Fundamentals of Photovoltaic Materials
|
|
|
- Rhoda Parker
- 10 years ago
- Views:
Transcription
1 Fundamentals of Photovoltaic Materials National Solar Power Reasearch Institute, Inc. 12/21/ /21/98
2 Introduction Photovoltaics (PV) comprises the technology to convert sunlight directly into electricity. The term photo means light and voltaic, electricity. A photovoltaic (PV) cell, also known as solar cell, is a semiconductor device that generates electricity when light falls on it. Although photovoltaic effect was observed in 1839 by the French scientist Edmund Becquerel, it was not fully comprehensible until the development of quantum theory of light and solid state physics in early to middle 1900s. Since its first commercial use in powering orbital satellites of the US space programs in the 1950s, PV has made significant progress with total U.S. photovoltaic module and cell shipments reaching $131 million dollars in While most PV cells in use today are silicon-based, cells made of other semiconductor materials are expected to surpass silicon PV cells in performance and cost and become viable competitors in the PV marketplace. This paper surveys the major types of PV cell materials including silicon- and non-silicon-based materials, providing an overview of the advantages and limitations of each type of materials. Photovoltaics and Photovoltaic Cells When sunlight strikes a PV cell, the photons of the absorbed sunlight dislodge the electrons from the atoms of the cell. The free electrons then move through the cell, creating and filling in holes in the cell. It is this movement of electrons and holes that generates electricity. The physical process in which a PV cell converts sunlight into electricity is known as the photovoltaic effect. One single PV cell produces up to 2 watts of power, too small even for powering pocket calculators or wristwatches. To increase power output, many PV cells are connected together to form modules, which are further assembled into larger units called arrays. This modular nature of /21/98
3 PV enables designers to build PV systems with various power output for different types of applications. A complete PV system consists not only of PV modules, but also the balance of system or BOS - - the support structures, wiring, storage, conversion devices, etc. i.e. everything else in a PV system except the PV modules. Two major types of PV systems are available in the marketplace today: flat plate and concentrators. As the most prevalent type of PV systems, flat plate systems build the PV modules on a rigid and flat surface to capture sunlight. Concentrator systems use lenses to concentrate sunlight on the PV cells and increase the cell power output. Comparing the two systems, flat plate systems are typically less complicated but employ a larger number of cells while the concentrator systems use smaller areas of cells but require more sophisticated and expensive tracking systems. Unable to focus diffuse sunlight, concentrator systems do not work under cloudy conditions. Types of PV cell materials PV cells are made of semiconductor materials. The major types of materials are crystalline and thin films, which vary from each other in terms of light absorption efficiency, energy conversion efficiency, manufacturing technology and cost of production. The rest of the paper discusses the characteristics, advantages and limitations of these two major types of cell materials. 1. Crystalline Materials 1. 1 Single-crystal silicon Single-crystal silicon cells are the most common in the PV industry. The main technique for producing single-crystal silicon is the Czochralski (CZ) method. High-purity polycrystalline is melted in a quartz crucible. A single-crystal silicon seed is dipped into this molten mass of polycrystalline. As the seed is pulled /21/98
4 slowly from the melt, a single-crystal ingot is formed. The ingots are then sawed into thin wafers about micrometers thick (1 micrometer = 1/1,000,000 meter). The thin wafers are then polished, doped, coated, interconnected and assembled into modules and arrays. A single-crystal silicon has a uniform molecular structure. Compared to noncrystalline materials, its high uniformity results in higher energy conversion efficiency -- the ratio of electric power produced by the cell to the amount of available sunlight power i.e. power-out divided by power-in. The higher a PV cell s conversion efficiency, the more electricity it generates for a given area of exposure to the sunlight. The conversion efficiency for single-silicon commercial modules ranges between 15-20%. Not only are they energy efficient, single-silicon modules are highly reliable for outdoor power applications. The average price for single-crystal modules is $3.97 per peak watt in (Renewable Energy Annual 1997). About half of the manufacturing cost comes from wafering, a time-consuming and costly batch process in which ingots are cut into thin wafers with a thickness no less than 200 micrometers thick. If the wafers are too thin, the entire wafer will break in wafering and subsequent processing. Due to this thickness requirement, a PV cell requires a significant amount of raw silicon and half of this expensive material is lost as sawdust in wafering Polycrystalline silicon Consisting of small grains of single-crystal silicon, polycrystalline PV cells are less energy efficient than single-crystalline silicon PV cells. The grain boundaries in polycrystalline silicon hinder the flow of electrons and reduce the power output of 1 Department of Energy, Renewable Energy Annual 1997, Vol 1, Chapter 2, Table /21/98
5 the cell. The energy conversion efficiency for a commercial module made of polycrystalline silicon ranges between 10 to 14%. A common approach to produce polycrystalline silicon PV cells is to slice thin wafers from blocks of cast polycrystalline silicon. Another more advanced approach is the ribbon growth method in which silicon is grown directly as thin ribbons or sheets with the approach thickness for making PV cells. Since no sawing is needed, the manufacturing cost is lower. The most commercially developed ribbon growth approach is EFG (edge-defined film-fed growth). Compared to single-crystalline silicon, polycrystalline silicon material is stronger and can be cut into one-third the thickness of single-crystal material. It also has slightly lower wafer cost and less strict growth requirements. However, their lower manufacturing cost is offset by the lower cell efficiency. The average price for a polycrystalline module made from cast and ribbon is $3.92 per peak watt in , slightly lower than that of a single-crystal module Gallium Arsenide (GaAs) A compound semiconductor made of two elements: gallium (Ga) and arsenic (As), GaAs has a crystal structure similar to that of silicon. An advantage of GaAs is that it has high level of light absorptivity. To absorb the same amount of sunlight, GaAs requires only a layer of few micrometers thick while crystalline silicon requires a wafer of about micrometers thick. 3 Also, GaAs has a much higher energy conversion efficiency than crystal silicon, reaching about 25 to 30%. 2 Department of Energy, Renewable Energy Annual 1997, Vol 1, Chapter 2, Table The concept of light absorptivity is different from that of energy conversion efficiency. Light absorptivity measures how much usable solar energy is absorbed by a given area of material. The greater number of different wavelengths of the solar spectrum a material can absorb, the higher the light absorptivity. For the sunlight that is absorbed by /21/98
6 Its high resistance to heat makes it an ideal choice for concentrator systems in which cell temperatures are high. GaAs is also popular in space applications where strong resistance radiation damage and high cell efficiency are required. The biggest drawback of GaAs PV cells is the high cost of the single-crystal substrate that GaAs is grown on. Therefore it is most often used in concentrator systems where only a small area of GaAs cells is needed. 2. Thin Film Materials In a thin-film PV cell, a thin semiconductor layer of PV materials is deposited on low-cost supporting layer such as glass, metal or plastic foil. Since thin-film materials have higher light absorptivity than crystalline materials, the deposited layer of PV materials is extremely thin, from a few micrometers to even less than a micrometer (a single amorphous cell can be as thin as 0.3 micrometers). Thinner layers of material yield significant cost saving. Also, the deposition techniques in which PV materials are sprayed directly onto glass or metal substrate are cheaper. So the manufacturing process is faster, using up less energy and mass production is made easier than the ingot-growth approach of crystalline silicon. However, thin film PV cells suffer from poor cell conversion efficiency due to non-singlecrystal structure, requiring larger array areas and increasing area-related costs such as mountings. Constituting about 4% of total PV module shipments of US 4, the PV industry sees great potentials of thin-film technology to achieve low-cost PV electricity. Materials used for thin film PV modules are as follows: the material, how much of the sunlight can be successfully converted into electricity is measured by the concept of energy conversion efficiency. 4 Department of Energy, Renewable Energy Annual 1997, Vol 1, Chapter 2, Table /21/98
7 2. 1 Amorphous Silicon (a-si) Used mostly in consumer electronic products which require lower power output and cost of production, amorphous silicon has been the dominant thin-film PV material since it was first discovered in Amorphous silicon is a non-crystalline form of silicon i.e. its silicon atoms are disordered in structure. A significant advantage of a-si is its high light absorptivity, about 40 times higher than that of single-crystal silicon. Therefore only a thin layer of a-si is sufficient for making PV cells (about 1 micrometer thick as compared to 200 or more micrometers thick for crystalline silicon cells). Also, a- Si can be deposited on various low-cost substrates, including steel, glass and plastic, and the manufacturing process requires lower temperatures and thus less energy. So the total material costs and manufacturing costs are lower per unit area as compared to those of crystalline silicon cells. Despite the promising economic advantages, a-si still has two major roadblocks to overcome. One is the low cell energy conversion efficiency, ranging between 5-9%, and the other is the outdoor reliability problem in which the efficiency degrades within a few months of exposure to sunlight, losing about 10 to 15%. The average price for a a-si module cost about $7 per watt in Cadmium Telluride (CdTe) As a polycrystalline semiconductor compound made of cadmium and tellurium, CdTe has a high light absorptivity level -- only about a micrometer thick can absorb 90% of the solar spectrum. Another advantage is that it is relatively easy and cheap 5 Department of Energy, Renewable Energy Annual 1997, Vol 1, Chapter 2, Table /21/98
8 to manufacture by processes such as high-rate evaporation, spraying or screen printing. The conversion efficiency for a CdTe commercial module is about 7%, similar to that of a-si. The instability of cell and module performance is one of the major drawbacks of using CdTe for PV cells. Another disadvantage is that cadmium is a toxic substance. Although very little cadmium is used in CdTe modules, extra precautions have to be taken in manufacturing process Copper Indium Diselenide (CuInSe 2, or CIS) A polycrystalline semiconductor compound of copper, indium and selnium, CIS has been one of the major research areas in the thin film industry. The reason for it to receive so much attention is that CIS has the highest research energy conversion efficiency of 17.7% in 1996 is not only the best among all the existing thin film materials, but also came close to the 18% research efficiency of the polycrystalline silicon PV cells. (A prototype CIS power module has a conversion efficiency of 10%.) Being able to deliver such high energy conversion efficiency without suffering from the outdoor degradation problem, CIS has demonstrated that thin film PV cells are a viable and competitive choice for the solar industry in the future. CIS is also one of the most light-absorbent semiconductors micrometers can absorb 90% of the solar spectrum. CIS is an efficient but complex material. Its complexity makes it difficult to manufacture. Also, safety issues might be another concern in the manufacturing process as it involves hydrogen selenide, an extremely toxic gas. So far, CIS is not /21/98
9 commercially available yet although Siemens Solar has plans to commercialize CIS thin-film PV modules. Conclusion Crystalline silicon has been the workhorse of the PV cells for the past two decades. However, recent progress in the thin-films technology has led many industry experts to believe that thin-films PV cells will eventually dominate the marketplace one day and realize the goals of PV -- a low price and reliable source of energy supply. References Berger, John J. Charging Ahead: The Business of Renewable Energy and What It Means for America. New York: Henry Holt and Company Boyle, Godfrey, ed. Renewable Energy: Power for a Sustainable Future. UK: Oxford University Press Goetzberger, Adolf., Knobloch, Joachim., and Voss, Bernhard. Crystalline Silicon Solar Cells. England: John Wiley & Sons, Howes, Ruth., and Fainberg, Anthony. The Energy Sourcebook: A Guide to Technology, Resources, and Policy. American Institute of Physics, New York Johansson, Thomas B., Kelly, Henry., Reddy, Amulya K.N. and Williams, Robert H. eds. Renewable Energy: Sources for Fuels and Electricity. Washing DC: Island Press, Nansen, Ralph. Sun Power: The Global Solution for the Coming Energy Crisis. Ocean Press, Washington, Partain, Larry D, ed. Solar Cells and Their Applications. New York: John Wiley & Sons, /21/98
10 Zweibel, Ken. Harnessing Solar Power: The Photovoltaics Challenge. New York: Plenum Press, Department of Energy. Renewable Energy Annual Vol I. Washington, DC: Zweibel, Ken. Thin Films: Past, Present, Future. Progress in Photovoltaics 3, no. 5 (Sept/Oct 1995, revised April 1997) /21/98
Solar Photovoltaic (PV) Cells
Solar Photovoltaic (PV) Cells A supplement topic to: Mi ti l S Micro-optical Sensors - A MEMS for electric power generation Science of Silicon PV Cells Scientific base for solar PV electric power generation
ELG4126: Photovoltaic Materials. Based Partially on Renewable and Efficient Electric Power System, Gilbert M. Masters, Wiely
ELG4126: Photovoltaic Materials Based Partially on Renewable and Efficient Electric Power System, Gilbert M. Masters, Wiely Introduction A material or device that is capable of converting the energy contained
Information sheet. 1) Solar Panels - Basics. 2) Solar Panels Functionality
1) Solar Panels - Basics A solar cell, sometimes called a photovoltaic cell, is a device that converts light energy into electrical energy. A single solar cell creates a very small amount of energy so
Photovoltaics photo volt Photovoltaic Cells Crystalline Silicon Cells Photovoltaic Systems
1 Photovoltaics Photovoltaic (PV) materials and devices convert sunlight into electrical energy, and PV cells are commonly known as solar cells. Photovoltaics can literally be translated as light-electricity.
Thin Is In, But Not Too Thin!
Thin Is In, But Not Too Thin! K.V. Ravi Crystal Solar, Inc. Abstract The trade-off between thick (~170 microns) silicon-based PV and thin (a few microns) film non-silicon and amorphous silicon PV is addressed
SOLAR ELECTRICITY: PROBLEM, CONSTRAINTS AND SOLUTIONS
SOLAR ELECTRICITY: PROBLEM, CONSTRAINTS AND SOLUTIONS The United States generates over 4,110 TWh of electricity each year, costing $400 billion and emitting 2.5 billion metric tons of carbon dioxide (Yildiz,
Photovoltaic Power: Science and Technology Fundamentals
Photovoltaic Power: Science and Technology Fundamentals Bob Clark-Phelps, Ph.D. Evergreen Solar, Inc. Renewable Energy Seminar, Nov. 2, 2006 Photovoltaic Principle Energy Conduction Band electron Energy
PV Energy Payback. by Justine Sanchez. Single-Crystalline
Single-Crystalline PV Energy Payback by Justine Sanchez Photovoltaic technology is a fantastic miracle of science that silently converts sunlight into streaming electrons that can be used to do work. While
Solar Energy. Solar Energy range. NSG TEC Pilkington Microwhite Pilkington Optiwhite Pilkington Sunplus
Solar Energy Solar Energy range NSG TEC Pilkington Microwhite Pilkington Optiwhite Pilkington Sunplus Moving from hydrocarbon dependency to renewable energy The use of solar energy glass and the NSG Group
What is Solar? The word solar is derived from the Latin word sol (the sun, the Roman sun god) and refers to things and methods that relate to the sun.
What is Solar? The word solar is derived from the Latin word sol (the sun, the Roman sun god) and refers to things and methods that relate to the sun. What is the solar industry? The solar industry is
- SOLAR ENERGY WHITE PAPER - WHERE WE ARE NOW AND WHAT S AHEAD
u - SOLAR ENERGY WHITE PAPER - WHERE WE ARE NOW AND WHAT S AHEAD A summary provided by Platinum Sponsor Natcore Technology, Inc. Dr. Dennis J. Flood, CTO Presented at New Orleans Investment Conference
Solar Energy Systems
Solar Energy Systems Energy Needs Today s global demand for energy is approximately 15 terawatts and is growing rapidly Much of the U.S. energy needs are now satisfied from petroleum (heating, cooling,
Photovoltaic System Technology
Photovoltaic System Technology Photovoltaic Cells What Does Photovoltaic Mean? Solar electricity is created using photovoltaic cells (or PV cells). The word photovoltaic is made up of two words: photo
From Nano-Electronics and Photonics to Renewable Energy
From Nano-Electronics and Photonics to Renewable Energy Tom Smy Department of Electronics, Carleton University Questions are welcome! OUTLINE Introduction: to EE and Engineering Physics Renewable Energy
Advantages and challenges of silicon in the photovoltaic cells
Final Term Paper Advantages and challenges of silicon in the photovoltaic cells by Vishal Bharam Due Day: 4 th May 2012 Abstract Due to the high energy demands followed by the crisis of petroleum, the
Solar Solutions and Large PV Power Plants. Oscar Araujo Business Development Director - Americas
Solar Solutions and Large PV Power Plants Oscar Araujo Business Development Director - Americas Solar Business of Schneider Electric The Solar Business of Schneider Electric is focused on designing and
New materials for PV Mirjam Theelen
New materials for Mirjam Theelen 2 A little bit about myself Born in Eindhoven 2001-2007 Study chemistry in Nijmegen Solid State Chemistry Physical Chemistry 2007-present Scientist at TNO (Eindhoven) Research
Tel: 01665833270 / mob: 07709165734 Email: [email protected] Solar PV Information Pack
Robert Porteous Roofing, scaffolding & Solar PV specialists Tel: 01665833270 / mob: 07709165734 Email: [email protected] Solar PV Information Pack About Our company: Our company is an MCS accredited
VC Investment into Thin Film Solar Photovoltaics where is it going and why?
VC Investment into Thin Film Solar Photovoltaics where is it going and why? Nicholas Querques*, Pradeep Haldar**, Unnikrishnan Pillai*** College of Nanoscale Science and Engineering, University at Albany
A new sort of solar panel is less fussy about where the sun shines from
Solar energy Tubular sunshine Oct 9th 2008 From The Economist print edition A new sort of solar panel is less fussy about where the sun shines from SOLAR power should be a cheap and simple way of making
Introduction to VLSI Fabrication Technologies. Emanuele Baravelli
Introduction to VLSI Fabrication Technologies Emanuele Baravelli 27/09/2005 Organization Materials Used in VLSI Fabrication VLSI Fabrication Technologies Overview of Fabrication Methods Device simulation
Solar power Availability of solar energy
Solar Energy Solar Energy is radiant energy produced in the sun as a result of nuclear fusion reactions. It is transmitted to the earth through space by electromagnetic radiation in quanta of energy called
Solar Energy Commercial Applications. Agenda. Venture Catalyst Inc. Intro. Opportunity. Applications. Financing. How to start
Solar Energy Commercial Applications Valerie Rauluk Venture Catalyst Inc. [email protected] Solar America Cities Briefing June 23, 2009 Agenda Intro Opportunity Applications Financing How to start 2
MORE POWER. A BETTER INVESTMENT.
SUNPOWERCORP.COM US HEADQUARTERS SunPower Corporation 3939 N. 1st Street San Jose, California 95134 USA 1-800-SUNPOWER sunpowercorp.com MORE POWER. A BETTER INVESTMENT. Established Incorporated in 1985
Silicon Wafer Solar Cells
Silicon Wafer Solar Cells Armin Aberle Solar Energy Research Institute of Singapore (SERIS) National University of Singapore (NUS) April 2009 1 1. PV Some background Photovoltaics (PV): Direct conversion
University of Minnesota Guidebook to Small-Scale Renewable Energy Systems for Homes and Businesses
Table of Contents University of Minnesota Guidebook to Small-Scale Renewable Energy Systems for Homes and Businesses West Central Research and Outreach Center July, 2012 Author: Eric Buchanan, Renewable
COMPETITIVE SOLAR TECHNOLOGIES
COMPETITIVE SOLAR TECHNOLOGIES June 25, 2008 The eventual market will be driven by the levelized cost of energy. At this early development stage, competition is measured on the basis of technology and
Wafer Manufacturing. Reading Assignments: Plummer, Chap 3.1~3.4
Wafer Manufacturing Reading Assignments: Plummer, Chap 3.1~3.4 1 Periodic Table Roman letters give valence of the Elements 2 Why Silicon? First transistor, Shockley, Bardeen, Brattain1947 Made by Germanium
Photovoltaic Glass Solutions
Photovoltaic Glass Solutions POWER THROUGH GLASS EcoGuard Float low-iron float glass Step up your power. Guardian EcoGuard coated solar glass products improve the performance of your photovoltaic modules.
Conductivity of silicon can be changed several orders of magnitude by introducing impurity atoms in silicon crystal lattice.
CMOS Processing Technology Silicon: a semiconductor with resistance between that of conductor and an insulator. Conductivity of silicon can be changed several orders of magnitude by introducing impurity
Solar Technology and the Future
Solar Technology and the Future Sustainable Cities Network First Solar Workshop George Maracas Professor Electrical Engineering & Sustainability COO Solar Power Laboratory AZ Institute for Renewable Energy
Here Comes the Sun. Provided by TryEngineering - www.tryengineering.org
Provided by TryEngineering - Lesson Focus Lesson focuses on solar panel design, and its application in the standard calculator. It explores how both solar panels and calculators operate and explores simple
Solar Energy Engineering
Online Training Modules in Photovoltaics Solar Energy Engineering Starting June 2, 2014 the University of Freiburg in cooperation with Fraunhofer will be offering free special training modules in Solar
Absorber: In a photovoltaic device, the material that readily absorbs photons to generate charge carriers (free electrons or holes).
1 Glossary Absorber: In a photovoltaic device, the material that readily absorbs photons to generate charge carriers (free electrons or holes). AC: See alternating current. Activated Shelf Life: The period
Effect of Ambient Conditions on Thermal Properties of Photovoltaic Cells: Crystalline and Amorphous Silicon
Effect of Ambient Conditions on Thermal Properties of Photovoltaic Cells: Crystalline and Amorphous Silicon Latifa Sabri 1, Mohammed Benzirar 2 P.G. Student, Department of Physics, Faculty of Sciences
CONCENTRATED PHOTOVOLTAIC AND SOLAR PHOTOVOLTAIC GLOBAL MARKET (2009-2014)
CONCENTRATED PHOTOVOLTAIC AND SOLAR PHOTOVOLTAIC GLOBAL MARKET (2009-2014) R e p o r t D e s c r i p t i o n T a b l e o f C o n t e n t s L i s t o f T a b l e s S a m p l e T a b l e s R e l a t e d
The different type of photovoltaic systems and their applications
The different type of photovoltaic systems and their applications Solar radiation Solar radiation: electromagnetic energy emitted by the fusion of hydrogen content in the sun. - On the solar surface to
Thin Film Solar Cells based on CIS
Thin Film Solar Cells based on CIS Research for production of cheap and efficient solar modules Marika Edoff, Ångström Solar Center, Uppsala University, Sweden Email: [email protected] 1 partners
Fundamentals of Photovoltaic solar technology For Battery Powered applications
Fundamentals of Photovoltaic solar technology For Battery Powered applications Solar is a natural energy source for many battery powered applications. With energy harvested from the sun, the size of batteries
Technology Advantage
Technology Advantage 2 FIRST SOLAR TECHNOLOGY ADVANTAGE 3 The Technology Advantage Cadmium Telluride (CdTe) photovoltaic (PV) technology continues to set performance records in both research and real-world
How MOCVD. Works Deposition Technology for Beginners
How MOCVD Works Deposition Technology for Beginners Contents MOCVD for Beginners...3 MOCVD A Definition...4 Planetary Reactor Technology...5 Close Coupled Showerhead Technology...6 AIXTRON MOCVD Production
Solar energy is available as long as the sun shines, but its intensity depends on weather conditions and geographic
Solar Energy What is Solar Energy? The radiation from the sun gives our planet heat and light. All living things need energy from the sun to survive. More energy from sunlight strikes the earth in one
Solar PV Cells Free Electricity from the Sun?
Solar PV Cells Free Electricity from the Sun? An Overview of Solar Photovoltaic Electricity Carl Almgren and George Collins( editor) Terrestrial Energy from the Sun 5 4 3 2 1 0.5 Electron-Volts per Photon
FOR KIDS INSIDE. HOW solar power. panels! AND MORE!
solar POWER E D U C A T I O N A L I N F O R M A T I O N FOR KIDS INSIDE HOW solar power WORKS ALL ABOUT solar panels! YOUR QUESTIONS ANSWERED games, ACTIVITIES AND MORE! harnessing the energy solar energy
Introduction OLEDs OTFTs OPVC Summary. Organic Electronics. Felix Buth. Walter Schottky Institut, TU München. Joint Advanced Student School 2008
Felix Buth Joint Advanced Student School 2008 Outline 1 Introduction Difference organic/inorganic semiconductors From molecular orbitals to the molecular crystal 2 Organic Light Emitting Diodes Basic Principals
INTRODUCTION TO PHOTOVOLTAIC SOLAR ENERGY
Chapter 1. INTRODUCTION TO PHOTOVOLTAIC SOLAR ENERGY Miro Zeman Delft University of Technology 1.1 Introduction to energy consumption and production Any change that takes place in the universe is accompanied
Designing of Amorphous Silicon Solar Cells for Optimal Photovoltaic Performance
Designing of Amorphous Silicon Solar Cells for Optimal Photovoltaic Performance Latchiraju Pericherla A Thesis submitted in part fulfilment of the requirements for the degree of Master of Engineering School
EPIA ROADMAP EUROPEAN PHOTOVOLTAIC INDUSTRY ASSOCIATION
EPIA ROADMAP EUROPEAN PHOTOVOLTAIC INDUSTRY ASSOCIATION FOREWORD The favourable conditions created recently by the White Paper and the RES Directive will help Photovoltaic (PV) Solar Electricity to accelerate
Solar Energy Basics... and More 1
Fact Sheet EES-98 June 1993 Solar Energy Basics... and More 1 Michael West, Ph.D. 2 The sun s radiation arrives at no cost and is available during any clear day. More energy from the sun falls on the earth
Clean, Sustainable Energy from the Sun Now, and for Our Children s Future
Clean, Sustainable Energy from the Sun Now, and for Our Children s Future An Industry Leader NovaSolar is an industry leader in manufacturing thin-film silicon based solar panels and constructing large
Electricity from PV systems how does it work?
Electricity from photovoltaic systems Bosch Solar Energy 2 Electricity from PV systems Electricity from PV systems how does it work? Photovoltaics: This is the name given to direct conversion of radiant
Solar Power for Agriculture and Our Experiences at the Middlesex County EARTH Center Rutgers Cooperative Extension William T. Hlubik Agricultural and Resource Management Agent Rutgers Cooperative Extension
Own Your Power! A Consumer Guide to Solar Electricity for the Home
Own Your Power! A Consumer Guide to Solar Electricity for the Home Contents Benefits of Solar Electricity.................... 1 Solar Electricity Basics........................ 2 Types of Solar Panels.........................................
Solar Energy Discovery Lab
Solar Energy Discovery Lab Objective Set up circuits with solar cells in series and parallel and analyze the resulting characteristics. Introduction A photovoltaic solar cell converts radiant (solar) energy
Operational experienced of an 8.64 kwp grid-connected PV array
Hungarian Association of Agricultural Informatics European Federation for Information Technology in Agriculture, Food and the Environment Journal of Agricultural Informatics. 2013 Vol. 4, No. 2 Operational
Impact of Reflectors on Solar Energy Systems
Impact of Reflectors on Solar Energy Systems J. Rizk, and M. H. Nagrial Abstract The paper aims to show that implementing different types of reflectors in solar energy systems, will dramatically improve
Solar Power Optimization. another source of conflict. The world has a rapidly growing population that is estimated will reach ten
Solar Power Optimization Some claim our next global conflicts will be for food and water, but the supply of energy will be another source of conflict. The world has a rapidly growing population that is
Using the sun to generate electricity
Using the sun to generate electricity Image source: http://www.globalsolarcenter.com/files/2009/04/commercial-solar.jpg Solar panels information sheet What are the benefits? How does it work? What is the
Laboratory #3 Guide: Optical and Electrical Properties of Transparent Conductors -- September 23, 2014
Laboratory #3 Guide: Optical and Electrical Properties of Transparent Conductors -- September 23, 2014 Introduction Following our previous lab exercises, you now have the skills and understanding to control
The Status and Outlook for the Photovoltaics Industry. David E. Carlson March 14, 2006
The Status and Outlook for the Photovoltaics Industry David E. Carlson March 14, 2006 Outline of the Talk The PV Market The Major Players Different Types of Solar Cells Field Installations Performance
Impact of Materials Prices on Cost of PV Manufacture Part I (Crystalline Silicon)
Impact of Materials Prices on Cost of PV Manufacture Part I (Crystalline Silicon) Nigel Mason SMEET II Workshop, London 27 Feb 2013 content Brief introduction to Solar PV Technologies Part I - Crystalline
SHARP SOLAR Frequently Asked Questions for PV Integrators Revised 05/04/2010
SHARP SOLAR Frequently Asked Questions for PV Integrators Revised 05/04/2010 How do I determine the PTC rating of a module? PTC refers to PVUSA Test Conditions, which were developed to test and compare
Light management for photovoltaics. Ando Kuypers, TNO Program manager Solar
Light management for photovoltaics Ando Kuypers, TNO Program manager Solar Global energy consumption: 500 ExaJoule/Year Solar irradiation on earth sphere: 5.000.000 ExaJoule/year 2 Capturing 0,01% covers
Technology White Papers nr. 13 Paul Holister Cristina Román Vas Tim Harper
QUANTUM DOTS Technology White Papers nr. 13 Paul Holister Cristina Román Vas Tim Harper QUANTUM DOTS Technology White Papers nr. 13 Release Date: Published by Científica Científica, Ltd. www.cientifica.com
Production of Solar Energy Using Nanosemiconductors
Production of Solar Energy Using Nanosemiconductors 1 Kiruthika S, 2 Dinesh Kumar M, 3 Surendar.A 1, 2 II year, KSR College of Engineering, Tiruchengode, Tamilnadu, India 3 Assistant Professor, KSR College
SA Power Networks Planning for Solar PV? Customer information guide to network connected solar PV inverter systems
SA Power Networks Planning for Solar PV? Customer information guide to network connected solar PV inverter systems Contents Introduction 3 How solar PV power systems work 4 Solar modules 5 Is solar power
Types of Epitaxy. Homoepitaxy. Heteroepitaxy
Epitaxy Epitaxial Growth Epitaxy means the growth of a single crystal film on top of a crystalline substrate. For most thin film applications (hard and soft coatings, optical coatings, protective coatings)
The Current status of Korean silicon photovoltaic industry and market. 2011. 3.17 Sangwook Park LG Electronics Inc.
The Current status of Korean silicon photovoltaic industry and market 2011. 3.17 Sangwook Park LG Electronics Inc. contents 1.Introduction (World PV Market) 2.Korean PV market 3.Photovoltaics in LG Electronics
Solar Power at Vernier Software & Technology
Solar Power at Vernier Software & Technology Having an eco-friendly business is important to Vernier. Towards that end, we have recently completed a two-phase project to add solar panels to our building
The days of cheap abundant electricity are over! This article forms part
Solar Power for Metal Finishers By Helmut Hertzog of Atlantic Solar The days of cheap abundant electricity are over! This article forms part of a series of articles where we will explore the possibility
SOLAR TECHNOLOGY CHRIS PRICE TECHNICAL SERVICES OFFICER BIMOSE TRIBAL COUNCIL
SOLAR TECHNOLOGY CHRIS PRICE TECHNICAL SERVICES OFFICER BIMOSE TRIBAL COUNCIL SOLAR TECHNOLOGY Photovoltaics Funding Options Solar Thermal Photovoltaics 1. What are they and how do they work? 2. The Solar
SOLAR CELLS From light to electricity
SOLAR CELLS From light to electricity Solar Impulse uses nothing but light to power its motors. The effect of light on the material in solar panels allows them to produce the electricity that is needed
Solar PV checklist Questions to ask installers
Solar PV checklist Questions to ask installers When it comes to choosing a solar photovoltaic (PV) installation, there are a lot of variations which can make it difficult to compare quotes and to be sure
ACTIVE USE OF SOLAR ENERGY IN BUILDINGS WHY HOW WHAT DAGNE VILKA GUIDE FOR THE ARCHITECT
ACTIVE USE OF SOLAR ENERGY IN BUILDINGS WHY HOW WHAT GUIDE FOR THE ARCHITECT DAGNE VILKA HORSENS 2010 Active Use of Solar Energy in Buildings Why? How? What? Guide for the architect Author Dagne Vilka
* Angola, Benin, Botswana, Cameroon, Congo, Cote d Ivoire, Eritrea, Ethiopia, Gabon and Ghana.
Solar photovoltaic electricity empowering the world 2011 Solar generation 6 Solar photovoltaic electricity empowering the world 2011 foreword The European Photovoltaic Industry Association and Greenpeace
Module 3. Solar Photovoltaic. Osamu Iso. Workshop on Renewable Energies November 14-25, 2005 Nadi, Republic of the Fiji Islands
Module 3 Solar hotovoltaic Osamu Iso Workshop on Renewable Energies ovember 14-25, 2005 adi, Republic of the Fiji Islands 22-ov-05 (17:52) 3.Solar hotovoltaic Contents 1. Basic principles of V 1-1. Mechanism
Arizona Institute for Renewable Energy & the Solar Power Laboratories
Arizona Institute for Renewable Energy & the Solar Power Laboratories International Photovoltaic Reliability Workshop July 29-31, Tempe AZ Christiana Honsberg, Stephen Goodnick, Stuart Bowden Arizona State
VGB Congress Power Plants 2001 Brussels October 10 to 12, 2001. Solar Power Photovoltaics or Solar Thermal Power Plants?
VGB Congress Power Plants 2001 Brussels October 10 to 12, 2001 Solar Power Photovoltaics or Solar Thermal Power Plants? Volker Quaschning 1), Manuel Blanco Muriel 2) 1) DLR, Plataforma Solar de Almería,
Irradiance. Solar Fundamentals Solar power investment decision making
Solar Fundamentals Solar power investment decision making Chilean Solar Resource Assessment Antofagasta and Santiago December 2010 Edward C. Kern, Jr., Ph.D., Inc. Global Solar Radiation Solar Power is
SPQ Module 3 Solar Power
SPQ Module 3 Solar Power The sun is the source of all life on earth. Yet we sometimes forget how central it is to our every activity. We stumble through our daily routine worrying about the mundane tribulations
Energy Saving Company Profile. Sustainable Development
Energy Saving Company Profile Sustainable Development Our Mission Statement Identification and Development of Products and Services that distinguish Barcode as a Premium Innovative Energy Service Provider
Coating Technology: Evaporation Vs Sputtering
Satisloh Italy S.r.l. Coating Technology: Evaporation Vs Sputtering Gianni Monaco, PhD R&D project manager, Satisloh Italy 04.04.2016 V1 The aim of this document is to provide basic technical information
Good Boards = Results
Section 2: Printed Circuit Board Fabrication & Solderability Good Boards = Results Board fabrication is one aspect of the electronics production industry that SMT assembly engineers often know little about.
Solar Energy. Airports Going Green Aimee Fenlon
Solar Energy Airports Going Green Aimee Fenlon 1 Renewable vs. Non-Renewable Electrical Generation Renewables: Source Advantages Disadvantages Solar PV No CO2; Needs no Fuel Intermittent no power at night,
Optical Disc and Solar Annual Press/Analyst Conference - March 26, 2010
SMART SOLUTIONS TO DRIVE THE FUTURE Optical Disc and Solar Annual Press/Analyst Conference - Dr. - Ing. Stefan Rinck AG Optical Disc & Solar - 2 - Optical Disc - Blu-ray Excellent starting position for
An organic semiconductor is an organic compound that possesses similar
MSE 542 Final Term Paper Title: Organic Semiconductor for Flexible Electronics Name: Chunhung Huang Introduction: An organic semiconductor is an organic compound that possesses similar properties to inorganic
Valuing The Return on Solar Projects for Businesses and Government Agencies
Valuing The Return on Solar Projects for Businesses and Government Agencies EXECUTIVE SUMMARY With rising grid electricity prices and declining solar technology costs, the economic benefits of solar power
Development of High-Speed High-Precision Cooling Plate
Hironori Akiba Satoshi Fukuhara Ken-ichi Bandou Hidetoshi Fukuda As the thinning of semiconductor device progresses more remarkably than before, uniformity within silicon wafer comes to be strongly required
Solar Car. c t. r u. i o. n s. i n s t
Solar Car i n s t r u c t i o n s About KidWind The KidWind Project is a team of teachers, students, engineers, and practitioners exploring the science behind wind energy in classrooms around the US. Our
A SOLAR GUIDE - EVERYTHING YOU NEED TO KNOW
WE BRING GREEN SOLUTIONS TO YOU A SOLAR GUIDE - EVERYTHING YOU NEED TO KNOW Provided by A COOLER PLANET A Cooler Planet 1 The Complete Solar Guide WHY GO SOLAR? TOP FIVE FACTORS TO CONSIDER FOR ADDING
Lecture 12. Physical Vapor Deposition: Evaporation and Sputtering Reading: Chapter 12. ECE 6450 - Dr. Alan Doolittle
Lecture 12 Physical Vapor Deposition: Evaporation and Sputtering Reading: Chapter 12 Evaporation and Sputtering (Metalization) Evaporation For all devices, there is a need to go from semiconductor to metal.
