Lecture 1. Introduction to Semiconductor Devices. Reading:
|
|
|
- Blake Fowler
- 9 years ago
- Views:
Transcription
1 Lecture 1 Introduction to Semiconductor Devices Reading: Notes and Anderson 2 Chapters ,
2 Atoms to Operational Amplifiers The goal of this course is to teach the fundamentals of non-linear circuit elements including diodes, LEDs, LASER diodes, transistors (BJT and FET), and advanced device concepts such as microwave compound semiconductors and state of the art devices. Due to the diverse coverage from various professors for ECE3040, you will repeat (for some) some of the material from Specifically, you will learn about the fundamentals of electron movement in semiconductor materials and develop this basic knowledge of how we can construct devices from these materials that can control the flow of electrons and light in useful ways.
3 Market Study Silicon is and will for a very long time be the dominant material used for electronics. However, MANY up and coming materials are slowly eating into silicon s dominance. Compound semiconductors Organic and compound semiconductors Compound semiconductors
4 Devices we will study Bold indicates devices covered in depth in ECE 3040 P-N diode, heterojunction diodes, ballistic diodes, Schottky barrier diodes, Metal-Semiconductor Contacts, LEDs, Lasers, Solar Cells, Photodetectors, BJT, HBT, MOSFET, MESFET, JFET, Polarization Based Devices (III-Nitrides HEMTs and Ferroelectric transistors), CCD, Microwave transistors, power transistors, organic semiconductors
5 Modern amplifiers consist of extremely small devices Transistors in the above image are only a few microns (µm or 1e-6 meters) on a side. Modern devices have lateral dimensions that are only fractions of a micron (~0.1 µm) and vertical dimensions that may be only a few atoms tall.
6 Famous Last Words: I only want to design computers. I do not need to know about atoms and electrons. --- A Doomed Computer Engineer Intel Develops World's Smallest, Fastest CMOS Transistor SANTA CLARA, Calif., Dec. 11, Intel Corporation researchers have achieved a significant breakthrough by building the world's smallest and fastest CMOS transistor. This breakthrough will allow Intel within the next five to 10 years to build microprocessors containing more than 400 million transistors, running at 10 gigahertz (10 billion cycles per second) and operating at less than one volt. The transistors feature structures just 30 nanometers in size and three atomic layers thick. (Note: A nanometer is onebillionth of a meter). Smaller transistors are faster, and fast transistors are the key building block for fast microprocessors, the brains of computers and countless other smart devices. These new transistors, which act like switches controlling the flow of electrons inside a microchip, could complete 400 million calculations in the blink an eye or finish two million calculations in the time it takes a speeding bullet to travel one inch. Scientists expect such powerful microprocessors to allow applications popular in science-fiction stories -- such as instantaneous, real-time voice translation -- to become an everyday reality. Researchers from Intel Labs are disclosing the details of this advance today in San Francisco at the International Electron Devices Meeting, the premier technical conference for semiconductor engineers and scientists. "This breakthrough will allow Intel to continue increasing the performance and reducing the cost of microprocessors well into the future," said Dr. Sunlin Chou, vice president and general manager of Intel's Technology and Manufacturing Group. "As our researchers venture into uncharted areas beyond the previously expected limits of silicon scaling, they find Moore's Law still intact." Intel researchers were able to build these ultra-small transistors by aggressively reducing all of their dimensions. The gate oxides used to build these transistors are just three atomic layers thick. More than 100,000 of these gates would need to be stacked to achieve the thickness of a sheet of paper. Also significant is that these experimental transistors, while featuring capabilities that are generations beyond the most advanced technologies used in manufacturing today, were built using the same physical structure as in today's computer chips. "Many experts thought it would be impossible to build CMOS transistors this small because of electrical leakage problems," noted Dr. Gerald Marcyk, director of Intel's Components Research Lab, Technology and Manufacturing Group. "Our research proves that these smaller transistors behave in the same way as today's devices and shows there are no fundamental barriers to producing these devices in high volume in the future. The most important thing about these 30 nanometer transistors is that they are simultaneously small and fast, and work at low voltage. Typically you can achieve two of the three, but delivering on all facets is a significant accomplishment." It's discoveries like these that make me excited about the future," added Chou. "It's one thing to achieve a great technological breakthrough. It's another to have one that is practical and will change everyone's lives. With Intel's 30 nanometer transistor, we have both." For more information on Intel Silicon Technology Research, please reference Intel's new Silicon Showcase at Intel, the world's largest chip maker, is also a leading manufacturer of computer, networking and communications products. Additional information about Intel is available at Source: Intel Web Page.
7 Control of Conductivity is the Key to Modern Electronic Devices Conductivity, σ, is the ease with which a given material conducts electricity. Ohms Law: V=IR or J=σE where J is current density and E is electric field. Metals: High conductivity Insulators: Low Conductivity Semiconductors: Conductivity can be varied by several orders of magnitude. It is the ability to control conductivity that make semiconductors useful as current/voltage control elements. Current/Voltage control is the key to switches (digital logic including microprocessors etc ), amplifiers, LEDs, LASERs, photodetectors, etc...
8 Classifications of Electronic Materials Electrical/Computer engineers like to classify materials based on electrical behavior (insulating, semi-insulating, and metals). Materials Engineers/Scientists classify materials based on bond type (covalent, ionic, metallic, or van der Waals), or structure (crystalline, polycrystalline, amorphous, etc...). In years, EE s may not be using semiconductors at all!! Polymers or bio-electronics may replace them! However the materials science will be the same!
9 Classifications of Electronic Materials For metals, the electrons can jump from the valence orbits (outermost core energy levels of the atom) to any position within the crystal (free to move throughout the crystal) with no extra energy needed to be supplied For insulators, it is VERY DIFFICULT for the electrons to jump from the valence orbits and requires a huge amount of energy to free the electron from the atomic core. For semiconductors, the electrons can jump from the valence orbits but does require a small amount of energy to free the electron from the atomic core.
10 Classifications of Electronic Materials Semiconductor materials are a sub-class of materials distinguished by the existence of a range of disallowed energies between the energies of the valence electrons (outermost core electrons) and the energies of electrons free to move throughout the material. The energy difference (energy gap or bandgap) between the states in which the electron is bound to the atom and when it is free to conduct throughout the crystal is related to the bonding strength of the material, it s density, the degree of ionicity of the bond, and the chemistry related to the valence of bonding. High bond strength materials (diamond, SiC, AlN, GaN etc...) tend to have large energy bandgaps. Lower bond strength materials (Si, Ge, etc...) tend to have smaller energy bandgaps.
11 Classifications of Electronic Materials More formally, the energy gap is derived from the Pauli exclusion principle, where no two electrons occupying the same space, can have the same energy. Thus, as atoms are brought closer towards one another and begin to bond together, their energy levels must split into bands of discrete levels so closely spaced in energy, they can be considered a continuum of allowed energy. Strongly bonded materials tend to have small interatomic distances between atoms. Thus, the strongly bonded materials can have larger energy bandgaps than do weakly bonded materials.
12 Material Classifications based on Bonding Method Bonds can be classified as metallic, Ionic, Covalent, and van der Waals.
13 Consider the case of the group 4 elements, all** covalently bonded Element Atomic Radius/Lattice Constant Bandgap (How closely spaced are the atoms?) C 0.91/3.56 Angstroms 5.47 ev Si 1.46/5.43 Angstroms 1.12 ev Ge 1.52/5.65 Angstroms 0.66 ev α-sn 1.72/6.49 Angstroms ~0.08 ev* Pb 1.81/** Angstroms Metal *Only has a measurable bandgap near 0K **Different bonding/crystal Structure due to unfilled higher orbital states
14 Classifications of Electronic Materials Types of Semiconductors: Elemental: Silicon or Germanium (Si or Ge) Compound: Gallium Arsenide (GaAs), Indium Phosphide (InP), Silicon Carbide (SiC), CdS and many others Note that the sum of the valence adds to 8, a complete outer shell. I.E. 4+4, 3+5, 2+6, etc...
15 Compound Semiconductors: Offer high performance (optical characteristics, higher frequency, higher power) than elemental semiconductors and greater device design flexibility due to mixing of materials. Binary: GaAs, SiC, etc... Classifications of Electronic Materials Ternary: Al x Ga 1-x As, In x Ga 1-x N where 0<=x<=1 Quaternary: In x Ga 1-x As y P 1-y where 0<=x<=1 and 0<=y<=1 Half the total number of atoms must come from group III (Column III) and the other half the atoms must come from group V (Column V) (or more precisely, IV/IV, III/V, or II/VI combinations) leading to the above reduced semiconductor notation. Example: Assume a compound semiconductor has 25% atomic concentrations of Ga, 25% atomic In and 50% atomic of N. The chemical formula would be: Ga 0.25 In 0.25 N 0.5 But the correct reduced semiconductor formula would be: Ga 0.5 In 0.5 N
16 Classifications of Electronic Materials Material Classifications based on Crystal Structure Amorphous Materials No discernible long range atomic order (no detectable crystal structure). Examples are silicon dioxide (SiO 2 ), amorphous-si, silicon nitride (Si 3 N 4 ), and others. Though usually thought of as less perfect than crystalline materials, this class of materials is extremely useful. Polycrystalline Materials Material consisting of several domains of crystalline material. Each domain can be oriented differently than other domains. However, within a single domain, the material is crystalline. The size of the domains may range from cubic nanometers to several cubic centimeters. Many semiconductors are polycrystalline as are most metals. Crystalline Materials Crystalline materials are characterized by an atomic symmetry that repeats spatially. The shape of the unit cell depends on the bonding of the material. The most common unit cell structures are diamond, zincblende (a derivative of the diamond structure), hexagonal, and rock salt (simple cubic).
17 Chemical Vapor Deposition Chemical gas sources are thermally, optically, or electrically (plasma) reacted with a surface to leave behind deposits with reaction byproducts pumped out of the reaction tube or vacuum chamber.
18 Four Basic CVD Reactors 1.) Atmospheric Pressure CVD (APCVD) Advantages: High deposition rates, simple, high throughput Disadvantages: Poor uniformity, purity is less than LPCVD Used mainly for thick oxides. 2.) Low Pressure CVD (LPCVD at ~0.2 to 20 torr) Advantages: Excellent uniformity, purity Disadvantages: Lower (but reasonable) deposition rates than APCVD Used for polysilicon deposition, dielectric layer deposition, and doped dielectric deposition. 3.) Metal Organic CVD (MOCVD) Advantages.: Highly flexible > can deposit semiconductors, metals, dielectrics Disadvantages: HIGHLY TOXIC!, Very expensive source material. Environmental disposal costs are high. Uses: Dominates optical (but not electronic) III-V technology, some metalization processes (W plugs and Cu) 4.) Plasma Enhance CVD Plasmas are used to force reactions that would not be possible at low temperature. Advantages.: Uses low temperatures necessary for rear end processing. Disadvantages: Plasma damage typically results. Used for dielectrics coatings.
19 LPCVD of Oxides Uses: Undoped: Insulator between multilevel metalization, implantation or diffusion mask, increase thermal oxide thickness for high voltage devices. Doped: P-doped is used as a multilevel metalization insulator, final passivation layer (prevents ionic diffusion), or a gettering source. Undoped Oxide Deposition Methods: Silane SiH 4 + O 2 > SiO 2 + 2H 2 < 500 C (contain H 2 O, SiH, and SiOH impurities) DCS (Dichlorosilane) SiCl 2 H 2 + 2N 2 O > SiO 2 + 2N 2 + 2HCL (etches) ~900 C (contains Cl) TEOS (tetraethoxysilane) Si(OC 2 H 5 ) 4 > SiO 2 + many byproducts C TEOS + Ozone (O 3 ) Ozone is more reactive and lowers deposition temperatures to ~400 C
20 LPCVD of Doped Oxides Doped Oxide Deposition Methods: PSG - Phosphorosilicate Glass 4PH 3 + 5O > 2P 2 O 5 + 6H 2 ~ C for flowed glass and <400 for passivation BPSG - Borophosphorosilicate Glass PH 3 + B 2 H 6 + O 2 > Complex B X P Y O Z ~ C, Flows better than PSG, but can absorb moisture Doped Oxides (glasses) can be made to flow or smooth out. This is particularly useful for smooth interconnects (prevents sharp edges which tend to break metal lines) or for partial global planarization for subsequent lithography steps.
21 Single Crystal Semiconductors (Epitaxy) Epitaxy We can grow* crystalline semiconductors by raising the temperature to allow more surface migration and by using a crystalline substrate (Si, GaAs, InP wafer, etc ) ===> Single crystal material mimicking the crystal structure of the layers below it. *Instead of the word deposit, we use grow to describe the tendency of the deposited material to mimic the crystal structure of crystalline substrate material.
22 Importance of lattice mismatch Epitaxy The lattice constant of the epitaxially grown layer needs to be close to the lattice constant of the substrate wafer. Otherwise the bonds can not stretch far enough and dislocations will result. Dislocation Strained but unbroken bond Strained (compressed) but unbroken bond Strained (elongated) but unbroken bond
23 Importance of lattice mismatch Epitaxy The lattice constant of the epitaxially grown layer needs to be close to the lattice constant of the substrate wafer. Otherwise the bonds can not stretch far enough and dislocations will result.
24 MOCVD Primarily used for II-VI, and III-V semiconductors, special metallic oxides and metals. Metal Organic Chemical Vapor Deposition (MOCVD) Many materials that we wish to deposit have very low vapor pressures and thus are difficult to transport via gases. One solution is to chemically attach the metal (Ga, Al, Cu, etc ) to an organic compound that has a very high vapor pressure. Organic compounds often have very high vapor pressure (for example, alcohol has a strong odor). The organic-metal bond is very weak and can be broken via thermal means on wafer, depositing the metal with the high vapor pressure organic being pumped away. Care must be taken to insure little of the organic byproducts are incorporated. Carbon contamination and unintentional Hydrogen incorporation are sometimes a problem. Human Hazard: As the human body absorbs organic compounds very easily, the metal organics are very easily absorbed by humans. Once in the body, the weak metal-organic bond is easily broken, thus, poisoning the body with heavy metals that often can not be easily removed by normal bodily functions. In extreme cases, blood transfusion is the only solution (if caught in time).
25 Commercial Thomas Swan MOCVD
26 MBE Molecular Beam Epitaxy (MBE) Dominates III-V electronic market and strong competitor in upper end LASER market Offers the highest purity material (due to UHV conditions) and the best layer control (almost any fraction of an atomic layer can be deposited and layers can be sequenced one layer at a time (for example Ga then As then Ga etc ). In an UHV chamber, ultra high purity materials are evaporated. Because of the very low pressure, the mean free path is very long (can be hundreds of meters). Thus, the evaporated material travels in a straight line (a molecular beam) toward a hot substrate. Once on the substrate, the atom or molecule moves around until it finds an atomic site to chemically bond to. Shutters can be used to turn the beam flux on and off The flux of atoms/molecules is controlled by the temperature of the effusion cell (evaporation source).
27 MBE Partially disassembled MBE system for clarity RHEED Gun Effusion Furnaces Gas Source (oxygen) Shutter mechanism
28 Commercial Veeco MBE
29 Molecular Beam Epitaxy (MBE)
30 Molecular Beam Epitaxy (MBE)
31 Crystalline Order Water Molecules, H 2 O, forming Snowflakes Atoms forming a Semiconductor Need two volunteers (demo on how a crystal forms naturally due to repulsive electronic bonds)
32 Crystal Growth: How do we get Single Crystalline Material? The vast majority of crystalline silicon produced is grown by the Czochralski growth method. In this method, a single crystal seed wafer is brought into contact with a liquid Silicon charge held in a crucible (typically SiO 2 but may have a lining of silicon-nitride or other material). The seed is pulled out of the melt, allowing Si to solidify. The solidified material bonds to the seed crystal in the same atomic pattern as the seed crystal.
33 Classifications of Electronic Materials Compound Semiconductors allow us to perform Bandgap Engineering by changing the energy bandgap as a function of position. This allows the electrons to see engineered potentials that guide electrons/holes in specific directions or even trap them in specific regions of devices designed by the electrical engineer. Example: Consider the simplified band diagram of a GaN/ Ga 0.75 In 0.25 N/ GaN LED structure. Electrons and holes can be localized (trapped) in a very small region enhancing the chance they will interact (recombine). This is great for light emitters! E conduction Light E valence
34 Classifications of Electronic Materials Compound Semiconductors allow us to perform Bandgap Engineering by changing the energy bandgap as a function of position. This allows the electrons to see engineered potentials that guide electrons/holes in specific directions or even trap them in specific regions of devices designed by the electrical engineer. Example: Consider the band Diagram of a GaAs MODFET. Electrons in the transistor channel can be confined in a very thin ( Angstroms) sheet known as a 2 dimensional electron gas (2DEG). This thin layer is very quickly (easily) depleted (emptied of electrons) by application of a gate voltage (repelling electrons) making such transistors very fast. This technology enables high speed communications, modern RADAR and similar applications.
35 How do we produce these Energy Engineered Structures and Devices? Epitaxial Semiconductor and Dielectric deposition Techniques: Epitaxial is derived from the Greek word for skin, more specifically thin skin. Thin layers of materials are deposited on a substrate Temperature and substrate determines the physical structure of the deposited films: Low Temperatures or non-crystalline substrate: Materials end up with amorphous or polycrystalline materials High Temperature AND Crystalline substrate Need to have an existing crystalline wafer so as to seed the crystallization process. Films that retain the substrates basic crystal structure are Epitaxial
36 Single Crystal Semiconductors (Epitaxy) Epitaxy We can grow* crystalline semiconductors by raising the temperature to allow more atom surface migration (movement of atoms due to thermal energy) and by using a crystalline substrate (Si, GaAs, InP wafer, etc ) to act as a template or crystalline pattern. This results in a single crystal material mimicking the crystal structure of the layers below it. *Instead of the word deposit, we use grow to describe the tendency of the deposited material to mimic the crystal structure of crystalline substrate material.
37 Advanced Semiconductor Technology Facility Dr. W. Alan Doolittle Contact Information: Phone and Fax: Mail: School of Electrical and Computer Engineering Georgia Institute of Technology 777 Atlantic Dr. Atlanta, GA
38 Molecular Beam Epitaxy (MBE) Molecular Beam Epitaxy (MBE) Dominates III-V electronic market and strong competitor in upper end LASER market Offers the highest purity material (due to UHV conditions) and the best layer control (almost any fraction of an atomic layer can be deposited and layers can be sequenced one layer at a time (for example Ga then As then Ga etc ). In an UHV chamber, ultra high purity materials are evaporated. Because of the very low pressure, the mean free path is very long (can be hundreds of meters). Thus, the evaporated material travels in a straight line (a molecular beam) toward a hot substrate resulting in highly efficient raw materials usage. Once on the substrate, the atom or molecule moves around until it finds an atomic site to chemically bond to. Shutters can be used to turn the beam flux on and off The flux of atoms/molecules is controlled by the temperature of the effusion cell (evaporation source).
39 Molecular Beam Epitaxy (MBE)
40 Molecular Beam Epitaxy (MBE)
41 How do we create Bandgap Engineered Structures? Epitaxy Repeating a crystalline structure by the atom by atom addition. Chemistry controls the epitaxy to insure that, for example, Ga bonds only to N and not Ga-Ga or N-N bonds*. *A small number of antisite defects (Ga-Ga or N-N bonds) actually do form but are typically in the parts per trillion concentration.
42 How do we create Bandgap Engineered Structures? Epitaxy
43 How do we create Bandgap Engineered Structures? Epitaxy
44 How do we create Bandgap Engineered Structures? Epitaxy
45 How do we create Bandgap Engineered Structures? Epitaxy
46 How do we create Bandgap Engineered Structures? Epitaxy
47 How do we create Bandgap Engineered Structures? Epitaxy
48 How do we create Bandgap Engineered Structures? Epitaxy
49 How do we create Bandgap Engineered Structures? Epitaxy
50 How do we create Bandgap Engineered Structures? Epitaxy
51 How do we create Bandgap Engineered Structures? Epitaxy
52 How do we create Bandgap Engineered Structures? Epitaxy
53 How do we create Bandgap Engineered Structures? Epitaxy E c E v GaN AlGaN AlGaN AlN GaN GaN GaN GaN
54 MBE Partially disassembled MBE system for clarity RHEED Gun Effusion Furnaces Gas Source (oxygen) Shutter mechanism
55 Commercial Veeco MBE
56 Alternative Methods: MOCVD Primarily used for II-VI, and III-V semiconductors, special metallic oxides and metals. Metal Organic Chemical Vapor Deposition (MOCVD) Many materials that we wish to deposit have very low vapor pressures and thus are difficult to transport via gases. One solution is to chemically attach the metal (Ga, Al, Cu, etc ) to an organic compound that has a very high vapor pressure. Organic compounds often have very high vapor pressure (for example, alcohol has a strong odor). The organic-metal bond is very weak and can be broken via thermal means on wafer, depositing the metal with the high vapor pressure organic being pumped away. Care must be taken to insure little of the organic byproducts are incorporated. Carbon contamination and unintentional Hydrogen incorporation are sometimes a problem. Human Hazard: As the human body absorbs organic compounds very easily, the metal organics are very easily absorbed by humans. Once in the body, the weak metal-organic bond is easily broken, thus, poisoning the body with heavy metals that often can not be easily removed by normal bodily functions. In extreme cases, blood transfusion is the only solution (if caught in time). Luckily, such poisoning is rare as the pyrophoric (flammable in air) nature of most metal organic means the victim is burned severely before he/she can be contaminated.
57 Commercial Thomas Swan MOCVD
58 Engineered Energy Behavior in Compound Semiconductors The potential distributions we will use in this class are all possible/common in device structures. Some may represent grown in potentials (quantum wells, etc...) or naturally occurring potentials (parabolic potentials often occur in nature lattice vibrations for example) including periodic potentials such as lattice atoms. E c Kinetic Energy Potential Energy E v E=-qV Arbitrary Reference Energy
59 So much for the introduction. Now on to the meat of the course.
Types of Epitaxy. Homoepitaxy. Heteroepitaxy
Epitaxy Epitaxial Growth Epitaxy means the growth of a single crystal film on top of a crystalline substrate. For most thin film applications (hard and soft coatings, optical coatings, protective coatings)
Crystalline solids. A solid crystal consists of different atoms arranged in a periodic structure.
Crystalline solids A solid crystal consists of different atoms arranged in a periodic structure. Crystals can be formed via various bonding mechanisms: Ionic bonding Covalent bonding Metallic bonding Van
Introduction to VLSI Fabrication Technologies. Emanuele Baravelli
Introduction to VLSI Fabrication Technologies Emanuele Baravelli 27/09/2005 Organization Materials Used in VLSI Fabrication VLSI Fabrication Technologies Overview of Fabrication Methods Device simulation
Conductivity of silicon can be changed several orders of magnitude by introducing impurity atoms in silicon crystal lattice.
CMOS Processing Technology Silicon: a semiconductor with resistance between that of conductor and an insulator. Conductivity of silicon can be changed several orders of magnitude by introducing impurity
Semiconductors, diodes, transistors
Semiconductors, diodes, transistors (Horst Wahl, QuarkNet presentation, June 2001) Electrical conductivity! Energy bands in solids! Band structure and conductivity Semiconductors! Intrinsic semiconductors!
Wafer Manufacturing. Reading Assignments: Plummer, Chap 3.1~3.4
Wafer Manufacturing Reading Assignments: Plummer, Chap 3.1~3.4 1 Periodic Table Roman letters give valence of the Elements 2 Why Silicon? First transistor, Shockley, Bardeen, Brattain1947 Made by Germanium
CONTENTS. Preface. 1.1.2. Energy bands of a crystal (intuitive approach)
CONTENTS Preface. Energy Band Theory.. Electron in a crystal... Two examples of electron behavior... Free electron...2. The particle-in-a-box approach..2. Energy bands of a crystal (intuitive approach)..3.
How MOCVD. Works Deposition Technology for Beginners
How MOCVD Works Deposition Technology for Beginners Contents MOCVD for Beginners...3 MOCVD A Definition...4 Planetary Reactor Technology...5 Close Coupled Showerhead Technology...6 AIXTRON MOCVD Production
Matter, Materials, Crystal Structure and Bonding. Chris J. Pickard
Matter, Materials, Crystal Structure and Bonding Chris J. Pickard Why should a theorist care? Where the atoms are determines what they do Where the atoms can be determines what we can do Overview of Structure
CRYSTAL DEFECTS: Point defects
CRYSTAL DEFECTS: Point defects Figure 10.15. Point defects. (a) Substitutional impurity. (b) Interstitial impurity. (c) Lattice vacancy. (d) Frenkeltype defect. 9 10/11/004 Ettore Vittone- Fisica dei Semiconduttori
Chapter 7-1. Definition of ALD
Chapter 7-1 Atomic Layer Deposition (ALD) Definition of ALD Brief history of ALD ALD process and equipments ALD applications 1 Definition of ALD ALD is a method of applying thin films to various substrates
Semiconductor doping. Si solar Cell
Semiconductor doping Si solar Cell Two Levels of Masks - photoresist, alignment Etch and oxidation to isolate thermal oxide, deposited oxide, wet etching, dry etching, isolation schemes Doping - diffusion/ion
Figure 10.1. Process flow from starting material to polished wafer.
Figure 10.1. Process flow from starting material to polished wafer. 1/11/003 Ettore Vittone- Fisica dei Semiconduttori - Lectio XI 1 Starting material: silicon dioxide (SiO ): pure form of sand (quartzite)
KINETIC MOLECULAR THEORY OF MATTER
KINETIC MOLECULAR THEORY OF MATTER The kinetic-molecular theory is based on the idea that particles of matter are always in motion. The theory can be used to explain the properties of solids, liquids,
Advanced VLSI Design CMOS Processing Technology
Isolation of transistors, i.e., their source and drains, from other transistors is needed to reduce electrical interactions between them. For technologies
Solar Photovoltaic (PV) Cells
Solar Photovoltaic (PV) Cells A supplement topic to: Mi ti l S Micro-optical Sensors - A MEMS for electric power generation Science of Silicon PV Cells Scientific base for solar PV electric power generation
Lecture 11. Etching Techniques Reading: Chapter 11. ECE 6450 - Dr. Alan Doolittle
Lecture 11 Etching Techniques Reading: Chapter 11 Etching Techniques Characterized by: 1.) Etch rate (A/minute) 2.) Selectivity: S=etch rate material 1 / etch rate material 2 is said to have a selectivity
Nanotechnologies for the Integrated Circuits
Nanotechnologies for the Integrated Circuits September 23, 2015 Dr. Bertrand Cambou Professor of Practice NAU, Cybersecurity School of Informatics, Computing, and Cyber-Systems Agenda The Market Silicon
Graphene a material for the future
Graphene a material for the future by Olav Thorsen What is graphene? What is graphene? Simply put, it is a thin layer of pure carbon What is graphene? Simply put, it is a thin layer of pure carbon It has
Modern Construction Materials Prof. Ravindra Gettu Department of Civil Engineering Indian Institute of Technology, Madras
Modern Construction Materials Prof. Ravindra Gettu Department of Civil Engineering Indian Institute of Technology, Madras Module - 2 Lecture - 2 Part 2 of 2 Review of Atomic Bonding II We will continue
III. Wet and Dry Etching
III. Wet and Dry Etching Method Environment and Equipment Advantage Disadvantage Directionality Wet Chemical Solutions Atmosphere, Bath 1) Low cost, easy to implement 2) High etching rate 3) Good selectivity
Chemical Synthesis. Overview. Chemical Synthesis of Nanocrystals. Self-Assembly of Nanocrystals. Example: Cu 146 Se 73 (PPh 3 ) 30
Chemical Synthesis Spontaneous organization of molecules into stable, structurally well-defined aggregates at the nanometer length scale. Overview The 1-100 nm nanoscale length is in between traditional
Lecture 12. Physical Vapor Deposition: Evaporation and Sputtering Reading: Chapter 12. ECE 6450 - Dr. Alan Doolittle
Lecture 12 Physical Vapor Deposition: Evaporation and Sputtering Reading: Chapter 12 Evaporation and Sputtering (Metalization) Evaporation For all devices, there is a need to go from semiconductor to metal.
Electron Beam and Sputter Deposition Choosing Process Parameters
Electron Beam and Sputter Deposition Choosing Process Parameters General Introduction The choice of process parameters for any process is determined not only by the physics and/or chemistry of the process,
An organic semiconductor is an organic compound that possesses similar
MSE 542 Final Term Paper Title: Organic Semiconductor for Flexible Electronics Name: Chunhung Huang Introduction: An organic semiconductor is an organic compound that possesses similar properties to inorganic
Implementation Of High-k/Metal Gates In High-Volume Manufacturing
White Paper Implementation Of High-k/Metal Gates In High-Volume Manufacturing INTRODUCTION There have been significant breakthroughs in IC technology in the past decade. The upper interconnect layers of
Lezioni di Tecnologie e Materiali per l Elettronica
Lezioni di Tecnologie e Materiali per l Elettronica Danilo Manstretta [email protected] microlab.unipv.it Outline Passive components Resistors Capacitors Inductors Printed circuits technologies
Solid State Detectors = Semi-Conductor based Detectors
Solid State Detectors = Semi-Conductor based Detectors Materials and their properties Energy bands and electronic structure Charge transport and conductivity Boundaries: the p-n junction Charge collection
Thin Is In, But Not Too Thin!
Thin Is In, But Not Too Thin! K.V. Ravi Crystal Solar, Inc. Abstract The trade-off between thick (~170 microns) silicon-based PV and thin (a few microns) film non-silicon and amorphous silicon PV is addressed
Photovoltaics photo volt Photovoltaic Cells Crystalline Silicon Cells Photovoltaic Systems
1 Photovoltaics Photovoltaic (PV) materials and devices convert sunlight into electrical energy, and PV cells are commonly known as solar cells. Photovoltaics can literally be translated as light-electricity.
Understanding the p-n Junction by Dr. Alistair Sproul Senior Lecturer in Photovoltaics The Key Centre for Photovoltaic Engineering, UNSW
Understanding the p-n Junction by Dr. Alistair Sproul Senior Lecturer in Photovoltaics The Key Centre for Photovoltaic Engineering, UNSW The p-n junction is the fundamental building block of the electronic
Volumes. Goal: Drive optical to high volumes and low costs
First Electrically Pumped Hybrid Silicon Laser Sept 18 th 2006 The information in this presentation is under embargo until 9/18/06 10:00 AM PST 1 Agenda Dr. Mario Paniccia Director, Photonics Technology
Graduate Student Presentations
Graduate Student Presentations Dang, Huong Chip packaging March 27 Call, Nathan Thin film transistors/ liquid crystal displays April 4 Feldman, Ari Optical computing April 11 Guerassio, Ian Self-assembly
Etching Etch Definitions Isotropic Etching: same in all direction Anisotropic Etching: direction sensitive Selectivity: etch rate difference between
Etching Etch Definitions Isotropic Etching: same in all direction Anisotropic Etching: direction sensitive Selectivity: etch rate difference between 2 materials Other layers below one being etch Masking
From Nano-Electronics and Photonics to Renewable Energy
From Nano-Electronics and Photonics to Renewable Energy Tom Smy Department of Electronics, Carleton University Questions are welcome! OUTLINE Introduction: to EE and Engineering Physics Renewable Energy
Arizona Institute for Renewable Energy & the Solar Power Laboratories
Arizona Institute for Renewable Energy & the Solar Power Laboratories International Photovoltaic Reliability Workshop July 29-31, Tempe AZ Christiana Honsberg, Stephen Goodnick, Stuart Bowden Arizona State
Type of Chemical Bonds
Type of Chemical Bonds Covalent bond Polar Covalent bond Ionic bond Hydrogen bond Metallic bond Van der Waals bonds. Covalent Bonds Covalent bond: bond in which one or more pairs of electrons are shared
Technology White Papers nr. 13 Paul Holister Cristina Román Vas Tim Harper
QUANTUM DOTS Technology White Papers nr. 13 Paul Holister Cristina Román Vas Tim Harper QUANTUM DOTS Technology White Papers nr. 13 Release Date: Published by Científica Científica, Ltd. www.cientifica.com
Vacuum Evaporation Recap
Sputtering Vacuum Evaporation Recap Use high temperatures at high vacuum to evaporate (eject) atoms or molecules off a material surface. Use ballistic flow to transport them to a substrate and deposit.
Yrd. Doç. Dr. Aytaç Gören
H2 - AC to DC Yrd. Doç. Dr. Aytaç Gören ELK 2018 - Contents W01 Basic Concepts in Electronics W02 AC to DC Conversion W03 Analysis of DC Circuits W04 Transistors and Applications (H-Bridge) W05 Op Amps
Lecture 030 DSM CMOS Technology (3/24/10) Page 030-1
Lecture 030 DSM CMOS Technology (3/24/10) Page 030-1 LECTURE 030 - DEEP SUBMICRON (DSM) CMOS TECHNOLOGY LECTURE ORGANIZATION Outline Characteristics of a deep submicron CMOS technology Typical deep submicron
Unit 12 Practice Test
Name: Class: Date: ID: A Unit 12 Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1) A solid has a very high melting point, great hardness, and
Name Class Date. In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question.
Assessment Chapter Test A Chapter: States of Matter In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. 1. The kinetic-molecular
Chapter 2. Atomic Structure and Interatomic Bonding
Chapter 2. Atomic Structure and Interatomic Bonding Interatomic Bonding Bonding forces and energies Primary interatomic bonds Secondary bonding Molecules Bonding Forces and Energies Considering the interaction
Fundamentals of Photovoltaic Materials
Fundamentals of Photovoltaic Materials National Solar Power Reasearch Institute, Inc. 12/21/98-1 - 12/21/98 Introduction Photovoltaics (PV) comprises the technology to convert sunlight directly into electricity.
Robert G. Hunsperger. Integrated Optics. Theory and Technology. Fourth Edition. With 195 Figures and 17 Tables. Springer
Robert G. Hunsperger Integrated Optics Theory and Technology Fourth Edition With 195 Figures and 17 Tables Springer Contents 1. Introduction 1 1.1 Advantages of Integrated Optics 2 1.1.1 Comparison of
Untitled Document. 1. Which of the following best describes an atom? 4. Which statement best describes the density of an atom s nucleus?
Name: Date: 1. Which of the following best describes an atom? A. protons and electrons grouped together in a random pattern B. protons and electrons grouped together in an alternating pattern C. a core
ELG4126: Photovoltaic Materials. Based Partially on Renewable and Efficient Electric Power System, Gilbert M. Masters, Wiely
ELG4126: Photovoltaic Materials Based Partially on Renewable and Efficient Electric Power System, Gilbert M. Masters, Wiely Introduction A material or device that is capable of converting the energy contained
VLSI Fabrication Process
VLSI Fabrication Process Om prakash 5 th sem ASCT, Bhopal [email protected] Manisha Kumari 5 th sem ASCT, Bhopal [email protected] Abstract VLSI stands for "Very Large Scale Integration". This
States of Matter CHAPTER 10 REVIEW SECTION 1. Name Date Class. Answer the following questions in the space provided.
CHAPTER 10 REVIEW States of Matter SECTION 1 SHORT ANSWER Answer the following questions in the space provided. 1. Identify whether the descriptions below describe an ideal gas or a real gas. ideal gas
University of California at Santa Cruz Electrical Engineering Department EE-145L: Properties of Materials Laboratory
University of California at Santa Cruz Electrical Engineering Department EE-145L: Properties of Materials Laboratory Lab 8: Optical Absorption Spring 2002 Yan Zhang and Ali Shakouri, 05/22/2002 (Based
CS257 Introduction to Nanocomputing
CS257 Introduction to Nanocomputing Overview of Crossbar-Based Computing John E Savage Overview Intro to NW growth methods Chemical vapor deposition and fluidic assembly Nano imprinting Nano stamping Four
AN900 APPLICATION NOTE
AN900 APPLICATION NOTE INTRODUCTION TO SEMICONDUCTOR TECHNOLOGY INTRODUCTION by Microcontroller Division Applications An integrated circuit is a small but sophisticated device implementing several electronic
6.772/SMA5111 - Compound Semiconductors Lecture 1 - The Compound Semiconductor Palette - Outline Announcements
6.772/SMA5111 - Compound Semiconductors Lecture 1 - The Compound Semiconductor Palette - Outline Announcements Handouts - General Information; Syllabus; Lecture 1 Notes Why are semiconductors useful to
Chapter 12 - Liquids and Solids
Chapter 12 - Liquids and Solids 12-1 Liquids I. Properties of Liquids and the Kinetic Molecular Theory A. Fluids 1. Substances that can flow and therefore take the shape of their container B. Relative
The MOSFET Transistor
The MOSFET Transistor The basic active component on all silicon chips is the MOSFET Metal Oxide Semiconductor Field Effect Transistor Schematic symbol G Gate S Source D Drain The voltage on the gate controls
ELEC 3908, Physical Electronics, Lecture 15. BJT Structure and Fabrication
ELEC 3908, Physical Electronics, Lecture 15 Lecture Outline Now move on to bipolar junction transistor (BJT) Strategy for next few lectures similar to diode: structure and processing, basic operation,
Introduction OLEDs OTFTs OPVC Summary. Organic Electronics. Felix Buth. Walter Schottky Institut, TU München. Joint Advanced Student School 2008
Felix Buth Joint Advanced Student School 2008 Outline 1 Introduction Difference organic/inorganic semiconductors From molecular orbitals to the molecular crystal 2 Organic Light Emitting Diodes Basic Principals
Chapter 10 CVD and Dielectric Thin Film
Chapter 10 CVD and Dielectric Thin Film 2006/5/23 1 Objectives Identify at least four CVD applications Describe CVD process sequence List the two deposition regimes and describe their relation to temperature
High Open Circuit Voltage of MQW Amorphous Silicon Photovoltaic Structures
High Open Circuit Voltage of MQW Amorphous Silicon Photovoltaic Structures ARGYRIOS C. VARONIDES Physics and EE Department University of Scranton 800 Linden Street, Scranton PA, 18510 United States Abstract:
ANSWER KEY. Energy Levels, Electrons and IONIC Bonding It s all about the Give and Take!
ANSWER KEY Energy Levels, Electrons and IONIC Bonding It s all about the Give and Take! From American Chemical Society Middle School Chemistry Unit: Chapter 4 Content Statements: Distinguish the difference
h e l p s y o u C O N T R O L
contamination analysis for compound semiconductors ANALYTICAL SERVICES B u r i e d d e f e c t s, E v a n s A n a l y t i c a l g r o u p h e l p s y o u C O N T R O L C O N T A M I N A T I O N Contamination
Sample Exercise 12.1 Calculating Packing Efficiency
Sample Exercise 12.1 Calculating Packing Efficiency It is not possible to pack spheres together without leaving some void spaces between the spheres. Packing efficiency is the fraction of space in a crystal
Solid-State Physics: The Theory of Semiconductors (Ch. 10.6-10.8) SteveSekula, 30 March 2010 (created 29 March 2010)
Modern Physics (PHY 3305) Lecture Notes Modern Physics (PHY 3305) Lecture Notes Solid-State Physics: The Theory of Semiconductors (Ch. 10.6-10.8) SteveSekula, 30 March 2010 (created 29 March 2010) Review
Composition of the Atmosphere. Outline Atmospheric Composition Nitrogen and Oxygen Lightning Homework
Molecules of the Atmosphere The present atmosphere consists mainly of molecular nitrogen (N2) and molecular oxygen (O2) but it has dramatically changed in composition from the beginning of the solar system.
Fabrication of PN-Junction Diode by IC- Fabrication process
Fabrication of PN-Junction Diode by IC- Fabrication process Shailesh siddha 1, Yashika Chander Pareek 2 M.Tech, Dept of Electronics & Communication Engineering, SGVU, Jaipur, Rajasthan, India 1 PG Student,
Optical Hyperdoping: Transforming Semiconductor Band Structure for Solar Energy Harvesting
Optical Hyperdoping: Transforming Semiconductor Band Structure for Solar Energy Harvesting 3G Solar Technologies Multidisciplinary Workshop MRS Spring Meeting San Francisco, CA, 5 April 2010 Michael P.
The Physics of Energy sources Renewable sources of energy. Solar Energy
The Physics of Energy sources Renewable sources of energy Solar Energy B. Maffei [email protected] Renewable sources 1 Solar power! There are basically two ways of using directly the radiative
Physics 441/2: Transmission Electron Microscope
Physics 441/2: Transmission Electron Microscope Introduction In this experiment we will explore the use of transmission electron microscopy (TEM) to take us into the world of ultrasmall structures. This
Chapter 11 PVD and Metallization
Chapter 11 PVD and Metallization 2006/5/23 1 Metallization Processes that deposit metal thin film on wafer surface. 2006/5/23 2 1 Metallization Definition Applications PVD vs. CVD Methods Vacuum Metals
ATOMS AND BONDS. Bonds
ATOMS AND BONDS Atoms of elements are the simplest units of organization in the natural world. Atoms consist of protons (positive charge), neutrons (neutral charge) and electrons (negative charge). The
CHAPTER 6 Chemical Bonding
CHAPTER 6 Chemical Bonding SECTION 1 Introduction to Chemical Bonding OBJECTIVES 1. Define Chemical bond. 2. Explain why most atoms form chemical bonds. 3. Describe ionic and covalent bonding.. 4. Explain
The Periodic Table: Periodic trends
Unit 1 The Periodic Table: Periodic trends There are over one hundred different chemical elements. Some of these elements are familiar to you such as hydrogen, oxygen, nitrogen and carbon. Each one has
7. Gases, Liquids, and Solids 7.1 Kinetic Molecular Theory of Matter
7. Gases, Liquids, and Solids 7.1 Kinetic Molecular Theory of Matter Kinetic Molecular Theory of Matter The Kinetic Molecular Theory of Matter is a concept that basically states that matter is composed
BOND TYPES: THE CLASSIFICATION OF SUBSTANCES
BOND TYPES: THE CLASSIFICATION OF SUBSTANCES Every (pure) substance has a unique set of intrinsic properties which distinguishes it from all other substances. What inferences, if any can be made from a
Chapter 1 Introduction to The Semiconductor Industry 2005 VLSI TECH. 1
Chapter 1 Introduction to The Semiconductor Industry 1 The Semiconductor Industry INFRASTRUCTURE Industry Standards (SIA, SEMI, NIST, etc.) Production Tools Utilities Materials & Chemicals Metrology Tools
ELECTRICAL CONDUCTION
Chapter 12: Electrical Properties Learning Objectives... How are electrical conductance and resistance characterized? What are the physical phenomena that distinguish conductors, semiconductors, and insulators?
CHAPTER 10: INTERMOLECULAR FORCES: THE UNIQUENESS OF WATER Problems: 10.2, 10.6,10.15-10.33, 10.35-10.40, 10.56-10.60, 10.101-10.
CHAPTER 10: INTERMOLECULAR FORCES: THE UNIQUENESS OF WATER Problems: 10.2, 10.6,10.15-10.33, 10.35-10.40, 10.56-10.60, 10.101-10.102 10.1 INTERACTIONS BETWEEN IONS Ion-ion Interactions and Lattice Energy
Picosun World Forum, Espoo 9.6.2009. 35 years of ALD. Tuomo Suntola, Picosun Oy. Tuomo Suntola, Picosun Oy
35 years of ALD Conventional methods for compound film deposition Heat treatment Final crystallization Nucleation Vacuum evaporation Sputtering CVD Buildup of thin film in source controlled deposition
Tecnologie convenzionali nell approccio top-down; I: metodi e problematiche per la deposizione di film sottili
LS Scienza dei Materiali - a.a. 2005/06 Fisica delle Nanotecnologie part 8 Version 4, Dec 2005 Francesco Fuso, tel 0502214305, 0502214293 - [email protected] http://www.df.unipi.it/~fuso/dida Tecnologie
Fabrication and Manufacturing (Basics) Batch processes
Fabrication and Manufacturing (Basics) Batch processes Fabrication time independent of design complexity Standard process Customization by masks Each mask defines geometry on one layer Lower-level masks
CHAPTER 3: MATTER. Active Learning Questions: 1-6, 9, 13-14; End-of-Chapter Questions: 1-18, 20, 24-32, 38-42, 44, 49-52, 55-56, 61-64
CHAPTER 3: MATTER Active Learning Questions: 1-6, 9, 13-14; End-of-Chapter Questions: 1-18, 20, 24-32, 38-42, 44, 49-52, 55-56, 61-64 3.1 MATTER Matter: Anything that has mass and occupies volume We study
7.4. Using the Bohr Theory KNOW? Using the Bohr Theory to Describe Atoms and Ions
7.4 Using the Bohr Theory LEARNING TIP Models such as Figures 1 to 4, on pages 218 and 219, help you visualize scientific explanations. As you examine Figures 1 to 4, look back and forth between the diagrams
Adsorption at Surfaces
Adsorption at Surfaces Adsorption is the accumulation of particles (adsorbate) at a surface (adsorbent or substrate). The reverse process is called desorption. fractional surface coverage: θ = Number of
COURSE: PHYSICS DEGREE: COMPUTER ENGINEERING year: 1st SEMESTER: 1st
COURSE: PHYSICS DEGREE: COMPUTER ENGINEERING year: 1st SEMESTER: 1st WEEKLY PROGRAMMING WEE K SESSI ON DESCRIPTION GROUPS GROUPS Special room for LECTU PRAC session RES TICAL (computer classroom, audiovisual
AP Chemistry A. Allan Chapter 8 Notes - Bonding: General Concepts
AP Chemistry A. Allan Chapter 8 Notes - Bonding: General Concepts 8.1 Types of Chemical Bonds A. Ionic Bonding 1. Electrons are transferred 2. Metals react with nonmetals 3. Ions paired have lower energy
Low-cost Printed Electronic Nose Gas Sensors for Distributed Environmental Monitoring
Low-cost Printed Electronic Nose Gas Sensors for Distributed Environmental Monitoring Vivek Subramanian Department of Electrical Engineering and Computer Sciences University of California, Berkeley RD83089901
Which substance contains positive ions immersed in a sea of mobile electrons? A) O2(s) B) Cu(s) C) CuO(s) D) SiO2(s)
BONDING MIDTERM REVIEW 7546-1 - Page 1 1) Which substance contains positive ions immersed in a sea of mobile electrons? A) O2(s) B) Cu(s) C) CuO(s) D) SiO2(s) 2) The bond between hydrogen and oxygen in
Classification of Chemical Substances
Classification of Chemical Substances INTRODUCTION: Depending on the kind of bonding present in a chemical substance, the substance may be called ionic, molecular or metallic. In a solid ionic compound
Implementation of Short Reach (SR) and Very Short Reach (VSR) data links using POET DOES (Digital Opto- electronic Switch)
Implementation of Short Reach (SR) and Very Short Reach (VSR) data links using POET DOES (Digital Opto- electronic Switch) Summary POET s implementation of monolithic opto- electronic devices enables the
How do single crystals differ from polycrystalline samples? Why would one go to the effort of growing a single crystal?
Crystal Growth How do single crystals differ from polycrystalline samples? Single crystal specimens maintain translational symmetry over macroscopic distances (crystal dimensions are typically 0.1 mm 10
Solidification, Crystallization & Glass Transition
Solidification, Crystallization & Glass Transition Cooling the Melt solidification Crystallization versus Formation of Glass Parameters related to the formaton of glass Effect of cooling rate Glass transition
Intel s Revolutionary 22 nm Transistor Technology
Intel s Revolutionary 22 nm Transistor Technology Mark Bohr Intel Senior Fellow Kaizad Mistry 22 nm Program Manager May, 2011 1 Key Messages Intel is introducing revolutionary Tri-Gate transistors on its
Substrate maturity and readiness in large volume to support mass adoption of ULP FDSOI platforms. SOI Consortium Conference Tokyo 2016
Substrate maturity and readiness in large volume to support mass adoption of ULP FDSOI platforms Christophe Maleville Substrate readiness 3 lenses view SOI Consortium C1 - Restricted Conference Tokyo 2016
Contamination. Cleanroom. Cleanroom for micro and nano fabrication. Particle Contamination and Yield in Semiconductors.
Fe Particles Metallic contaminants Organic contaminants Surface roughness Au Particles SiO 2 or other thin films Contamination Na Cu Photoresist Interconnect Metal N, P Damages: Oxide breakdown, metal
CHAPTER 7 THE DEHYDRATION AND SWEETENING OF NATURAL GAS
CHAPTER 7 THE DEHYDRATION AND SWEETENING OF NATURAL GAS Natural gases either from natural production or storage reservoirs contain water, which condense and form solid gas hydrates to block pipeline flow
A Remote Plasma Sputter Process for High Rate Web Coating of Low Temperature Plastic Film with High Quality Thin Film Metals and Insulators
A Remote Plasma Sputter Process for High Rate Web Coating of Low Temperature Plastic Film with High Quality Thin Film Metals and Insulators Dr Peter Hockley and Professor Mike Thwaites, Plasma Quest Limited
Lecture 15 - application of solid state materials solar cells and photovoltaics. Copying Nature... Anoxygenic photosynthesis in purple bacteria
Lecture 15 - application of solid state materials solar cells and photovoltaics. Copying Nature... Anoxygenic photosynthesis in purple bacteria Simple example, but still complicated... Photosynthesis is
