Latent Class Regression. Statistics for Psychosocial Research II: Structural Models December 4 and 6, 2006
|
|
|
- Ross Sparks
- 10 years ago
- Views:
Transcription
1 Latent Class Regresson Statstcs for Psychosocal Research II: Structural Models December 4 and 6, 2006
2 Latent Class Regresson (LCR) What s t and when do we use t? Recall the standard latent class model from last term: Items measure dagnoses rather than underlyng scores Patterns of responses are thought to contan nformaton above and beyond aggregaton of responses The goal s clusterng ndvduals rather than response varables We add structural pece to model where covarates predct class membershp
3 Structural Equaton-type Depcton Measurement Pece x 1 y 1 x 2 η y 2 y 3 x 3 y 4 y 5 Structural Pece
4 When to use LCR Multple dscrete outcome varables bnary examples yes/no questons present/absent symptoms all measurng same latent construct We want to construct as outcome varable Responses to questons/tems measure underlyng states (.e. classes) wth error NOT approprate for counts or other way of groupng response patterns responses measure underlyng score wth error Note: Latent Varable s DISCRETE
5 Example: Depresson Is depresson contnuous or categorcal? Latent trat (IRT) assumes t s contnuous. Latent class model assumes t s dscrete Densty % class 1 80 class 2 15 class Depresson
6 Recall LC model M: number of latent classes K: number of symptoms p km : probablty of reportng symptom k gven latent class m π m : proporton of ndvduals n class m η : the true latent class of ndvdual, 1,,N m 1,,M; k 1,,K y 1, y 2,,y k : symptom presence/absence for ndvdual.
7 ECA wave 3 data (1993) N1126 n Baltmore Symptoms: weght/appette change sleep problems slow/ncreased movement loss of nterest/pleasure fatgue gult concentraton problems thoughts of death dysphora Covarates of nterest gender age martal status educaton ncome How are the above assocated wth depresson?
8 Assumptons Condtonal Independence: gven an ndvdual s depresson class, hs symptoms are ndependent P(y k, y j η ) P(y k η ) P(y j η ) Non-dfferental Measurement: gven an ndvdual s depresson class, covarates are not assocated wth symptoms P(y k x, η ) P(y k η )
9 Why LCR may be better than another analytc method LCR versus usng counts (e.g. number of symptoms) Pros: dstngushes meanngful patterns from trvally dfferent ones whch may be hard to dscern emprcally acknowledges measurement error precson and estmates of regresson coeffcents reflect measurement error Cons: may overdstngush prevalent patterns and mask dfferences n rare ones volaton of assumptons make nferences nvald
10 Why LCR may be better than another analytc method (contnued) Versus factor-type methods Pros: less severe assumptons (statstcally) easer to check assumptons Cons: lose statstcal power f construct s actually dmensonal (.e. contnuous) dentfablty harder to acheve (need bg sample) Practcally Pro: Allows for dsease/dsorder classfcaton whch s useful n a treatment vs. no treatment settng
11 Structural Equaton-type Depcton Measurement Pece x 1 x 2 x 3 y 1 β p What are y 2 the parameters that the arrows η y represent? 3 In other words, what are β and y 4 p n the LCR model? y 5 Structural Pece
12 Parameter Interpretaton Measurement Pece (p s) p km : probablty that an ndvdual from class m reports symptom k. η p kη y k Same as standard latent class model from last term
13 Parameter Interpretaton How do we relate η s and β s? In classc SEM, we have lnear model. What about when η s categorcal? What f η s bnary? x 1 x 2 x 3 β η
14 Parameter Interpretaton How do we relate η to x s? Consder smplest case: 2 classes or equvalently, β 1 and β 2 are log odds ratos x x P P ) ( 1 2) ( log β β β η η + + x x P P ) ( 2) ( log log β β β η η π π + +
15 p same as last term KxM p s π j P(η j) β Model Results Condtonal on x s No longer proporton of ndvduals n class Now, only can nterpret to mean probablty of class membershp gven covarates for ndvdual To get sze of class j, can sum of π j for all (M-1)*(H+1) β s where H number of covarates M-1: one class s reference class so all of ts β coeffcents are techncally zero H+1: for each class, there s one β for each covarate plus another for the ntercept.
16 Solvng for π j P(η j) π log π 2 1 log P( η P( η 2 x 1 x 1 1, x, x 2 2 ) ) β 0 + β x β x 2 2 π π P( η 2 x, x ) P( η 1 x, x ) e 1+ e 1+ β + β x + β x β + β x + β x β + β x + β x e
17 Parameter Interpretaton Example: e β1 2 and x 1 1 f female, 0 f male Women have twce the odds of beng n class 2 versus class 1 than men, holdng all else constant e β 1 P( η 2 x1 1, x2 c) P( η 1 x 1, x c) 1 2 P( η 2 x1 0, x2 c) P( η 1 x 1, x c) 1 2
18 More than two classes? Need more than one equaton Need to choose a reference class x x x x P x x P ), 1 ( ), 2 ( log β β β η η + + x x x x P x x P ), 1 ( ), 3 ( log β β β η η + + e e e e e β β β β β β OR for class 2 versus class 1 for females versus males OR for class 3 versus class 1 for females versus males OR for class 3 versus class 2 for females versus males /
19 Solvng for π j P(η ) π log π 2 1 log P( η 2) P( η 1) β 02 + β 12 x 1 + β 22 x 2 π 2 P( η 2) e 1+ e + β02 + β12x1+ β22x2 e 3 r 1 e β + β x + β β + β x + β x β + β x + β x β + β x + β x 0r 1r 1 2r 2 e x Where we assume that β01 β11 β21 0
20 Depresson Example: LCR coeffcents (log ORs) n 3 class model Class Class Class 3 vs 1 2 vs 1 3 vs 2 Log(age) -1.2* -1.5* 0.23 Female 0.85* 0.76* 0.09 Sngle Sep/wd/dv 0.86* 0.83* HS dploma * 0.51 * ndcates sgnfcant at the 0.10 level Note: class 1 s non-depressed, class 2 s mld, class 3 s severe
21 Depresson Example: ODDS RATIOS n 3 class model Class Class Class 3 vs 1 2 vs 1 3 vs 2 Log(age) 0.3* 0.22* 1.26 Female 2.34* 2.13* 1.09 Sngle Sep/wd/dv 2.36* 2.29* 0.99 HS dploma * 1.67 * ndcates sgnfcant at the 0.10 level Note: class 1 s non-depressed, class 2 s mld, class 3 s severe
22 Step 1: Model Buldng Get the measurement part rght! Ft standard latent class model frst. Use methods we dscussed last term to choose approprate model Step 2: add covarates one at a tme It s useful to perform smple regressons to see how each covarate s assocated wth latent varable before adjustng for others. Many of same ssues n lnear and logstc regresson (e.g. multcollnearty)
23 Estmaton Same caveats as last term Maxmum lkelhood: Iteratve fttng procedure. Packages Mplus Splus, R SAS Bayesan approach Computatonally ntensve WnBugs Splus, R SAS
24 Propertes of Estmates (β, p) If N s large, coeffcents are approxmately normal confdence ntervals and Z-tests are approprate. Nested models can be compared by usng chsquare test. But, recall problems of ch-square test when sample sze s large! And problems when the sample sze s small! Also can use AIC, BIC, etc. to compare nested AND non-nested models (e.g. s age as contnuous better than 3 age categores).
25 Specfcs Statstcally Standard LCM Lkelhood Latent Class Regresson Lkelhood ) ( , 4 4, 3 3, 2 2, 1 1 ) (1 ) ( ) ( k y k km M m K k y km m y Y y Y y Y y Y y Y y Y p p P P π ) ( , 4 4, 3 3, 2 2, 1 1 ) (1 ) ( ) ( ) ( k y k km M m K k y km m x y Y y Y y Y y Y y Y y Y p p x P P π M m x x m m m e e x 1 ) ( β β π where
26 Example: 3 class model coeffcent estmate se 95% confdence nterval b b b2age b3age b2sex b3sex p[1,1] p[1,2] p[1,3] p[2,1] p[2,2] p[2,3] etc..
27 Some Addtonal Concepts (1) η s a NOMINAL varable (2) Data Setup: Centerng covarates can help. Due to need to ntalze algorthm n ML. Due to prors on β s n Bayesan settng Wll be meanngful n model checkng, too. Need to choose startng values for model estmaton for regresson coeffcents n some ML packages. Ths s easer f they are centered. Not an ssue for Mplus: only need startng values for measurement part.
28 Choosng Values for Intalzaton A: Measurement model 1. Use results from standard latent class model B: Structural pece 1. choose all β s equal to 0 (wll work f there s a LOT of data and no ID problems) 2. a. Make a surrogate latent class (e.g. choose cutoffs based on number of symptoms) b. Perform mlogt on surrogate wth covarates c. Use log ORs as startng values
29 Choosng Values for Intalzaton 3. Use ML pseudo-class approach a. Usng pseudo-classes from standard LC model, treat class assgnment as fxed b. Regress class membershp on covarates (polytomous logstc regresson) c. Model buldng strategy -- gves ntal dea of whch covarates are assocated. d. Also, can use ths as a model checkng strategy post hoc 4. Use MCMC class assgnment approach: same as 3, but wth classes assgned usng MCMC model
30 Important Identfablty Issue Must run model more than once usng dfferent startng values to check dentfablty!
31 Model Checkng Very mportant step n LCR LCR can gve msleadng fndngs f measurement model assumptons are volated Two types of model checks: (1) model ft do y patterns behave as model would predct? (2) volaton of assumptons do y s relate to x s as expected?
32 ECA wave 3 data (1993) N1126 n Baltmore Symptoms: weght/appette change sleep problems slow/ncreased movement loss of nterest/pleasure fatgue gult concentraton problems thoughts of death dysphora Covarates of nterest gender age martal status educaton ncome How are the above assocated wth depresson?
33 Models Model A: log(age), gender, race Model B: log(age), gender, race, dploma
34 Do y patterns behave as model predcts? Compare observed pattern frequences to expected pattern frequences PFC plot How does addton of regresson change nterpretaton? Evaluatng ft of measurement pece Wll be same as n standard LC model unless..
35 o 2 class x 3 class 4 class
36 LCA x LCR-A o LCR-B
37 Does pattern frequency behave as predcted by covarates? Idea: focus on one tem at a tme Recall: M K yk (1 y 1 y1,..., YK yk x ) ( x ) pkm (1 pkm) m 1 k 1 P( Y π If nterested n tem r, gnore ( margnalze over ) other tems: k ) P( Y y x ) π ( x r r M m 1 ) p yk rm (1 p rm ) (1 y k )
38 Comparng Ftted to Observed
39 Categorcal Covarates Easer than contnuous (computatonally) Example Calculate: Predcted males wth gult Observed males wth gult Predcted females wth gult Observed females wth gult
40 Assume LC regresson model wth only gender Gender 0 f male, 1 f female Item of nterest f gult. Want fnd how many class 2 men we would expect to report gult based on the model P( gult and male and class 2) P( gult and class 2 male) P( male) P( gult male and class 2) P( class 2 male) P( male) P( gult class 2) P( class 2 male) P( male) p km β0 e 1+ e β 0 Pmale ( ) β0 e Expected ( gult and male and class 2) N pkm β Pmale ( ) 0 1+ e Calculate ths for each of the classes and sum up: Wll tell us the expected number of males reportng gult.
41 Falure n Ft Check Assumptons non-dfferental measurement condtonal ndependence Non-dfferental Measurement: P(y k x, η ) P(y k η ) In words, wthn a class, there s no assocaton between y s and x s. Check ths usng logstc regresson approach
42 Checkng Non-dfferental Measurement Assumpton For bnary covarates and for each class m and tem k consder P( yk 1 x 1, η m) / P( yk 0 x 1, η m) ORkmx P( y 1 x 0, η m) / P( y 0 x 0, η m) k If assumpton holds, ths OR wll be approxmately equal to 1. Why may ths get trcky? We don t KNOW class assgnments. Need a strategy for assgnng ndvduals to classes. k
43 Checkng NDM: Maxmum Lkelhood Approach (a) assgn ndvduals to pseudo-classes based on posteror probablty of class membershp recall posteror probablty based on observed pattern e.g. ndvdual wth 0.20, 0.05, 0.75 better chance of beng n class 3 not necessarly n class 3 (b) calculate OR s wthn classes. (c) repeat (a) and (b) at least a few tmes (d) compare OR s to 1.
44 Checkng NDM: Maxmum Lkelhood Approach What about contnuous covarates? Use same general dea, but estmate the logor wthn classes by logstc regresson Example: age
45 Checkng NDM: MCMC (Bayesan) approach At each teraton n Gbbs sampler, ndvduals are automatcally assgned to classes no need to manually assgn. At each teraton, smply calculate the OR s of nterest. Then, margnalze or average over all teratons. Results s posteror dstrbuton of OR
46
47
48 Checkng Condtonal Independence Assumpton In words, wthn a class, there s no assocaton between y k and y j, j k. Same approach Only dfference: OR jkm P( y P( y j j 1, y 1, y k k 1 η 0 η m) / m) / P( y P( y j j 0, 0, y y k k 1 η 0 η m) m) Stll use pseudo-class assgnment (ML) or class assgnment at each teraton (MCMC)
49
50
51 Identfablty (brefly) General Idea: dfferent parameters can lead to the same model ft 2 step rule: If (a) polytomous logstc regresson s ID ed (b) standard LCM s ID ed Then model s ID ed t-rule: need more data cells than parameters complcaton: contnuous covarates, but they usually don t make unid ed.
52 Utlty of Model Checkng May modfy nterpretaton to ncorporate lack of ft/volaton of assumpton May help elucdate a transformaton that that would be more approprate (e.g. log(age) versus age) May lead to beleve that LCR s not approprate.
Causal, Explanatory Forecasting. Analysis. Regression Analysis. Simple Linear Regression. Which is Independent? Forecasting
Causal, Explanatory Forecastng Assumes cause-and-effect relatonshp between system nputs and ts output Forecastng wth Regresson Analyss Rchard S. Barr Inputs System Cause + Effect Relatonshp The job of
CHAPTER 14 MORE ABOUT REGRESSION
CHAPTER 14 MORE ABOUT REGRESSION We learned n Chapter 5 that often a straght lne descrbes the pattern of a relatonshp between two quanttatve varables. For nstance, n Example 5.1 we explored the relatonshp
CS 2750 Machine Learning. Lecture 3. Density estimation. CS 2750 Machine Learning. Announcements
Lecture 3 Densty estmaton Mlos Hauskrecht [email protected] 5329 Sennott Square Next lecture: Matlab tutoral Announcements Rules for attendng the class: Regstered for credt Regstered for audt (only f there
Regression Models for a Binary Response Using EXCEL and JMP
SEMATECH 997 Statstcal Methods Symposum Austn Regresson Models for a Bnary Response Usng EXCEL and JMP Davd C. Trndade, Ph.D. STAT-TECH Consultng and Tranng n Appled Statstcs San Jose, CA Topcs Practcal
1 De nitions and Censoring
De ntons and Censorng. Survval Analyss We begn by consderng smple analyses but we wll lead up to and take a look at regresson on explanatory factors., as n lnear regresson part A. The mportant d erence
PRACTICE 1: MUTUAL FUNDS EVALUATION USING MATLAB.
PRACTICE 1: MUTUAL FUNDS EVALUATION USING MATLAB. INDEX 1. Load data usng the Edtor wndow and m-fle 2. Learnng to save results from the Edtor wndow. 3. Computng the Sharpe Rato 4. Obtanng the Treynor Rato
benefit is 2, paid if the policyholder dies within the year, and probability of death within the year is ).
REVIEW OF RISK MANAGEMENT CONCEPTS LOSS DISTRIBUTIONS AND INSURANCE Loss and nsurance: When someone s subject to the rsk of ncurrng a fnancal loss, the loss s generally modeled usng a random varable or
Statistical Methods to Develop Rating Models
Statstcal Methods to Develop Ratng Models [Evelyn Hayden and Danel Porath, Österrechsche Natonalbank and Unversty of Appled Scences at Manz] Source: The Basel II Rsk Parameters Estmaton, Valdaton, and
THE METHOD OF LEAST SQUARES THE METHOD OF LEAST SQUARES
The goal: to measure (determne) an unknown quantty x (the value of a RV X) Realsaton: n results: y 1, y 2,..., y j,..., y n, (the measured values of Y 1, Y 2,..., Y j,..., Y n ) every result s encumbered
STATISTICAL DATA ANALYSIS IN EXCEL
Mcroarray Center STATISTICAL DATA ANALYSIS IN EXCEL Lecture 6 Some Advanced Topcs Dr. Petr Nazarov 14-01-013 [email protected] Statstcal data analyss n Ecel. 6. Some advanced topcs Correcton for
PSYCHOLOGICAL RESEARCH (PYC 304-C) Lecture 12
14 The Ch-squared dstrbuton PSYCHOLOGICAL RESEARCH (PYC 304-C) Lecture 1 If a normal varable X, havng mean µ and varance σ, s standardsed, the new varable Z has a mean 0 and varance 1. When ths standardsed
Binomial Link Functions. Lori Murray, Phil Munz
Bnomal Lnk Functons Lor Murray, Phl Munz Bnomal Lnk Functons Logt Lnk functon: ( p) p ln 1 p Probt Lnk functon: ( p) 1 ( p) Complentary Log Log functon: ( p) ln( ln(1 p)) Motvatng Example A researcher
THE DISTRIBUTION OF LOAN PORTFOLIO VALUE * Oldrich Alfons Vasicek
HE DISRIBUION OF LOAN PORFOLIO VALUE * Oldrch Alfons Vascek he amount of captal necessary to support a portfolo of debt securtes depends on the probablty dstrbuton of the portfolo loss. Consder a portfolo
CHAPTER 5 RELATIONSHIPS BETWEEN QUANTITATIVE VARIABLES
CHAPTER 5 RELATIONSHIPS BETWEEN QUANTITATIVE VARIABLES In ths chapter, we wll learn how to descrbe the relatonshp between two quanttatve varables. Remember (from Chapter 2) that the terms quanttatve varable
Survival analysis methods in Insurance Applications in car insurance contracts
Survval analyss methods n Insurance Applcatons n car nsurance contracts Abder OULIDI 1 Jean-Mare MARION 2 Hervé GANACHAUD 3 Abstract In ths wor, we are nterested n survval models and ther applcatons on
An Alternative Way to Measure Private Equity Performance
An Alternatve Way to Measure Prvate Equty Performance Peter Todd Parlux Investment Technology LLC Summary Internal Rate of Return (IRR) s probably the most common way to measure the performance of prvate
Logistic Regression. Lecture 4: More classifiers and classes. Logistic regression. Adaboost. Optimization. Multiple class classification
Lecture 4: More classfers and classes C4B Machne Learnng Hlary 20 A. Zsserman Logstc regresson Loss functons revsted Adaboost Loss functons revsted Optmzaton Multple class classfcaton Logstc Regresson
How To Calculate The Accountng Perod Of Nequalty
Inequalty and The Accountng Perod Quentn Wodon and Shlomo Ytzha World Ban and Hebrew Unversty September Abstract Income nequalty typcally declnes wth the length of tme taen nto account for measurement.
1. Measuring association using correlation and regression
How to measure assocaton I: Correlaton. 1. Measurng assocaton usng correlaton and regresson We often would lke to know how one varable, such as a mother's weght, s related to another varable, such as a
Quantization Effects in Digital Filters
Quantzaton Effects n Dgtal Flters Dstrbuton of Truncaton Errors In two's complement representaton an exact number would have nfntely many bts (n general). When we lmt the number of bts to some fnte value
What is Candidate Sampling
What s Canddate Samplng Say we have a multclass or mult label problem where each tranng example ( x, T ) conssts of a context x a small (mult)set of target classes T out of a large unverse L of possble
CHOLESTEROL REFERENCE METHOD LABORATORY NETWORK. Sample Stability Protocol
CHOLESTEROL REFERENCE METHOD LABORATORY NETWORK Sample Stablty Protocol Background The Cholesterol Reference Method Laboratory Network (CRMLN) developed certfcaton protocols for total cholesterol, HDL
Exhaustive Regression. An Exploration of Regression-Based Data Mining Techniques Using Super Computation
Exhaustve Regresson An Exploraton of Regresson-Based Data Mnng Technques Usng Super Computaton Antony Daves, Ph.D. Assocate Professor of Economcs Duquesne Unversty Pttsburgh, PA 58 Research Fellow The
Calculation of Sampling Weights
Perre Foy Statstcs Canada 4 Calculaton of Samplng Weghts 4.1 OVERVIEW The basc sample desgn used n TIMSS Populatons 1 and 2 was a two-stage stratfed cluster desgn. 1 The frst stage conssted of a sample
Prediction of Disability Frequencies in Life Insurance
Predcton of Dsablty Frequences n Lfe Insurance Bernhard Köng Fran Weber Maro V. Wüthrch October 28, 2011 Abstract For the predcton of dsablty frequences, not only the observed, but also the ncurred but
) of the Cell class is created containing information about events associated with the cell. Events are added to the Cell instance
Calbraton Method Instances of the Cell class (one nstance for each FMS cell) contan ADC raw data and methods assocated wth each partcular FMS cell. The calbraton method ncludes event selecton (Class Cell
Module 2 LOSSLESS IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur
Module LOSSLESS IMAGE COMPRESSION SYSTEMS Lesson 3 Lossless Compresson: Huffman Codng Instructonal Objectves At the end of ths lesson, the students should be able to:. Defne and measure source entropy..
Marginal Returns to Education For Teachers
The Onlne Journal of New Horzons n Educaton Volume 4, Issue 3 MargnalReturnstoEducatonForTeachers RamleeIsmal,MarnahAwang ABSTRACT FacultyofManagementand Economcs UnverstPenddkanSultan Idrs [email protected]
Institute of Informatics, Faculty of Business and Management, Brno University of Technology,Czech Republic
Lagrange Multplers as Quanttatve Indcators n Economcs Ivan Mezník Insttute of Informatcs, Faculty of Busness and Management, Brno Unversty of TechnologCzech Republc Abstract The quanttatve role of Lagrange
Latent Class Regression Part II
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License. Your use of this material constitutes acceptance of that license and the conditions of use of materials on this
1.2 DISTRIBUTIONS FOR CATEGORICAL DATA
DISTRIBUTIONS FOR CATEGORICAL DATA 5 present models for a categorcal response wth matched pars; these apply, for nstance, wth a categorcal response measured for the same subjects at two tmes. Chapter 11
Risk-based Fatigue Estimate of Deep Water Risers -- Course Project for EM388F: Fracture Mechanics, Spring 2008
Rsk-based Fatgue Estmate of Deep Water Rsers -- Course Project for EM388F: Fracture Mechancs, Sprng 2008 Chen Sh Department of Cvl, Archtectural, and Envronmental Engneerng The Unversty of Texas at Austn
Approximating Cross-validatory Predictive Evaluation in Bayesian Latent Variables Models with Integrated IS and WAIC
Approxmatng Cross-valdatory Predctve Evaluaton n Bayesan Latent Varables Models wth Integrated IS and WAIC Longha L Department of Mathematcs and Statstcs Unversty of Saskatchewan Saskatoon, SK, CANADA
Can Auto Liability Insurance Purchases Signal Risk Attitude?
Internatonal Journal of Busness and Economcs, 2011, Vol. 10, No. 2, 159-164 Can Auto Lablty Insurance Purchases Sgnal Rsk Atttude? Chu-Shu L Department of Internatonal Busness, Asa Unversty, Tawan Sheng-Chang
International University of Japan Public Management & Policy Analysis Program
Internatonal Unversty of Japan Publc Management & Polcy Analyss Program Practcal Gudes To Panel Data Modelng: A Step by Step Analyss Usng Stata * Hun Myoung Park, Ph.D. [email protected] 1. Introducton.
Credit Limit Optimization (CLO) for Credit Cards
Credt Lmt Optmzaton (CLO) for Credt Cards Vay S. Desa CSCC IX, Ednburgh September 8, 2005 Copyrght 2003, SAS Insttute Inc. All rghts reserved. SAS Propretary Agenda Background Tradtonal approaches to credt
SIMPLE LINEAR CORRELATION
SIMPLE LINEAR CORRELATION Smple lnear correlaton s a measure of the degree to whch two varables vary together, or a measure of the ntensty of the assocaton between two varables. Correlaton often s abused.
A 'Virtual Population' Approach To Small Area Estimation
A 'Vrtual Populaton' Approach To Small Area Estmaton Mchael P. Battagla 1, Martn R. Frankel 2, Machell Town 3 and Lna S. Balluz 3 1 Abt Assocates Inc., Cambrdge MA 02138 2 Baruch College, CUNY, New York
Variance estimation for the instrumental variables approach to measurement error in generalized linear models
he Stata Journal (2003) 3, Number 4, pp. 342 350 Varance estmaton for the nstrumental varables approach to measurement error n generalzed lnear models James W. Hardn Arnold School of Publc Health Unversty
General Iteration Algorithm for Classification Ratemaking
General Iteraton Algorthm for Classfcaton Ratemakng by Luyang Fu and Cheng-sheng eter Wu ABSTRACT In ths study, we propose a flexble and comprehensve teraton algorthm called general teraton algorthm (GIA)
Meta-Analysis of Hazard Ratios
NCSS Statstcal Softare Chapter 458 Meta-Analyss of Hazard Ratos Introducton Ths module performs a meta-analyss on a set of to-group, tme to event (survval), studes n hch some data may be censored. These
Finite Math Chapter 10: Study Guide and Solution to Problems
Fnte Math Chapter 10: Study Gude and Soluton to Problems Basc Formulas and Concepts 10.1 Interest Basc Concepts Interest A fee a bank pays you for money you depost nto a savngs account. Prncpal P The amount
Extending Probabilistic Dynamic Epistemic Logic
Extendng Probablstc Dynamc Epstemc Logc Joshua Sack May 29, 2008 Probablty Space Defnton A probablty space s a tuple (S, A, µ), where 1 S s a set called the sample space. 2 A P(S) s a σ-algebra: a set
Recurrence. 1 Definitions and main statements
Recurrence 1 Defntons and man statements Let X n, n = 0, 1, 2,... be a MC wth the state space S = (1, 2,...), transton probabltes p j = P {X n+1 = j X n = }, and the transton matrx P = (p j ),j S def.
Transition Matrix Models of Consumer Credit Ratings
Transton Matrx Models of Consumer Credt Ratngs Abstract Although the corporate credt rsk lterature has many studes modellng the change n the credt rsk of corporate bonds over tme, there s far less analyss
Logistic Regression. Steve Kroon
Logstc Regresson Steve Kroon Course notes sectons: 24.3-24.4 Dsclamer: these notes do not explctly ndcate whether values are vectors or scalars, but expects the reader to dscern ths from the context. Scenaro
Economic Interpretation of Regression. Theory and Applications
Economc Interpretaton of Regresson Theor and Applcatons Classcal and Baesan Econometrc Methods Applcaton of mathematcal statstcs to economc data for emprcal support Economc theor postulates a qualtatve
NPAR TESTS. One-Sample Chi-Square Test. Cell Specification. Observed Frequencies 1O i 6. Expected Frequencies 1EXP i 6
PAR TESTS If a WEIGHT varable s specfed, t s used to replcate a case as many tmes as ndcated by the weght value rounded to the nearest nteger. If the workspace requrements are exceeded and samplng has
How Sets of Coherent Probabilities May Serve as Models for Degrees of Incoherence
1 st Internatonal Symposum on Imprecse Probabltes and Ther Applcatons, Ghent, Belgum, 29 June 2 July 1999 How Sets of Coherent Probabltes May Serve as Models for Degrees of Incoherence Mar J. Schervsh
Properties of Indoor Received Signal Strength for WLAN Location Fingerprinting
Propertes of Indoor Receved Sgnal Strength for WLAN Locaton Fngerprntng Kamol Kaemarungs and Prashant Krshnamurthy Telecommuncatons Program, School of Informaton Scences, Unversty of Pttsburgh E-mal: kakst2,[email protected]
Realistic Image Synthesis
Realstc Image Synthess - Combned Samplng and Path Tracng - Phlpp Slusallek Karol Myszkowsk Vncent Pegoraro Overvew: Today Combned Samplng (Multple Importance Samplng) Renderng and Measurng Equaton Random
Lecture 3: Annuity. Study annuities whose payments form a geometric progression or a arithmetic progression.
Lecture 3: Annuty Goals: Learn contnuous annuty and perpetuty. Study annutes whose payments form a geometrc progresson or a arthmetc progresson. Dscuss yeld rates. Introduce Amortzaton Suggested Textbook
Fixed income risk attribution
5 Fxed ncome rsk attrbuton Chthra Krshnamurth RskMetrcs Group [email protected] We compare the rsk of the actve portfolo wth that of the benchmark and segment the dfference between the two
Lecture 3: Force of Interest, Real Interest Rate, Annuity
Lecture 3: Force of Interest, Real Interest Rate, Annuty Goals: Study contnuous compoundng and force of nterest Dscuss real nterest rate Learn annuty-mmedate, and ts present value Study annuty-due, and
ANALYZING THE RELATIONSHIPS BETWEEN QUALITY, TIME, AND COST IN PROJECT MANAGEMENT DECISION MAKING
ANALYZING THE RELATIONSHIPS BETWEEN QUALITY, TIME, AND COST IN PROJECT MANAGEMENT DECISION MAKING Matthew J. Lberatore, Department of Management and Operatons, Vllanova Unversty, Vllanova, PA 19085, 610-519-4390,
The Application of Fractional Brownian Motion in Option Pricing
Vol. 0, No. (05), pp. 73-8 http://dx.do.org/0.457/jmue.05.0..6 The Applcaton of Fractonal Brownan Moton n Opton Prcng Qng-xn Zhou School of Basc Scence,arbn Unversty of Commerce,arbn [email protected]
How To Know The Components Of Mean Squared Error Of Herarchcal Estmator S
S C H E D A E I N F O R M A T I C A E VOLUME 0 0 On Mean Squared Error of Herarchcal Estmator Stans law Brodowsk Faculty of Physcs, Astronomy, and Appled Computer Scence, Jagellonan Unversty, Reymonta
How To Evaluate A Dia Fund Suffcency
DI Fund Suffcency Evaluaton Methodologcal Recommendatons and DIA Russa Practce Andre G. Melnkov Deputy General Drector DIA Russa THE DEPOSIT INSURANCE CONFERENCE IN THE MENA REGION AMMAN-JORDAN, 18 20
Proceedings of the Annual Meeting of the American Statistical Association, August 5-9, 2001
Proceedngs of the Annual Meetng of the Amercan Statstcal Assocaton, August 5-9, 2001 LIST-ASSISTED SAMPLING: THE EFFECT OF TELEPHONE SYSTEM CHANGES ON DESIGN 1 Clyde Tucker, Bureau of Labor Statstcs James
Simple Interest Loans (Section 5.1) :
Chapter 5 Fnance The frst part of ths revew wll explan the dfferent nterest and nvestment equatons you learned n secton 5.1 through 5.4 of your textbook and go through several examples. The second part
Measures of Fit for Logistic Regression
ABSTRACT Paper 1485-014 SAS Global Forum Measures of Ft for Logstc Regresson Paul D. Allson, Statstcal Horzons LLC and the Unversty of Pennsylvana One of the most common questons about logstc regresson
Single and multiple stage classifiers implementing logistic discrimination
Sngle and multple stage classfers mplementng logstc dscrmnaton Hélo Radke Bttencourt 1 Dens Alter de Olvera Moraes 2 Vctor Haertel 2 1 Pontfíca Unversdade Católca do Ro Grande do Sul - PUCRS Av. Ipranga,
Forecasting the Direction and Strength of Stock Market Movement
Forecastng the Drecton and Strength of Stock Market Movement Jngwe Chen Mng Chen Nan Ye [email protected] [email protected] [email protected] Abstract - Stock market s one of the most complcated systems
Diagnostic Tests of Cross Section Independence for Nonlinear Panel Data Models
DISCUSSION PAPER SERIES IZA DP No. 2756 Dagnostc ests of Cross Secton Independence for Nonlnear Panel Data Models Cheng Hsao M. Hashem Pesaran Andreas Pck Aprl 2007 Forschungsnsttut zur Zukunft der Arbet
Calculating the high frequency transmission line parameters of power cables
< ' Calculatng the hgh frequency transmsson lne parameters of power cables Authors: Dr. John Dcknson, Laboratory Servces Manager, N 0 RW E B Communcatons Mr. Peter J. Ncholson, Project Assgnment Manager,
An Empirical Study of Search Engine Advertising Effectiveness
An Emprcal Study of Search Engne Advertsng Effectveness Sanjog Msra, Smon School of Busness Unversty of Rochester Edeal Pnker, Smon School of Busness Unversty of Rochester Alan Rmm-Kaufman, Rmm-Kaufman
Descriptive Models. Cluster Analysis. Example. General Applications of Clustering. Examples of Clustering Applications
CMSC828G Prncples of Data Mnng Lecture #9 Today s Readng: HMS, chapter 9 Today s Lecture: Descrptve Modelng Clusterng Algorthms Descrptve Models model presents the man features of the data, a global summary
Forecasting and Stress Testing Credit Card Default using Dynamic Models
Forecastng and Stress Testng Credt Card Default usng Dynamc Models Tony Bellott and Jonathan Crook Credt Research Centre Unversty of Ednburgh Busness School Verson 4.5 Abstract Typcally models of credt
A Novel Methodology of Working Capital Management for Large. Public Constructions by Using Fuzzy S-curve Regression
Novel Methodology of Workng Captal Management for Large Publc Constructons by Usng Fuzzy S-curve Regresson Cheng-Wu Chen, Morrs H. L. Wang and Tng-Ya Hseh Department of Cvl Engneerng, Natonal Central Unversty,
DEFINING %COMPLETE IN MICROSOFT PROJECT
CelersSystems DEFINING %COMPLETE IN MICROSOFT PROJECT PREPARED BY James E Aksel, PMP, PMI-SP, MVP For Addtonal Informaton about Earned Value Management Systems and reportng, please contact: CelersSystems,
Statistical algorithms in Review Manager 5
Statstcal algorthms n Reve Manager 5 Jonathan J Deeks and Julan PT Hggns on behalf of the Statstcal Methods Group of The Cochrane Collaboraton August 00 Data structure Consder a meta-analyss of k studes
Joe Pimbley, unpublished, 2005. Yield Curve Calculations
Joe Pmbley, unpublshed, 005. Yeld Curve Calculatons Background: Everythng s dscount factors Yeld curve calculatons nclude valuaton of forward rate agreements (FRAs), swaps, nterest rate optons, and forward
Gender differences in revealed risk taking: evidence from mutual fund investors
Economcs Letters 76 (2002) 151 158 www.elsever.com/ locate/ econbase Gender dfferences n revealed rsk takng: evdence from mutual fund nvestors a b c, * Peggy D. Dwyer, James H. Glkeson, John A. Lst a Unversty
Analysis of Premium Liabilities for Australian Lines of Business
Summary of Analyss of Premum Labltes for Australan Lnes of Busness Emly Tao Honours Research Paper, The Unversty of Melbourne Emly Tao Acknowledgements I am grateful to the Australan Prudental Regulaton
The Development of Web Log Mining Based on Improve-K-Means Clustering Analysis
The Development of Web Log Mnng Based on Improve-K-Means Clusterng Analyss TngZhong Wang * College of Informaton Technology, Luoyang Normal Unversty, Luoyang, 471022, Chna [email protected] Abstract.
Level Annuities with Payments Less Frequent than Each Interest Period
Level Annutes wth Payments Less Frequent than Each Interest Perod 1 Annuty-mmedate 2 Annuty-due Level Annutes wth Payments Less Frequent than Each Interest Perod 1 Annuty-mmedate 2 Annuty-due Symoblc approach
An Interest-Oriented Network Evolution Mechanism for Online Communities
An Interest-Orented Network Evoluton Mechansm for Onlne Communtes Cahong Sun and Xaopng Yang School of Informaton, Renmn Unversty of Chna, Bejng 100872, P.R. Chna {chsun,yang}@ruc.edu.cn Abstract. Onlne
How To Understand The Results Of The German Meris Cloud And Water Vapour Product
Ttel: Project: Doc. No.: MERIS level 3 cloud and water vapour products MAPP MAPP-ATBD-ClWVL3 Issue: 1 Revson: 0 Date: 9.12.1998 Functon Name Organsaton Sgnature Date Author: Bennartz FUB Preusker FUB Schüller
IDENTIFICATION AND CORRECTION OF A COMMON ERROR IN GENERAL ANNUITY CALCULATIONS
IDENTIFICATION AND CORRECTION OF A COMMON ERROR IN GENERAL ANNUITY CALCULATIONS Chrs Deeley* Last revsed: September 22, 200 * Chrs Deeley s a Senor Lecturer n the School of Accountng, Charles Sturt Unversty,
PRIVATE SCHOOL CHOICE: THE EFFECTS OF RELIGIOUS AFFILIATION AND PARTICIPATION
PRIVATE SCHOOL CHOICE: THE EFFECTS OF RELIIOUS AFFILIATION AND PARTICIPATION Danny Cohen-Zada Department of Economcs, Ben-uron Unversty, Beer-Sheva 84105, Israel Wllam Sander Department of Economcs, DePaul
7.5. Present Value of an Annuity. Investigate
7.5 Present Value of an Annuty Owen and Anna are approachng retrement and are puttng ther fnances n order. They have worked hard and nvested ther earnngs so that they now have a large amount of money on
Estimation of Dispersion Parameters in GLMs with and without Random Effects
Mathematcal Statstcs Stockholm Unversty Estmaton of Dsperson Parameters n GLMs wth and wthout Random Effects Meng Ruoyan Examensarbete 2004:5 Postal address: Mathematcal Statstcs Dept. of Mathematcs Stockholm
The Current Employment Statistics (CES) survey,
Busness Brths and Deaths Impact of busness brths and deaths n the payroll survey The CES probablty-based sample redesgn accounts for most busness brth employment through the mputaton of busness deaths,
Time Value of Money. Types of Interest. Compounding and Discounting Single Sums. Page 1. Ch. 6 - The Time Value of Money. The Time Value of Money
Ch. 6 - The Tme Value of Money Tme Value of Money The Interest Rate Smple Interest Compound Interest Amortzng a Loan FIN21- Ahmed Y, Dasht TIME VALUE OF MONEY OR DISCOUNTED CASH FLOW ANALYSIS Very Important
Modeling Loss Given Default in SAS/STAT
Paper 1593-014 Modelng Loss Gven Default n SAS/SA Xao Yao, he Unversty of Ednburgh Busness School, UK Jonathan Crook, he Unversty of Ednburgh Busness School, UK Galna Andreeva, he Unversty of Ednburgh
Estimating Age-specific Prevalence of Testosterone Deficiency in Men Using Normal Mixture Models
Journal of Data Scence 7(2009), 203-217 Estmatng Age-specfc Prevalence of Testosterone Defcency n Men Usng Normal Mxture Models Yungta Lo Mount Sna School of Medcne Abstract: Testosterone levels declne
EXAMPLE PROBLEMS SOLVED USING THE SHARP EL-733A CALCULATOR
EXAMPLE PROBLEMS SOLVED USING THE SHARP EL-733A CALCULATOR 8S CHAPTER 8 EXAMPLES EXAMPLE 8.4A THE INVESTMENT NEEDED TO REACH A PARTICULAR FUTURE VALUE What amount must you nvest now at 4% compoune monthly
