Frustrated magnetism on Hollandite lattice
|
|
|
- Myrtle Weaver
- 9 years ago
- Views:
Transcription
1 Frustrated magnetism on Hollandite lattice Saptarshi Mandal (ICTP, Trieste, Italy) Acknowledgment: A. Andreanov(MPIKS, Dresden) Y. Crespo and N. Seriani(ICTP, Italy) Workshop on Current Trends in Frustrated Magnetism, JNU, New Delhi February 13, 2015
2 Plan of the Talk Introduction Hollandite lattice and αmno 2 Experimental Magnetic properties Model Phase diagram Effect of external magnetic field Recent interest
3 Frustrated Magnetism: AFM interaction or FM + AFM interaction Geometrical Frustration Triangular lattice Kagome lattice Pyrochlore lattice
4 MnO 2 and its various compounds Wide applications Catalyst for oxygen reduction reaction. W. Xiao et al, J. Phys. Chem.C (2010) Microbial fuell cell. RSC Adv (2013) Electrode materials for Li-ion batteries, Lithiam-air batteries. Supercapacitor G. -R. Li et al Langmuir 26, 2209 (2010) αmno 2 compounds, ex. BaMn 8 O 16, KMn 8 O 16. Comes in hollandite and ramsdellite lattice structures. βmno 2 appears in rutile structures. γmno 2 a combination of ramsdellite αmno 2 and rutile βmno 2 domains. So far the best material for battary use.
5 αmno 2 and its properties BaMn 8 O 16, KMn 8 O 16, α Mn0 2 ṅh 2 0 a = 2.86Å, b = 2.91Å, c = 3.44Å Diameters of pores 4.6Å Spin moment of Mn is 3 2
6 Previous experimental finding. AFM state for K <0.7 MnO 2 (synthesized with hydrothermal technique), N. Yamamoto et al Jpn. J. Appl. Phys. 13, 723 (1974). AFM transition for K 0.16 MnO 2 at T N = 18 K Strobel et al J. Sol. State Chem. 55, 67 (1984) A helical magnetic structure was also suggested for K 0.15 MnO 2. H. Sato et al J. Alloys Comp , 443 (1997). FM state for 52K to 20K for K 1.5 (H 3 O) x Mn 8 O 16 Below 20 K spatial anisotropic susceptibilities indicate a helical ground state. H. Sato et al Phys. Rev. B 59, (1999). Spin glass behaviour for K x MnO 2 (0.087 < x 0.125). J. Luo et al J. Phys. Chem. C 114, 8782 (2010). J. Luo et al J. Appl. Phys. 105, (2009), X.-F. Shen et al J. Am. Chem. Soc. 127, 6166 (2005).
7 Recent interest Spin-glass behaviour with Ising model. Y. Crespo et al Phys. Rev. B 88, (2013) Electronic and magnetic properties..ab initio calculations. Y. Crespo et al Phys. Rev. B 88, (2013) other works.. Hollandite as a new class of multiferroics, Scientific Reports 4, 6203 (2014)
8 Hollandite lattice: lattice of αmno 2
9 Modelling αmno 2 Mn-O-Mn angle varies 100 to 130 Goodenough- Kanamori-Anderson rule DFT insights Expeimental insight H = J 1 Si. S j + J 2 Si. S j + J 3 Si. S j (1) ij ij 2 ij 3
10 Method.. Interaction matrix method, S i,α = k ei K. R i Sk,α H = S k,α H α,β (k) S k,β, H α,β (k) S k,β = λ kmin Sk,β Numerical Simulation, inhomogenous meanfield method. H = ij J ij S i. S j, H = i h i. S j, hi = j J ij S j bravais vs non-bravais lattice, λ kmin = E site I II IV III H = H α,β (k) Sk,α c Sk,β c, α, β 1, 4; E = J 1 cos2φ ( J J 3 )cosφ E = J 1 ( J 2 +2 J 3 ) 2 8J 1, cos φ = J 2 +2 J 3 4J 1 E φ = 2.125, φ =
11 Ground states of Hollandite lattice ( S.M et. al. Phys. Rev. B 90, , (2014) J 1 AFM FM J 2 J 3 J 2 J 1 AFM FM J 2 J 3 J 2
12 s n α s n β = cos(2nφ)ˆx + sin(2nφ)ẑ, = cos((2n + 1)φ)ˆx + sin((2n + 1)φ)ẑ.
13 s n α = cos(2nφ)ˆx + sin(2nφ)ẑ, s α 1 n s n β = cos((2n + 1)φ)ˆx + sin((2n + 1)φ)ẑ, s β 1 n = s n α = s β n.
14 phase diagram-i C2 AFM (0,2) C AFM J 2 J1 C2 H C H ( 4,0) F H A2 H (4,0) FM (0, 2) A2 AFM J 3 J 1 E col = J 1 J 2 2 J 3, E hel = J 1 ( J 2 +2 J 3 ) 2 8 θ = 2φ Each helical state is continually connected with co-linear phase.
15 Comparision with Ising model degeneracy!! E GFP = J 1, E hel = J 1 ( J 2 +2 J 3 ) 2 8J 1 Area of the GFP is smaller than the area of helical phase. Boundary between GPF is discontinuous but the boundary between helical and colinear phase is continuous. Macroscopic degeneracies of GPF is absent in helical phase.
16 Chirality and degeneracy Definition: C J1,J 2(3) = s 1 s 2 + s 2 s 3 + s 3 s 1. = ±(2 sin φ + sin 2φ)ẑ For J 1 Ferromagnetic the system is not frustrated and simple colinear magnetism is observed.
17 Neutron diffraction pattarn Magnetic structure factor F( Q) = 1 Nt Nt l=1 ei Q. r l S( rl ) = ( N 5,7 uc k=1 j 1,3 s k,je i Q. d j + 6,8 j 2,4 s k,je i Q. d j )e i Q. R k N y 0.5 C H C2 H A2 H F H N x _ 0.2 The position of peaks and the value of F M ( Q) / F M ( Q max ) is different for each phase.
18 Ground state magnetisation and susceptibility F M ( Q) / F M ( Q max ) Phase (0,2φ-7) (1,2φ-7) (2,2φ-7) (0,2φ-6) (1,2φ-6) (2,2φ-6) C-H C2-H A2-H F-H Magnetisation: m µ = i s i,µ = 0 Non zero susceptbility tensor: χ µ,λ = 1 ( s i,µ s j,λ s i,µ s j,λ ) = χδ µ,λ, µ, λ x, z N i,j = 0.5 (2) H. Sato, et. al. J. Alloys Comp , 443 (1997).
19 Effect of magnetic field: C H H. Sato et al. Phys. Rev. B 59, 12836,(1999) Unknown FM state between T 2 and T 3 We consider T=0. H is the magnetic field applied perpendicular to the plane of polarization H is the magnetic field applied along the plane of polarization
20 Effect of perpendicular magnetic field H = H 0 + h Nt i=1 s y,i, s i = (1 2 i ) s 0,i i ŷ (1 2 j ) self-consistent Eq: ( ) j i J ij s (1 2 0,i. s 0,j + J ij j = h i ) s i = (1 2 ) s 0,i ŷ, = h 2(J 1 +J 2 +2J 3 E GS ) Ground state energy: E = E GS m = h 2 4(J 1 +J 2 +2J 3 E GS ) h 2(J 1 +J 2 +2J 3 E GS ), χ = 1 2(J 1 +J 2 +2J 3 E GS ) > 0. Critical Magnetic field h c y = 2(J 1 + J 2 + 2J 3 E GS ).
21 Effect of parallel magnetic field, H = H 0 + h Nt i=1 s x,i. s α n = cos(θ α n + δθ α n )ˆx + sin(θ α n + δθ α n )ẑ, α β. δθ (α,β) n = h sin θ n (α,β) ). 2 (J 1 cos 2 (2φ)+(J 2 +2J 3 ) cos 2 φ E GS E = E GS Magnetisation: m x = h 2 8(J 1 cos 2 (2φ)+(J 2 +2J 3 ) cos 2 φ E GS ) h 4(J 1 cos 2 2φ+(J 2 +2J 3 ) cos 2 φ E GS ). Susceptibility: χ = 1 4(J 1 cos 2 (2φ)+(J 2 +2J 3 ) cos 2 φ E GS ) No critical field, For strong parallel field, the spins are canted perpenicular to the field.
22 Susceptibility 2 1 J 3 J J J 1 temperature dependence of Susceptibilities? χ > χ, χ χ = 0.87 χ, χ, φ, from neutron diffraction may help to determine J 1, J 2, J 3
23 Scientific Reports 4, 6203 (2014) a minimal model includes 4 different nearest neighbour coupling, J 1, J 2, J 3, J 4. Could be frustrating. The transition temperature 50 o K is identical to that of α-mno 2, indicating that dynamics along Mn Mn ladder is the main factor for finite T mechanism.
24 A. M. Larson et. al, Inducing Ferrimagnetism in Insulating Hollandite Ba 1.2 Mn 8 O 16,Chem of Mat. Ba x Mn 8 O 16 from a complex AFM with (T N ) =25 K to a ferrimagnet with Curie temperature (T C )=180 K via partial Co sustitution for Mn.
25 Thank you
5 VECTOR GEOMETRY. 5.0 Introduction. Objectives. Activity 1
5 VECTOR GEOMETRY Chapter 5 Vector Geometry Objectives After studying this chapter you should be able to find and use the vector equation of a straight line; be able to find the equation of a plane in
Ajit Kumar Patra (Autor) Crystal structure, anisotropy and spin reorientation transition of highly coercive, epitaxial Pr-Co films
Ajit Kumar Patra (Autor) Crystal structure, anisotropy and spin reorientation transition of highly coercive, epitaxial Pr-Co films https://cuvillier.de/de/shop/publications/1306 Copyright: Cuvillier Verlag,
α α λ α = = λ λ α ψ = = α α α λ λ ψ α = + β = > θ θ β > β β θ θ θ β θ β γ θ β = γ θ > β > γ θ β γ = θ β = θ β = θ β = β θ = β β θ = = = β β θ = + α α α α α = = λ λ λ λ λ λ λ = λ λ α α α α λ ψ + α =
Crystal Structure of High Temperature Superconductors. Marie Nelson East Orange Campus High School NJIT Professor: Trevor Tyson
Crystal Structure of High Temperature Superconductors Marie Nelson East Orange Campus High School NJIT Professor: Trevor Tyson Introduction History of Superconductors Superconductors are material which
Review of Statistical Mechanics
Review of Statistical Mechanics 3. Microcanonical, Canonical, Grand Canonical Ensembles In statistical mechanics, we deal with a situation in which even the quantum state of the system is unknown. The
1 CHAPTER 12 PROPERTIES OF MAGNETIC MATERIALS
1 CHAPTER 12 PROPERTIES OF MAGNETIC MATERIALS 12.1 Introduction This chapter is likely to be a short one, not least because it is a subject in which my own knowledge is, to put it charitably, a little
Solutions for Math 311 Assignment #1
Solutions for Math 311 Assignment #1 (1) Show that (a) Re(iz) Im(z); (b) Im(iz) Re(z). Proof. Let z x + yi with x Re(z) and y Im(z). Then Re(iz) Re( y + xi) y Im(z) and Im(iz) Im( y + xi) x Re(z). () Verify
DIEGO TONINI MORPHOLOGY OF NIOBIUM FILMS SPUTTERED AT DIFFERENT TARGET SUBSTRATE ANGLE
UNIVERSITÀ DEGLI STUDI DI PADOVA SCIENCE FACULTY MATERIAL SCIENCE DEGREE INFN LABORATORI NAZIONALI DI LEGNARO DIEGO TONINI MORPHOLOGY OF NIOBIUM FILMS SPUTTERED AT DIFFERENT TARGET SUBSTRATE ANGLE 2 QUESTIONS
fotoelektron-spektroszkópia Rakyta Péter
Spin-pálya kölcsönhatás grafénben, fotoelektron-spektroszkópia Rakyta Péter EÖTVÖS LORÁND TUDOMÁNYEGYETEM, KOMPLEX RENDSZEREK FIZIKÁJA TANSZÉK 1 Introduction to graphene Sp 2 hybridization p z orbitals
Chapter 4. Forces and Newton s Laws of Motion. continued
Chapter 4 Forces and Newton s Laws of Motion continued 4.9 Static and Kinetic Frictional Forces When an object is in contact with a surface forces can act on the objects. The component of this force acting
STRUCTURAL STUDIES OF MULTIFERROIC THIN FILMS
STRUCTURAL STUDIES OF MULTIFERROIC THIN FILMS Lisa Krayer (UCSD) Mentor: Daniel Pajerowski (NIST) Collaborating with: (University of Florida) Professor Amlan Biswas Daniel Grant NCNR
Magnetic Dipoles. Magnetic Field of Current Loop. B r. PHY2061 Enriched Physics 2 Lecture Notes
Disclaimer: These lecture notes are not meant to replace the course textbook. The content may be incomplete. Some topics may be unclear. These notes are only meant to be a study aid and a supplement to
Scanning Near Field Optical Microscopy: Principle, Instrumentation and Applications
Scanning Near Field Optical Microscopy: Principle, Instrumentation and Applications Saulius Marcinkevičius Optics, ICT, KTH 1 Outline Optical near field. Principle of scanning near field optical microscope
Fundamentals of grain boundaries and grain boundary migration
1. Fundamentals of grain boundaries and grain boundary migration 1.1. Introduction The properties of crystalline metallic materials are determined by their deviation from a perfect crystal lattice, which
Dot product and vector projections (Sect. 12.3) There are two main ways to introduce the dot product
Dot product and vector projections (Sect. 12.3) Two definitions for the dot product. Geometric definition of dot product. Orthogonal vectors. Dot product and orthogonal projections. Properties of the dot
Lecture L3 - Vectors, Matrices and Coordinate Transformations
S. Widnall 16.07 Dynamics Fall 2009 Lecture notes based on J. Peraire Version 2.0 Lecture L3 - Vectors, Matrices and Coordinate Transformations By using vectors and defining appropriate operations between
Basic Principles of Magnetic Resonance
Basic Principles of Magnetic Resonance Contents: Jorge Jovicich [email protected] I) Historical Background II) An MR experiment - Overview - Can we scan the subject? - The subject goes into the magnet -
Cyber-Security Analysis of State Estimators in Power Systems
Cyber-Security Analysis of State Estimators in Electric Power Systems André Teixeira 1, Saurabh Amin 2, Henrik Sandberg 1, Karl H. Johansson 1, and Shankar Sastry 2 ACCESS Linnaeus Centre, KTH-Royal Institute
The Vector or Cross Product
The Vector or ross Product 1 ppendix The Vector or ross Product We saw in ppendix that the dot product of two vectors is a scalar quantity that is a maximum when the two vectors are parallel and is zero
Electron density is complex!
Electron density is complex! Göttingen, November 13 th 2008 George M. Sheldrick, Göttingen University http://shelx.uni-ac.gwdg.de/shelx/ Friedel s Law F h,k,l = F h, k, l and φ h,k,l = φ h, k, l Friedel
Problem set on Cross Product
1 Calculate the vector product of a and b given that a= 2i + j + k and b = i j k (Ans 3 j - 3 k ) 2 Calculate the vector product of i - j and i + j (Ans ) 3 Find the unit vectors that are perpendicular
Geometric Transformation CS 211A
Geometric Transformation CS 211A What is transformation? Moving points (x,y) moves to (x+t, y+t) Can be in any dimension 2D Image warps 3D 3D Graphics and Vision Can also be considered as a movement to
Magnetism and Magnetic Materials K. Inomata
Magnetism and Magnetic Materials K. Inomata 1. Origin of magnetism 1.1 Magnetism of free atoms and ions 1.2 Magnetism for localized electrons 1.3 Itinerant electron magnetism 2. Magnetic properties of
Complex Numbers. w = f(z) z. Examples
omple Numbers Geometrical Transformations in the omple Plane For functions of a real variable such as f( sin, g( 2 +2 etc ou are used to illustrating these geometricall, usuall on a cartesian graph. If
Chapter 6. Linear Transformation. 6.1 Intro. to Linear Transformation
Chapter 6 Linear Transformation 6 Intro to Linear Transformation Homework: Textbook, 6 Ex, 5, 9,, 5,, 7, 9,5, 55, 57, 6(a,b), 6; page 7- In this section, we discuss linear transformations 89 9 CHAPTER
1.3. DOT PRODUCT 19. 6. If θ is the angle (between 0 and π) between two non-zero vectors u and v,
1.3. DOT PRODUCT 19 1.3 Dot Product 1.3.1 Definitions and Properties The dot product is the first way to multiply two vectors. The definition we will give below may appear arbitrary. But it is not. It
Error estimates for nearly degenerate finite elements
Error estimates for nearly degenerate finite elements Pierre Jamet In RAIRO: Analyse Numérique, Vol 10, No 3, March 1976, p. 43 61 Abstract We study a property which is satisfied by most commonly used
NMR and IR spectra & vibrational analysis
Lab 5: NMR and IR spectra & vibrational analysis A brief theoretical background 1 Some of the available chemical quantum methods for calculating NMR chemical shifts are based on the Hartree-Fock self-consistent
Boring (?) first-order phase transitions
Boring (?) first-order phase transitions Des Johnston Edinburgh, June 2014 Johnston First Order 1/34 Plan of talk First and Second Order Transitions Finite size scaling (FSS) at first order transitions
O6: The Diffraction Grating Spectrometer
2B30: PRACTICAL ASTROPHYSICS FORMAL REPORT: O6: The Diffraction Grating Spectrometer Adam Hill Lab partner: G. Evans Tutor: Dr. Peter Storey 1 Abstract The calibration of a diffraction grating spectrometer
GPR Polarization Simulation with 3D HO FDTD
Progress In Electromagnetics Research Symposium Proceedings, Xi an, China, March 6, 00 999 GPR Polarization Simulation with 3D HO FDTD Jing Li, Zhao-Fa Zeng,, Ling Huang, and Fengshan Liu College of Geoexploration
Math Placement Test Practice Problems
Math Placement Test Practice Problems The following problems cover material that is used on the math placement test to place students into Math 1111 College Algebra, Math 1113 Precalculus, and Math 2211
Solutions for Review Problems
olutions for Review Problems 1. Let be the triangle with vertices A (,, ), B (4,, 1) and C (,, 1). (a) Find the cosine of the angle BAC at vertex A. (b) Find the area of the triangle ABC. (c) Find a vector
Polarization of Light
Polarization of Light References Halliday/Resnick/Walker Fundamentals of Physics, Chapter 33, 7 th ed. Wiley 005 PASCO EX997A and EX999 guide sheets (written by Ann Hanks) weight Exercises and weights
PHYSICS PAPER 1 (THEORY)
PHYSICS PAPER 1 (THEORY) (Three hours) (Candidates are allowed additional 15 minutes for only reading the paper. They must NOT start writing during this time.) ---------------------------------------------------------------------------------------------------------------------
Torsion Tests. Subjects of interest
Chapter 10 Torsion Tests Subjects of interest Introduction/Objectives Mechanical properties in torsion Torsional stresses for large plastic strains Type of torsion failures Torsion test vs.tension test
www.sakshieducation.com
LENGTH OF THE PERPENDICULAR FROM A POINT TO A STRAIGHT LINE AND DISTANCE BETWEEN TWO PAPALLEL LINES THEOREM The perpendicular distance from a point P(x 1, y 1 ) to the line ax + by + c 0 is ax1+ by1+ c
Anomalous Hall Effect Magnetometry A Method for Studying Magnetic Processes of Thin Magnetic Films
Anomalous Hall Effect Magnetometry A Method for Studying Magnetic Processes of Thin Magnetic Films J. R. Lindemuth a, B. C. Dodrill a and N. C. Oldham b a Lake Shore Cryotronics, Inc. 575 McCorkle Blvd,
Structure Factors 59-553 78
78 Structure Factors Until now, we have only typically considered reflections arising from planes in a hypothetical lattice containing one atom in the asymmetric unit. In practice we will generally deal
Section 9.5: Equations of Lines and Planes
Lines in 3D Space Section 9.5: Equations of Lines and Planes Practice HW from Stewart Textbook (not to hand in) p. 673 # 3-5 odd, 2-37 odd, 4, 47 Consider the line L through the point P = ( x, y, ) that
Lecture L22-2D Rigid Body Dynamics: Work and Energy
J. Peraire, S. Widnall 6.07 Dynamics Fall 008 Version.0 Lecture L - D Rigid Body Dynamics: Work and Energy In this lecture, we will revisit the principle of work and energy introduced in lecture L-3 for
Crystal Structure Determination I
Crystal Structure Determination I Dr. Falak Sher Pakistan Institute of Engineering and Applied Sciences National Workshop on Crystal Structure Determination using Powder XRD, organized by the Khwarzimic
2, 8, 20, 28, 50, 82, 126.
Chapter 5 Nuclear Shell Model 5.1 Magic Numbers The binding energies predicted by the Liquid Drop Model underestimate the actual binding energies of magic nuclei for which either the number of neutrons
Mathematics Notes for Class 12 chapter 10. Vector Algebra
1 P a g e Mathematics Notes for Class 12 chapter 10. Vector Algebra A vector has direction and magnitude both but scalar has only magnitude. Magnitude of a vector a is denoted by a or a. It is non-negative
0.1 Phase Estimation Technique
Phase Estimation In this lecture we will describe Kitaev s phase estimation algorithm, and use it to obtain an alternate derivation of a quantum factoring algorithm We will also use this technique to design
Linear algebra and the geometry of quadratic equations. Similarity transformations and orthogonal matrices
MATH 30 Differential Equations Spring 006 Linear algebra and the geometry of quadratic equations Similarity transformations and orthogonal matrices First, some things to recall from linear algebra Two
Given three vectors A, B, andc. We list three products with formula (A B) C = B(A C) A(B C); A (B C) =B(A C) C(A B);
1.1.4. Prouct of three vectors. Given three vectors A, B, anc. We list three proucts with formula (A B) C = B(A C) A(B C); A (B C) =B(A C) C(A B); a 1 a 2 a 3 (A B) C = b 1 b 2 b 3 c 1 c 2 c 3 where the
SOLUTIONS TO HOMEWORK ASSIGNMENT #4, MATH 253
SOLUTIONS TO HOMEWORK ASSIGNMENT #4, MATH 253 1. Prove that the following differential equations are satisfied by the given functions: (a) 2 u + 2 u 2 y + 2 u 2 z =0,whereu 2 =(x2 + y 2 + z 2 ) 1/2. (b)
Force on a square loop of current in a uniform B-field.
Force on a square loop of current in a uniform B-field. F top = 0 θ = 0; sinθ = 0; so F B = 0 F bottom = 0 F left = I a B (out of page) F right = I a B (into page) Assume loop is on a frictionless axis
Mechanics lecture 7 Moment of a force, torque, equilibrium of a body
G.1 EE1.el3 (EEE1023): Electronics III Mechanics lecture 7 Moment of a force, torque, equilibrium of a body Dr Philip Jackson http://www.ee.surrey.ac.uk/teaching/courses/ee1.el3/ G.2 Moments, torque and
Kyu-Jung Kim Mechanical Engineering Department, California State Polytechnic University, Pomona, U.S.A.
MECHANICS: STATICS AND DYNAMICS Kyu-Jung Kim Mechanical Engineering Department, California State Polytechnic University, Pomona, U.S.A. Keywords: mechanics, statics, dynamics, equilibrium, kinematics,
Universitätsstrasse 1, D-40225 Düsseldorf, Germany 3 Current address: Institut für Festkörperforschung,
Lane formation in oppositely charged colloidal mixtures - supplementary information Teun Vissers 1, Adam Wysocki 2,3, Martin Rex 2, Hartmut Löwen 2, C. Patrick Royall 1,4, Arnout Imhof 1, and Alfons van
Physics 1A Lecture 10C
Physics 1A Lecture 10C "If you neglect to recharge a battery, it dies. And if you run full speed ahead without stopping for water, you lose momentum to finish the race. --Oprah Winfrey Static Equilibrium
Incorporating Internal Gradient and Restricted Diffusion Effects in Nuclear Magnetic Resonance Log Interpretation
The Open-Access Journal for the Basic Principles of Diffusion Theory, Experiment and Application Incorporating Internal Gradient and Restricted Diffusion Effects in Nuclear Magnetic Resonance Log Interpretation
AP2 Magnetism. (c) Explain why the magnetic field does no work on the particle as it moves in its circular path.
A charged particle is projected from point P with velocity v at a right angle to a uniform magnetic field directed out of the plane of the page as shown. The particle moves along a circle of radius R.
Lecture 6. Weight. Tension. Normal Force. Static Friction. Cutnell+Johnson: 4.8-4.12, second half of section 4.7
Lecture 6 Weight Tension Normal Force Static Friction Cutnell+Johnson: 4.8-4.12, second half of section 4.7 In this lecture, I m going to discuss four different kinds of forces: weight, tension, the normal
Introduction to Powder X-Ray Diffraction History Basic Principles
Introduction to Powder X-Ray Diffraction History Basic Principles Folie.1 History: Wilhelm Conrad Röntgen Wilhelm Conrad Röntgen discovered 1895 the X-rays. 1901 he was honoured by the Noble prize for
Physics 235 Chapter 1. Chapter 1 Matrices, Vectors, and Vector Calculus
Chapter 1 Matrices, Vectors, and Vector Calculus In this chapter, we will focus on the mathematical tools required for the course. The main concepts that will be covered are: Coordinate transformations
Laser expander design of highly efficient Blu-ray disc pickup head
Laser expander design of highly efficient Blu-ray disc pickup head Wen-Shing Sun, 1,* Kun-Di Liu, 1 Jui-Wen Pan, 1 Chuen-Lin Tien, 2 and Min-Sheng Hsieh 1 1 Department of Optics and Photonics, National
Molecular Dynamics Simulations
Molecular Dynamics Simulations Yaoquan Tu Division of Theoretical Chemistry and Biology, Royal Institute of Technology (KTH) 2011-06 1 Outline I. Introduction II. Molecular Mechanics Force Field III. Molecular
Inner Product Spaces
Math 571 Inner Product Spaces 1. Preliminaries An inner product space is a vector space V along with a function, called an inner product which associates each pair of vectors u, v with a scalar u, v, and
GCE Mathematics (6360) Further Pure unit 4 (MFP4) Textbook
Version 36 klm GCE Mathematics (636) Further Pure unit 4 (MFP4) Textbook The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 364473 and a
A vector is a directed line segment used to represent a vector quantity.
Chapters and 6 Introduction to Vectors A vector quantity has direction and magnitude. There are many examples of vector quantities in the natural world, such as force, velocity, and acceleration. A vector
Mechanical Properties - Stresses & Strains
Mechanical Properties - Stresses & Strains Types of Deformation : Elasic Plastic Anelastic Elastic deformation is defined as instantaneous recoverable deformation Hooke's law : For tensile loading, σ =
Reflection and Refraction
Equipment Reflection and Refraction Acrylic block set, plane-concave-convex universal mirror, cork board, cork board stand, pins, flashlight, protractor, ruler, mirror worksheet, rectangular block worksheet,
Quantum Magnetism. Jonathan Keeling. http://www.tcm.phy.cam.ac.uk/ jmjk2/qm/
Quantum Magnetism Jonathan Keeling http://www.tcm.phy.cam.ac.uk/ jmjk2/qm/ Contents Contents List of Figures Introduction Books and Review articles...................... iii v vii vii 1 Quantum magnetism
Polarization Dependence in X-ray Spectroscopy and Scattering. S P Collins et al Diamond Light Source UK
Polarization Dependence in X-ray Spectroscopy and Scattering S P Collins et al Diamond Light Source UK Overview of talk 1. Experimental techniques at Diamond: why we care about x-ray polarization 2. How
Today in Physics 217: the method of images
Today in Physics 17: the method of images Solving the Laplace and Poisson euations by sleight of hand Introduction to the method of images Caveats Example: a point charge and a grounded conducting sphere
Spectroscopic Ellipsometry:
Spectroscopic : What it is, what it will do, and what it won t do by Harland G. Tompkins Introduction Fundamentals Anatomy of an ellipsometric spectrum Analysis of an ellipsometric spectrum What you can
Chapter 15 Collision Theory
Chapter 15 Collision Theory 151 Introduction 1 15 Reference Frames Relative and Velocities 1 151 Center of Mass Reference Frame 15 Relative Velocities 3 153 Characterizing Collisions 5 154 One-Dimensional
Interference and Diffraction
Chapter 14 nterference and Diffraction 14.1 Superposition of Waves... 14-14. Young s Double-Slit Experiment... 14-4 Example 14.1: Double-Slit Experiment... 14-7 14.3 ntensity Distribution... 14-8 Example
EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1 - LOADING SYSTEMS
EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1 - LOADING SYSTEMS TUTORIAL 1 NON-CONCURRENT COPLANAR FORCE SYSTEMS 1. Be able to determine the effects
MAT 1341: REVIEW II SANGHOON BAEK
MAT 1341: REVIEW II SANGHOON BAEK 1. Projections and Cross Product 1.1. Projections. Definition 1.1. Given a vector u, the rectangular (or perpendicular or orthogonal) components are two vectors u 1 and
45. The peak value of an alternating current in a 1500-W device is 5.4 A. What is the rms voltage across?
PHYS Practice Problems hapters 8- hapter 8. 45. The peak value of an alternating current in a 5-W device is 5.4 A. What is the rms voltage across? The power and current can be used to find the peak voltage,
X-ray thin-film measurement techniques
Technical articles X-ray thin-film measurement techniques II. Out-of-plane diffraction measurements Toru Mitsunaga* 1. Introduction A thin-film sample is two-dimensionally formed on the surface of a substrate,
Chapter 1: Statics. A) Newtonian Mechanics B) Relativistic Mechanics
Chapter 1: Statics 1. The subject of mechanics deals with what happens to a body when is / are applied to it. A) magnetic field B) heat C ) forces D) neutrons E) lasers 2. still remains the basis of most
Largest Fixed-Aspect, Axis-Aligned Rectangle
Largest Fixed-Aspect, Axis-Aligned Rectangle David Eberly Geometric Tools, LLC http://www.geometrictools.com/ Copyright c 1998-2016. All Rights Reserved. Created: February 21, 2004 Last Modified: February
v w is orthogonal to both v and w. the three vectors v, w and v w form a right-handed set of vectors.
3. Cross product Definition 3.1. Let v and w be two vectors in R 3. The cross product of v and w, denoted v w, is the vector defined as follows: the length of v w is the area of the parallelogram with
MATH4427 Notebook 2 Spring 2016. 2 MATH4427 Notebook 2 3. 2.1 Definitions and Examples... 3. 2.2 Performance Measures for Estimators...
MATH4427 Notebook 2 Spring 2016 prepared by Professor Jenny Baglivo c Copyright 2009-2016 by Jenny A. Baglivo. All Rights Reserved. Contents 2 MATH4427 Notebook 2 3 2.1 Definitions and Examples...................................
COMPUTATION OF THREE-DIMENSIONAL ELECTRIC FIELD PROBLEMS BY A BOUNDARY INTEGRAL METHOD AND ITS APPLICATION TO INSULATION DESIGN
PERIODICA POLYTECHNICA SER. EL. ENG. VOL. 38, NO. ~, PP. 381-393 (199~) COMPUTATION OF THREE-DIMENSIONAL ELECTRIC FIELD PROBLEMS BY A BOUNDARY INTEGRAL METHOD AND ITS APPLICATION TO INSULATION DESIGN H.
Standard Model of Particle Physics
Standard Model of Particle Physics Chris Sachrajda School of Physics and Astronomy University of Southampton Southampton SO17 1BJ UK SUSSP61, St Andrews August 8th 3rd 006 Contents 1. Spontaneous Symmetry
II. Linear Systems of Equations
II. Linear Systems of Equations II. The Definition We are shortly going to develop a systematic procedure which is guaranteed to find every solution to every system of linear equations. The fact that such
Right- and left-handed twist in optical fibers
RESEARCH Revista Mexicana de Física 60 (2014) 69 74 JANUARY-FEBRUARY 2014 Right- and left-handed twist in optical fibers D. Tentori and A. Garcia-Weidner* Centro de Investigación Científica y Educación
COMPLEX NUMBERS AND DIFFERENTIAL EQUATIONS
COMPLEX NUMBERS AND DIFFERENTIAL EQUATIONS BORIS HASSELBLATT CONTENTS. Introduction. Why complex numbers were introduced 3. Complex numbers, Euler s formula 3 4. Homogeneous differential equations 8 5.
Exact Inference for Gaussian Process Regression in case of Big Data with the Cartesian Product Structure
Exact Inference for Gaussian Process Regression in case of Big Data with the Cartesian Product Structure Belyaev Mikhail 1,2,3, Burnaev Evgeny 1,2,3, Kapushev Yermek 1,2 1 Institute for Information Transmission
/ DSM / IRAMIS / LLB)
RESIDUAL STRESSES ANF Métallurgie Fondamentale Vincent Klosek (CEA / DSM / IRAMIS / LLB) 23/10/2012 8 NOVEMBRE 2012 CEA 23 OCTOBRE 2012 PAGE 1 INTRODUCTION Residual Stresses? Static multiaxial stresses
a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2.
Chapter 1 LINEAR EQUATIONS 1.1 Introduction to linear equations A linear equation in n unknowns x 1, x,, x n is an equation of the form a 1 x 1 + a x + + a n x n = b, where a 1, a,..., a n, b are given
Chapter 33. The Magnetic Field
Chapter 33. The Magnetic Field Digital information is stored on a hard disk as microscopic patches of magnetism. Just what is magnetism? How are magnetic fields created? What are their properties? These
Section 11.1: Vectors in the Plane. Suggested Problems: 1, 5, 9, 17, 23, 25-37, 40, 42, 44, 45, 47, 50
Section 11.1: Vectors in the Plane Page 779 Suggested Problems: 1, 5, 9, 17, 3, 5-37, 40, 4, 44, 45, 47, 50 Determine whether the following vectors a and b are perpendicular. 5) a = 6, 0, b = 0, 7 Recall
The Matrix Elements of a 3 3 Orthogonal Matrix Revisited
Physics 116A Winter 2011 The Matrix Elements of a 3 3 Orthogonal Matrix Revisited 1. Introduction In a class handout entitled, Three-Dimensional Proper and Improper Rotation Matrices, I provided a derivation
GEOMETRIC, THERMODYNAMIC AND CFD ANALYSES OF A REAL SCROLL EXPANDER FOR MICRO ORC APPLICATIONS
2 nd International Seminar on ORC Power Systems October 7 th & 8 th, 213 De Doelen, Rotterdam, NL GEOMETRIC, THERMODYNAMIC AND CFD ANALYSES OF A REAL SCROLL EXPANDER FOR MICRO ORC APPLICATIONS M. Morini,
CIRCLE COORDINATE GEOMETRY
CIRCLE COORDINATE GEOMETRY (EXAM QUESTIONS) Question 1 (**) A circle has equation x + y = 2x + 8 Determine the radius and the coordinates of the centre of the circle. r = 3, ( 1,0 ) Question 2 (**) A circle
