = (p j ),j S def.
A household-based Human Development Index. Kenneth Harttgen and Stephan Klasen Göttingen University, Germany
A household-based Human Development Index Kenneth Harttgen and Stephan Klasen Göttngen Unversty, Germany Introducton Motvaton HDI tres to operatonalze capablty approach at cross-natonal level. HDI measures
GRAVITY DATA VALIDATION AND OUTLIER DETECTION USING L 1 -NORM
GRAVITY DATA VALIDATION AND OUTLIER DETECTION USING L 1 -NORM BARRIOT Jean-Perre, SARRAILH Mchel BGI/CNES 18.av.E.Beln 31401 TOULOUSE Cedex 4 (France) Emal: [email protected] 1/Introducton The
A hybrid global optimization algorithm based on parallel chaos optimization and outlook algorithm
Avalable onlne www.ocpr.com Journal of Chemcal and Pharmaceutcal Research, 2014, 6(7):1884-1889 Research Artcle ISSN : 0975-7384 CODEN(USA) : JCPRC5 A hybrd global optmzaton algorthm based on parallel
FINANCIAL MATHEMATICS. A Practical Guide for Actuaries. and other Business Professionals
FINANCIAL MATHEMATICS A Practcal Gude for Actuares and other Busness Professonals Second Edton CHRIS RUCKMAN, FSA, MAAA JOE FRANCIS, FSA, MAAA, CFA Study Notes Prepared by Kevn Shand, FSA, FCIA Assstant
Stock Profit Patterns
Stock Proft Patterns Suppose a share of Farsta Shppng stock n January 004 s prce n the market to 56. Assume that a September call opton at exercse prce 50 costs 8. A September put opton at exercse prce
Risk-based Fatigue Estimate of Deep Water Risers -- Course Project for EM388F: Fracture Mechanics, Spring 2008
Rsk-based Fatgue Estmate of Deep Water Rsers -- Course Project for EM388F: Fracture Mechancs, Sprng 2008 Chen Sh Department of Cvl, Archtectural, and Envronmental Engneerng The Unversty of Texas at Austn
CHAPTER 5 RELATIONSHIPS BETWEEN QUANTITATIVE VARIABLES
CHAPTER 5 RELATIONSHIPS BETWEEN QUANTITATIVE VARIABLES In ths chapter, we wll learn how to descrbe the relatonshp between two quanttatve varables. Remember (from Chapter 2) that the terms quanttatve varable
Financial Mathemetics
Fnancal Mathemetcs 15 Mathematcs Grade 12 Teacher Gude Fnancal Maths Seres Overvew In ths seres we am to show how Mathematcs can be used to support personal fnancal decsons. In ths seres we jon Tebogo,
YIELD CURVE FITTING 2.0 Constructing Bond and Money Market Yield Curves using Cubic B-Spline and Natural Cubic Spline Methodology.
YIELD CURVE FITTING 2.0 Constructng Bond and Money Market Yeld Curves usng Cubc B-Splne and Natural Cubc Splne Methodology Users Manual YIELD CURVE FITTING 2.0 Users Manual Authors: Zhuosh Lu, Moorad Choudhry
Latent Class Regression. Statistics for Psychosocial Research II: Structural Models December 4 and 6, 2006
Latent Class Regresson Statstcs for Psychosocal Research II: Structural Models December 4 and 6, 2006 Latent Class Regresson (LCR) What s t and when do we use t? Recall the standard latent class model
Solution: Let i = 10% and d = 5%. By definition, the respective forces of interest on funds A and B are. i 1 + it. S A (t) = d (1 dt) 2 1. = d 1 dt.
Chapter 9 Revew problems 9.1 Interest rate measurement Example 9.1. Fund A accumulates at a smple nterest rate of 10%. Fund B accumulates at a smple dscount rate of 5%. Fnd the pont n tme at whch the forces
Forecasting the Demand of Emergency Supplies: Based on the CBR Theory and BP Neural Network
700 Proceedngs of the 8th Internatonal Conference on Innovaton & Management Forecastng the Demand of Emergency Supples: Based on the CBR Theory and BP Neural Network Fu Deqang, Lu Yun, L Changbng School
Figure 1. Inventory Level vs. Time - EOQ Problem
IEOR 54 Sprng, 009 rof Leahman otes on Eonom Lot Shedulng and Eonom Rotaton Cyles he Eonom Order Quantty (EOQ) Consder an nventory tem n solaton wth demand rate, holdng ost h per unt per unt tme, and replenshment
CS 2750 Machine Learning. Lecture 3. Density estimation. CS 2750 Machine Learning. Announcements
Lecture 3 Densty estmaton Mlos Hauskrecht [email protected] 5329 Sennott Square Next lecture: Matlab tutoral Announcements Rules for attendng the class: Regstered for credt Regstered for audt (only f there
The Mathematical Derivation of Least Squares
Pscholog 885 Prof. Federco The Mathematcal Dervaton of Least Squares Back when the powers that e forced ou to learn matr algera and calculus, I et ou all asked ourself the age-old queston: When the hell
The Application of Fractional Brownian Motion in Option Pricing
Vol. 0, No. (05), pp. 73-8 http://dx.do.org/0.457/jmue.05.0..6 The Applcaton of Fractonal Brownan Moton n Opton Prcng Qng-xn Zhou School of Basc Scence,arbn Unversty of Commerce,arbn [email protected]
Application of Quasi Monte Carlo methods and Global Sensitivity Analysis in finance
Applcaton of Quas Monte Carlo methods and Global Senstvty Analyss n fnance Serge Kucherenko, Nlay Shah Imperal College London, UK skucherenko@mperalacuk Daro Czraky Barclays Captal DaroCzraky@barclayscaptalcom
(SOCIAL) COST-BENEFIT ANALYSIS IN A NUTSHELL
(SOCIAL) COST-BENEFIT ANALYSIS IN A NUTSHELL RUFUS POLLOCK EMMANUEL COLLEGE, UNIVERSITY OF CAMBRIDGE 1. Introducton Cost-beneft analyss s a process for evaluatng the merts of a partcular project or course
Support Vector Machines
Support Vector Machnes Max Wellng Department of Computer Scence Unversty of Toronto 10 Kng s College Road Toronto, M5S 3G5 Canada [email protected] Abstract Ths s a note to explan support vector machnes.
14.74 Lecture 5: Health (2)
14.74 Lecture 5: Health (2) Esther Duflo February 17, 2004 1 Possble Interventons Last tme we dscussed possble nterventons. Let s take one: provdng ron supplements to people, for example. From the data,
Answer: A). There is a flatter IS curve in the high MPC economy. Original LM LM after increase in M. IS curve for low MPC economy
4.02 Quz Solutons Fall 2004 Multple-Choce Questons (30/00 ponts) Please, crcle the correct answer for each of the followng 0 multple-choce questons. For each queston, only one of the answers s correct.
PRIVATE SCHOOL CHOICE: THE EFFECTS OF RELIGIOUS AFFILIATION AND PARTICIPATION
PRIVATE SCHOOL CHOICE: THE EFFECTS OF RELIIOUS AFFILIATION AND PARTICIPATION Danny Cohen-Zada Department of Economcs, Ben-uron Unversty, Beer-Sheva 84105, Israel Wllam Sander Department of Economcs, DePaul
Section 5.3 Annuities, Future Value, and Sinking Funds
Secton 5.3 Annutes, Future Value, and Snkng Funds Ordnary Annutes A sequence of equal payments made at equal perods of tme s called an annuty. The tme between payments s the payment perod, and the tme
Logistic Regression. Steve Kroon
Logstc Regresson Steve Kroon Course notes sectons: 24.3-24.4 Dsclamer: these notes do not explctly ndcate whether values are vectors or scalars, but expects the reader to dscern ths from the context. Scenaro
+ + + - - This circuit than can be reduced to a planar circuit
MeshCurrent Method The meshcurrent s analog of the nodeoltage method. We sole for a new set of arables, mesh currents, that automatcally satsfy KCLs. As such, meshcurrent method reduces crcut soluton to
Performance Analysis of Energy Consumption of Smartphone Running Mobile Hotspot Application
Internatonal Journal of mart Grd and lean Energy Performance Analyss of Energy onsumpton of martphone Runnng Moble Hotspot Applcaton Yun on hung a chool of Electronc Engneerng, oongsl Unversty, 511 angdo-dong,
Quantization Effects in Digital Filters
Quantzaton Effects n Dgtal Flters Dstrbuton of Truncaton Errors In two's complement representaton an exact number would have nfntely many bts (n general). When we lmt the number of bts to some fnte value
Vasicek s Model of Distribution of Losses in a Large, Homogeneous Portfolio
Vascek s Model of Dstrbuton of Losses n a Large, Homogeneous Portfolo Stephen M Schaefer London Busness School Credt Rsk Electve Summer 2012 Vascek s Model Important method for calculatng dstrbuton of
1. Math 210 Finite Mathematics
1. ath 210 Fnte athematcs Chapter 5.2 and 5.3 Annutes ortgages Amortzaton Professor Rchard Blecksmth Dept. of athematcal Scences Northern Illnos Unversty ath 210 Webste: http://math.nu.edu/courses/math210
Enabling P2P One-view Multi-party Video Conferencing
Enablng P2P One-vew Mult-party Vdeo Conferencng Yongxang Zhao, Yong Lu, Changja Chen, and JanYn Zhang Abstract Mult-Party Vdeo Conferencng (MPVC) facltates realtme group nteracton between users. Whle P2P
CHOLESTEROL REFERENCE METHOD LABORATORY NETWORK. Sample Stability Protocol
CHOLESTEROL REFERENCE METHOD LABORATORY NETWORK Sample Stablty Protocol Background The Cholesterol Reference Method Laboratory Network (CRMLN) developed certfcaton protocols for total cholesterol, HDL
Basic Queueing Theory M/M/* Queues. Introduction
Basc Queueng Theory M/M/* Queues These sldes are created by Dr. Yh Huang of George Mason Unversty. Students regstered n Dr. Huang's courses at GMU can ake a sngle achne-readable copy and prnt a sngle copy
Problem Set 3. a) We are asked how people will react, if the interest rate i on bonds is negative.
Queston roblem Set 3 a) We are asked how people wll react, f the nterest rate on bonds s negatve. When
n + d + q = 24 and.05n +.1d +.25q = 2 { n + d + q = 24 (3) n + 2d + 5q = 40 (2)
MATH 16T Exam 1 : Part I (In-Class) Solutons 1. (0 pts) A pggy bank contans 4 cons, all of whch are nckels (5 ), dmes (10 ) or quarters (5 ). The pggy bank also contans a con of each denomnaton. The total
ECONOMICS OF PLANT ENERGY SAVINGS PROJECTS IN A CHANGING MARKET Douglas C White Emerson Process Management
ECONOMICS OF PLANT ENERGY SAVINGS PROJECTS IN A CHANGING MARKET Douglas C Whte Emerson Process Management Abstract Energy prces have exhbted sgnfcant volatlty n recent years. For example, natural gas prces
THE DISTRIBUTION OF LOAN PORTFOLIO VALUE * Oldrich Alfons Vasicek
HE DISRIBUION OF LOAN PORFOLIO VALUE * Oldrch Alfons Vascek he amount of captal necessary to support a portfolo of debt securtes depends on the probablty dstrbuton of the portfolo loss. Consder a portfolo
Inter-Ing 2007. INTERDISCIPLINARITY IN ENGINEERING SCIENTIFIC INTERNATIONAL CONFERENCE, TG. MUREŞ ROMÂNIA, 15-16 November 2007.
Inter-Ing 2007 INTERDISCIPLINARITY IN ENGINEERING SCIENTIFIC INTERNATIONAL CONFERENCE, TG. MUREŞ ROMÂNIA, 15-16 November 2007. UNCERTAINTY REGION SIMULATION FOR A SERIAL ROBOT STRUCTURE MARIUS SEBASTIAN
Small-Signal Analysis of BJT Differential Pairs
5/11/011 Dfferental Moe Sall Sgnal Analyss of BJT Dff Par 1/1 SallSgnal Analyss of BJT Dfferental Pars Now lets conser the case where each nput of the fferental par conssts of an entcal D bas ter B, an
Rotation Kinematics, Moment of Inertia, and Torque
Rotaton Knematcs, Moment of Inerta, and Torque Mathematcally, rotaton of a rgd body about a fxed axs s analogous to a lnear moton n one dmenson. Although the physcal quanttes nvolved n rotaton are qute
Power-of-Two Policies for Single- Warehouse Multi-Retailer Inventory Systems with Order Frequency Discounts
Power-of-wo Polces for Sngle- Warehouse Mult-Retaler Inventory Systems wth Order Frequency Dscounts José A. Ventura Pennsylvana State Unversty (USA) Yale. Herer echnon Israel Insttute of echnology (Israel)
How To Calculate The Accountng Perod Of Nequalty
Inequalty and The Accountng Perod Quentn Wodon and Shlomo Ytzha World Ban and Hebrew Unversty September Abstract Income nequalty typcally declnes wth the length of tme taen nto account for measurement.
Credit Limit Optimization (CLO) for Credit Cards
Credt Lmt Optmzaton (CLO) for Credt Cards Vay S. Desa CSCC IX, Ednburgh September 8, 2005 Copyrght 2003, SAS Insttute Inc. All rghts reserved. SAS Propretary Agenda Background Tradtonal approaches to credt
Institute of Informatics, Faculty of Business and Management, Brno University of Technology,Czech Republic
Lagrange Multplers as Quanttatve Indcators n Economcs Ivan Mezník Insttute of Informatcs, Faculty of Busness and Management, Brno Unversty of TechnologCzech Republc Abstract The quanttatve role of Lagrange
= i δ δ s n and PV = a n = 1 v n = 1 e nδ
Exam 2 s Th March 19 You are allowe 7 sheets of notes an a calculator 41) An mportant fact about smple nterest s that for smple nterest A(t) = K[1+t], the amount of nterest earne each year s constant =
Risk Model of Long-Term Production Scheduling in Open Pit Gold Mining
Rsk Model of Long-Term Producton Schedulng n Open Pt Gold Mnng R Halatchev 1 and P Lever 2 ABSTRACT Open pt gold mnng s an mportant sector of the Australan mnng ndustry. It uses large amounts of nvestments,
Measuring portfolio loss using approximation methods
Scence Journal of Appled Mathematcs and Statstcs 014; (): 4-5 Publshed onlne Aprl 0, 014 (http://www.scencepublshnggroup.com/j/sjams) do: 10.11648/j.sjams.01400.11 Measurng portfolo loss usng approxmaton
Gender differences in revealed risk taking: evidence from mutual fund investors
Economcs Letters 76 (2002) 151 158 www.elsever.com/ locate/ econbase Gender dfferences n revealed rsk takng: evdence from mutual fund nvestors a b c, * Peggy D. Dwyer, James H. Glkeson, John A. Lst a Unversty
Estimation of Dispersion Parameters in GLMs with and without Random Effects
Mathematcal Statstcs Stockholm Unversty Estmaton of Dsperson Parameters n GLMs wth and wthout Random Effects Meng Ruoyan Examensarbete 2004:5 Postal address: Mathematcal Statstcs Dept. of Mathematcs Stockholm
The Full-Wave Rectifier
9/3/2005 The Full Wae ectfer.doc /0 The Full-Wae ectfer Consder the followng juncton dode crcut: s (t) Power Lne s (t) 2 Note that we are usng a transformer n ths crcut. The job of ths transformer s to
A Model of Private Equity Fund Compensation
A Model of Prvate Equty Fund Compensaton Wonho Wlson Cho Andrew Metrck Ayako Yasuda KAIST Yale School of Management Unversty of Calforna at Davs June 26, 2011 Abstract: Ths paper analyzes the economcs
PERRON FROBENIUS THEOREM
PERRON FROBENIUS THEOREM R. CLARK ROBINSON Defnton. A n n matrx M wth real entres m, s called a stochastc matrx provded () all the entres m satsfy 0 m, () each of the columns sum to one, m = for all, ()
The Cox-Ross-Rubinstein Option Pricing Model
Fnance 400 A. Penat - G. Pennacc Te Cox-Ross-Rubnsten Opton Prcng Model Te prevous notes sowed tat te absence o arbtrage restrcts te prce o an opton n terms o ts underlyng asset. However, te no-arbtrage
Correlated Noise Modeling - An Implementation into HICUM
Correlated ose Modelng - An Implementaton nto HICUM A. Chakravorty, M. chroter, P. akalas, J. Herrcht Char for Electron Devces and Integrated Crcuts (CEDIC) Unversty of Technology Dresden Germany Dept.
Kiel Institute for World Economics Duesternbrooker Weg 120 24105 Kiel (Germany) Kiel Working Paper No. 1120
Kel Insttute for World Economcs Duesternbrooker Weg 45 Kel (Germany) Kel Workng Paper No. Path Dependences n enture Captal Markets by Andrea Schertler July The responsblty for the contents of the workng
FINANCIAL MATHEMATICS
3 LESSON FINANCIAL MATHEMATICS Annutes What s an annuty? The term annuty s used n fnancal mathematcs to refer to any termnatng sequence of regular fxed payments over a specfed perod of tme. Loans are usually
