Frustrated magnetism on Hollandite lattice

Size: px
Start display at page:

Download "Frustrated magnetism on Hollandite lattice"

Transcription

1 Frustrated magnetism on Hollandite lattice Saptarshi Mandal (ICTP, Trieste, Italy) Acknowledgment: A. Andreanov(MPIKS, Dresden) Y. Crespo and N. Seriani(ICTP, Italy) Workshop on Current Trends in Frustrated Magnetism, JNU, New Delhi February 13, 2015

2 Plan of the Talk Introduction Hollandite lattice and αmno 2 Experimental Magnetic properties Model Phase diagram Effect of external magnetic field Recent interest

3 Frustrated Magnetism: AFM interaction or FM + AFM interaction Geometrical Frustration Triangular lattice Kagome lattice Pyrochlore lattice

4 MnO 2 and its various compounds Wide applications Catalyst for oxygen reduction reaction. W. Xiao et al, J. Phys. Chem.C (2010) Microbial fuell cell. RSC Adv (2013) Electrode materials for Li-ion batteries, Lithiam-air batteries. Supercapacitor G. -R. Li et al Langmuir 26, 2209 (2010) αmno 2 compounds, ex. BaMn 8 O 16, KMn 8 O 16. Comes in hollandite and ramsdellite lattice structures. βmno 2 appears in rutile structures. γmno 2 a combination of ramsdellite αmno 2 and rutile βmno 2 domains. So far the best material for battary use.

5 αmno 2 and its properties BaMn 8 O 16, KMn 8 O 16, α Mn0 2 ṅh 2 0 a = 2.86Å, b = 2.91Å, c = 3.44Å Diameters of pores 4.6Å Spin moment of Mn is 3 2

6 Previous experimental finding. AFM state for K <0.7 MnO 2 (synthesized with hydrothermal technique), N. Yamamoto et al Jpn. J. Appl. Phys. 13, 723 (1974). AFM transition for K 0.16 MnO 2 at T N = 18 K Strobel et al J. Sol. State Chem. 55, 67 (1984) A helical magnetic structure was also suggested for K 0.15 MnO 2. H. Sato et al J. Alloys Comp , 443 (1997). FM state for 52K to 20K for K 1.5 (H 3 O) x Mn 8 O 16 Below 20 K spatial anisotropic susceptibilities indicate a helical ground state. H. Sato et al Phys. Rev. B 59, (1999). Spin glass behaviour for K x MnO 2 (0.087 < x 0.125). J. Luo et al J. Phys. Chem. C 114, 8782 (2010). J. Luo et al J. Appl. Phys. 105, (2009), X.-F. Shen et al J. Am. Chem. Soc. 127, 6166 (2005).

7 Recent interest Spin-glass behaviour with Ising model. Y. Crespo et al Phys. Rev. B 88, (2013) Electronic and magnetic properties..ab initio calculations. Y. Crespo et al Phys. Rev. B 88, (2013) other works.. Hollandite as a new class of multiferroics, Scientific Reports 4, 6203 (2014)

8 Hollandite lattice: lattice of αmno 2

9 Modelling αmno 2 Mn-O-Mn angle varies 100 to 130 Goodenough- Kanamori-Anderson rule DFT insights Expeimental insight H = J 1 Si. S j + J 2 Si. S j + J 3 Si. S j (1) ij ij 2 ij 3

10 Method.. Interaction matrix method, S i,α = k ei K. R i Sk,α H = S k,α H α,β (k) S k,β, H α,β (k) S k,β = λ kmin Sk,β Numerical Simulation, inhomogenous meanfield method. H = ij J ij S i. S j, H = i h i. S j, hi = j J ij S j bravais vs non-bravais lattice, λ kmin = E site I II IV III H = H α,β (k) Sk,α c Sk,β c, α, β 1, 4; E = J 1 cos2φ ( J J 3 )cosφ E = J 1 ( J 2 +2 J 3 ) 2 8J 1, cos φ = J 2 +2 J 3 4J 1 E φ = 2.125, φ =

11 Ground states of Hollandite lattice ( S.M et. al. Phys. Rev. B 90, , (2014) J 1 AFM FM J 2 J 3 J 2 J 1 AFM FM J 2 J 3 J 2

12 s n α s n β = cos(2nφ)ˆx + sin(2nφ)ẑ, = cos((2n + 1)φ)ˆx + sin((2n + 1)φ)ẑ.

13 s n α = cos(2nφ)ˆx + sin(2nφ)ẑ, s α 1 n s n β = cos((2n + 1)φ)ˆx + sin((2n + 1)φ)ẑ, s β 1 n = s n α = s β n.

14 phase diagram-i C2 AFM (0,2) C AFM J 2 J1 C2 H C H ( 4,0) F H A2 H (4,0) FM (0, 2) A2 AFM J 3 J 1 E col = J 1 J 2 2 J 3, E hel = J 1 ( J 2 +2 J 3 ) 2 8 θ = 2φ Each helical state is continually connected with co-linear phase.

15 Comparision with Ising model degeneracy!! E GFP = J 1, E hel = J 1 ( J 2 +2 J 3 ) 2 8J 1 Area of the GFP is smaller than the area of helical phase. Boundary between GPF is discontinuous but the boundary between helical and colinear phase is continuous. Macroscopic degeneracies of GPF is absent in helical phase.

16 Chirality and degeneracy Definition: C J1,J 2(3) = s 1 s 2 + s 2 s 3 + s 3 s 1. = ±(2 sin φ + sin 2φ)ẑ For J 1 Ferromagnetic the system is not frustrated and simple colinear magnetism is observed.

17 Neutron diffraction pattarn Magnetic structure factor F( Q) = 1 Nt Nt l=1 ei Q. r l S( rl ) = ( N 5,7 uc k=1 j 1,3 s k,je i Q. d j + 6,8 j 2,4 s k,je i Q. d j )e i Q. R k N y 0.5 C H C2 H A2 H F H N x _ 0.2 The position of peaks and the value of F M ( Q) / F M ( Q max ) is different for each phase.

18 Ground state magnetisation and susceptibility F M ( Q) / F M ( Q max ) Phase (0,2φ-7) (1,2φ-7) (2,2φ-7) (0,2φ-6) (1,2φ-6) (2,2φ-6) C-H C2-H A2-H F-H Magnetisation: m µ = i s i,µ = 0 Non zero susceptbility tensor: χ µ,λ = 1 ( s i,µ s j,λ s i,µ s j,λ ) = χδ µ,λ, µ, λ x, z N i,j = 0.5 (2) H. Sato, et. al. J. Alloys Comp , 443 (1997).

19 Effect of magnetic field: C H H. Sato et al. Phys. Rev. B 59, 12836,(1999) Unknown FM state between T 2 and T 3 We consider T=0. H is the magnetic field applied perpendicular to the plane of polarization H is the magnetic field applied along the plane of polarization

20 Effect of perpendicular magnetic field H = H 0 + h Nt i=1 s y,i, s i = (1 2 i ) s 0,i i ŷ (1 2 j ) self-consistent Eq: ( ) j i J ij s (1 2 0,i. s 0,j + J ij j = h i ) s i = (1 2 ) s 0,i ŷ, = h 2(J 1 +J 2 +2J 3 E GS ) Ground state energy: E = E GS m = h 2 4(J 1 +J 2 +2J 3 E GS ) h 2(J 1 +J 2 +2J 3 E GS ), χ = 1 2(J 1 +J 2 +2J 3 E GS ) > 0. Critical Magnetic field h c y = 2(J 1 + J 2 + 2J 3 E GS ).

21 Effect of parallel magnetic field, H = H 0 + h Nt i=1 s x,i. s α n = cos(θ α n + δθ α n )ˆx + sin(θ α n + δθ α n )ẑ, α β. δθ (α,β) n = h sin θ n (α,β) ). 2 (J 1 cos 2 (2φ)+(J 2 +2J 3 ) cos 2 φ E GS E = E GS Magnetisation: m x = h 2 8(J 1 cos 2 (2φ)+(J 2 +2J 3 ) cos 2 φ E GS ) h 4(J 1 cos 2 2φ+(J 2 +2J 3 ) cos 2 φ E GS ). Susceptibility: χ = 1 4(J 1 cos 2 (2φ)+(J 2 +2J 3 ) cos 2 φ E GS ) No critical field, For strong parallel field, the spins are canted perpenicular to the field.

22 Susceptibility 2 1 J 3 J J J 1 temperature dependence of Susceptibilities? χ > χ, χ χ = 0.87 χ, χ, φ, from neutron diffraction may help to determine J 1, J 2, J 3

23 Scientific Reports 4, 6203 (2014) a minimal model includes 4 different nearest neighbour coupling, J 1, J 2, J 3, J 4. Could be frustrating. The transition temperature 50 o K is identical to that of α-mno 2, indicating that dynamics along Mn Mn ladder is the main factor for finite T mechanism.

24 A. M. Larson et. al, Inducing Ferrimagnetism in Insulating Hollandite Ba 1.2 Mn 8 O 16,Chem of Mat. Ba x Mn 8 O 16 from a complex AFM with (T N ) =25 K to a ferrimagnet with Curie temperature (T C )=180 K via partial Co sustitution for Mn.

25 Thank you

5 VECTOR GEOMETRY. 5.0 Introduction. Objectives. Activity 1

5 VECTOR GEOMETRY. 5.0 Introduction. Objectives. Activity 1 5 VECTOR GEOMETRY Chapter 5 Vector Geometry Objectives After studying this chapter you should be able to find and use the vector equation of a straight line; be able to find the equation of a plane in

More information

Ajit Kumar Patra (Autor) Crystal structure, anisotropy and spin reorientation transition of highly coercive, epitaxial Pr-Co films

Ajit Kumar Patra (Autor) Crystal structure, anisotropy and spin reorientation transition of highly coercive, epitaxial Pr-Co films Ajit Kumar Patra (Autor) Crystal structure, anisotropy and spin reorientation transition of highly coercive, epitaxial Pr-Co films https://cuvillier.de/de/shop/publications/1306 Copyright: Cuvillier Verlag,

More information

α α λ α = = λ λ α ψ = = α α α λ λ ψ α = + β = > θ θ β > β β θ θ θ β θ β γ θ β = γ θ > β > γ θ β γ = θ β = θ β = θ β = β θ = β β θ = = = β β θ = + α α α α α = = λ λ λ λ λ λ λ = λ λ α α α α λ ψ + α =

More information

Crystal Structure of High Temperature Superconductors. Marie Nelson East Orange Campus High School NJIT Professor: Trevor Tyson

Crystal Structure of High Temperature Superconductors. Marie Nelson East Orange Campus High School NJIT Professor: Trevor Tyson Crystal Structure of High Temperature Superconductors Marie Nelson East Orange Campus High School NJIT Professor: Trevor Tyson Introduction History of Superconductors Superconductors are material which

More information

Review of Statistical Mechanics

Review of Statistical Mechanics Review of Statistical Mechanics 3. Microcanonical, Canonical, Grand Canonical Ensembles In statistical mechanics, we deal with a situation in which even the quantum state of the system is unknown. The

More information

1 CHAPTER 12 PROPERTIES OF MAGNETIC MATERIALS

1 CHAPTER 12 PROPERTIES OF MAGNETIC MATERIALS 1 CHAPTER 12 PROPERTIES OF MAGNETIC MATERIALS 12.1 Introduction This chapter is likely to be a short one, not least because it is a subject in which my own knowledge is, to put it charitably, a little

More information

Solutions for Math 311 Assignment #1

Solutions for Math 311 Assignment #1 Solutions for Math 311 Assignment #1 (1) Show that (a) Re(iz) Im(z); (b) Im(iz) Re(z). Proof. Let z x + yi with x Re(z) and y Im(z). Then Re(iz) Re( y + xi) y Im(z) and Im(iz) Im( y + xi) x Re(z). () Verify

More information

DIEGO TONINI MORPHOLOGY OF NIOBIUM FILMS SPUTTERED AT DIFFERENT TARGET SUBSTRATE ANGLE

DIEGO TONINI MORPHOLOGY OF NIOBIUM FILMS SPUTTERED AT DIFFERENT TARGET SUBSTRATE ANGLE UNIVERSITÀ DEGLI STUDI DI PADOVA SCIENCE FACULTY MATERIAL SCIENCE DEGREE INFN LABORATORI NAZIONALI DI LEGNARO DIEGO TONINI MORPHOLOGY OF NIOBIUM FILMS SPUTTERED AT DIFFERENT TARGET SUBSTRATE ANGLE 2 QUESTIONS

More information

fotoelektron-spektroszkópia Rakyta Péter

fotoelektron-spektroszkópia Rakyta Péter Spin-pálya kölcsönhatás grafénben, fotoelektron-spektroszkópia Rakyta Péter EÖTVÖS LORÁND TUDOMÁNYEGYETEM, KOMPLEX RENDSZEREK FIZIKÁJA TANSZÉK 1 Introduction to graphene Sp 2 hybridization p z orbitals

More information

Chapter 4. Forces and Newton s Laws of Motion. continued

Chapter 4. Forces and Newton s Laws of Motion. continued Chapter 4 Forces and Newton s Laws of Motion continued 4.9 Static and Kinetic Frictional Forces When an object is in contact with a surface forces can act on the objects. The component of this force acting

More information

STRUCTURAL STUDIES OF MULTIFERROIC THIN FILMS

STRUCTURAL STUDIES OF MULTIFERROIC THIN FILMS STRUCTURAL STUDIES OF MULTIFERROIC THIN FILMS Lisa Krayer (UCSD) Mentor: Daniel Pajerowski (NIST) Collaborating with: (University of Florida) Professor Amlan Biswas Daniel Grant NCNR

More information

Magnetic Dipoles. Magnetic Field of Current Loop. B r. PHY2061 Enriched Physics 2 Lecture Notes

Magnetic Dipoles. Magnetic Field of Current Loop. B r. PHY2061 Enriched Physics 2 Lecture Notes Disclaimer: These lecture notes are not meant to replace the course textbook. The content may be incomplete. Some topics may be unclear. These notes are only meant to be a study aid and a supplement to

More information

Scanning Near Field Optical Microscopy: Principle, Instrumentation and Applications

Scanning Near Field Optical Microscopy: Principle, Instrumentation and Applications Scanning Near Field Optical Microscopy: Principle, Instrumentation and Applications Saulius Marcinkevičius Optics, ICT, KTH 1 Outline Optical near field. Principle of scanning near field optical microscope

More information

Fundamentals of grain boundaries and grain boundary migration

Fundamentals of grain boundaries and grain boundary migration 1. Fundamentals of grain boundaries and grain boundary migration 1.1. Introduction The properties of crystalline metallic materials are determined by their deviation from a perfect crystal lattice, which

More information

Dot product and vector projections (Sect. 12.3) There are two main ways to introduce the dot product

Dot product and vector projections (Sect. 12.3) There are two main ways to introduce the dot product Dot product and vector projections (Sect. 12.3) Two definitions for the dot product. Geometric definition of dot product. Orthogonal vectors. Dot product and orthogonal projections. Properties of the dot

More information

Lecture L3 - Vectors, Matrices and Coordinate Transformations

Lecture L3 - Vectors, Matrices and Coordinate Transformations S. Widnall 16.07 Dynamics Fall 2009 Lecture notes based on J. Peraire Version 2.0 Lecture L3 - Vectors, Matrices and Coordinate Transformations By using vectors and defining appropriate operations between

More information

Basic Principles of Magnetic Resonance

Basic Principles of Magnetic Resonance Basic Principles of Magnetic Resonance Contents: Jorge Jovicich [email protected] I) Historical Background II) An MR experiment - Overview - Can we scan the subject? - The subject goes into the magnet -

More information

Cyber-Security Analysis of State Estimators in Power Systems

Cyber-Security Analysis of State Estimators in Power Systems Cyber-Security Analysis of State Estimators in Electric Power Systems André Teixeira 1, Saurabh Amin 2, Henrik Sandberg 1, Karl H. Johansson 1, and Shankar Sastry 2 ACCESS Linnaeus Centre, KTH-Royal Institute

More information

The Vector or Cross Product

The Vector or Cross Product The Vector or ross Product 1 ppendix The Vector or ross Product We saw in ppendix that the dot product of two vectors is a scalar quantity that is a maximum when the two vectors are parallel and is zero

More information

Electron density is complex!

Electron density is complex! Electron density is complex! Göttingen, November 13 th 2008 George M. Sheldrick, Göttingen University http://shelx.uni-ac.gwdg.de/shelx/ Friedel s Law F h,k,l = F h, k, l and φ h,k,l = φ h, k, l Friedel

More information

Problem set on Cross Product

Problem set on Cross Product 1 Calculate the vector product of a and b given that a= 2i + j + k and b = i j k (Ans 3 j - 3 k ) 2 Calculate the vector product of i - j and i + j (Ans ) 3 Find the unit vectors that are perpendicular

More information

Geometric Transformation CS 211A

Geometric Transformation CS 211A Geometric Transformation CS 211A What is transformation? Moving points (x,y) moves to (x+t, y+t) Can be in any dimension 2D Image warps 3D 3D Graphics and Vision Can also be considered as a movement to

More information

Magnetism and Magnetic Materials K. Inomata

Magnetism and Magnetic Materials K. Inomata Magnetism and Magnetic Materials K. Inomata 1. Origin of magnetism 1.1 Magnetism of free atoms and ions 1.2 Magnetism for localized electrons 1.3 Itinerant electron magnetism 2. Magnetic properties of

More information

Complex Numbers. w = f(z) z. Examples

Complex Numbers. w = f(z) z. Examples omple Numbers Geometrical Transformations in the omple Plane For functions of a real variable such as f( sin, g( 2 +2 etc ou are used to illustrating these geometricall, usuall on a cartesian graph. If

More information

Chapter 6. Linear Transformation. 6.1 Intro. to Linear Transformation

Chapter 6. Linear Transformation. 6.1 Intro. to Linear Transformation Chapter 6 Linear Transformation 6 Intro to Linear Transformation Homework: Textbook, 6 Ex, 5, 9,, 5,, 7, 9,5, 55, 57, 6(a,b), 6; page 7- In this section, we discuss linear transformations 89 9 CHAPTER

More information

1.3. DOT PRODUCT 19. 6. If θ is the angle (between 0 and π) between two non-zero vectors u and v,

1.3. DOT PRODUCT 19. 6. If θ is the angle (between 0 and π) between two non-zero vectors u and v, 1.3. DOT PRODUCT 19 1.3 Dot Product 1.3.1 Definitions and Properties The dot product is the first way to multiply two vectors. The definition we will give below may appear arbitrary. But it is not. It

More information

Error estimates for nearly degenerate finite elements

Error estimates for nearly degenerate finite elements Error estimates for nearly degenerate finite elements Pierre Jamet In RAIRO: Analyse Numérique, Vol 10, No 3, March 1976, p. 43 61 Abstract We study a property which is satisfied by most commonly used

More information

NMR and IR spectra & vibrational analysis

NMR and IR spectra & vibrational analysis Lab 5: NMR and IR spectra & vibrational analysis A brief theoretical background 1 Some of the available chemical quantum methods for calculating NMR chemical shifts are based on the Hartree-Fock self-consistent

More information

Boring (?) first-order phase transitions

Boring (?) first-order phase transitions Boring (?) first-order phase transitions Des Johnston Edinburgh, June 2014 Johnston First Order 1/34 Plan of talk First and Second Order Transitions Finite size scaling (FSS) at first order transitions

More information

O6: The Diffraction Grating Spectrometer

O6: The Diffraction Grating Spectrometer 2B30: PRACTICAL ASTROPHYSICS FORMAL REPORT: O6: The Diffraction Grating Spectrometer Adam Hill Lab partner: G. Evans Tutor: Dr. Peter Storey 1 Abstract The calibration of a diffraction grating spectrometer

More information

GPR Polarization Simulation with 3D HO FDTD

GPR Polarization Simulation with 3D HO FDTD Progress In Electromagnetics Research Symposium Proceedings, Xi an, China, March 6, 00 999 GPR Polarization Simulation with 3D HO FDTD Jing Li, Zhao-Fa Zeng,, Ling Huang, and Fengshan Liu College of Geoexploration

More information

Math Placement Test Practice Problems

Math Placement Test Practice Problems Math Placement Test Practice Problems The following problems cover material that is used on the math placement test to place students into Math 1111 College Algebra, Math 1113 Precalculus, and Math 2211

More information

Solutions for Review Problems

Solutions for Review Problems olutions for Review Problems 1. Let be the triangle with vertices A (,, ), B (4,, 1) and C (,, 1). (a) Find the cosine of the angle BAC at vertex A. (b) Find the area of the triangle ABC. (c) Find a vector

More information

Polarization of Light

Polarization of Light Polarization of Light References Halliday/Resnick/Walker Fundamentals of Physics, Chapter 33, 7 th ed. Wiley 005 PASCO EX997A and EX999 guide sheets (written by Ann Hanks) weight Exercises and weights

More information

PHYSICS PAPER 1 (THEORY)

PHYSICS PAPER 1 (THEORY) PHYSICS PAPER 1 (THEORY) (Three hours) (Candidates are allowed additional 15 minutes for only reading the paper. They must NOT start writing during this time.) ---------------------------------------------------------------------------------------------------------------------

More information

Torsion Tests. Subjects of interest

Torsion Tests. Subjects of interest Chapter 10 Torsion Tests Subjects of interest Introduction/Objectives Mechanical properties in torsion Torsional stresses for large plastic strains Type of torsion failures Torsion test vs.tension test

More information

www.sakshieducation.com

www.sakshieducation.com LENGTH OF THE PERPENDICULAR FROM A POINT TO A STRAIGHT LINE AND DISTANCE BETWEEN TWO PAPALLEL LINES THEOREM The perpendicular distance from a point P(x 1, y 1 ) to the line ax + by + c 0 is ax1+ by1+ c

More information

Anomalous Hall Effect Magnetometry A Method for Studying Magnetic Processes of Thin Magnetic Films

Anomalous Hall Effect Magnetometry A Method for Studying Magnetic Processes of Thin Magnetic Films Anomalous Hall Effect Magnetometry A Method for Studying Magnetic Processes of Thin Magnetic Films J. R. Lindemuth a, B. C. Dodrill a and N. C. Oldham b a Lake Shore Cryotronics, Inc. 575 McCorkle Blvd,

More information

Structure Factors 59-553 78

Structure Factors 59-553 78 78 Structure Factors Until now, we have only typically considered reflections arising from planes in a hypothetical lattice containing one atom in the asymmetric unit. In practice we will generally deal

More information

Section 9.5: Equations of Lines and Planes

Section 9.5: Equations of Lines and Planes Lines in 3D Space Section 9.5: Equations of Lines and Planes Practice HW from Stewart Textbook (not to hand in) p. 673 # 3-5 odd, 2-37 odd, 4, 47 Consider the line L through the point P = ( x, y, ) that

More information

Lecture L22-2D Rigid Body Dynamics: Work and Energy

Lecture L22-2D Rigid Body Dynamics: Work and Energy J. Peraire, S. Widnall 6.07 Dynamics Fall 008 Version.0 Lecture L - D Rigid Body Dynamics: Work and Energy In this lecture, we will revisit the principle of work and energy introduced in lecture L-3 for

More information

Crystal Structure Determination I

Crystal Structure Determination I Crystal Structure Determination I Dr. Falak Sher Pakistan Institute of Engineering and Applied Sciences National Workshop on Crystal Structure Determination using Powder XRD, organized by the Khwarzimic

More information

2, 8, 20, 28, 50, 82, 126.

2, 8, 20, 28, 50, 82, 126. Chapter 5 Nuclear Shell Model 5.1 Magic Numbers The binding energies predicted by the Liquid Drop Model underestimate the actual binding energies of magic nuclei for which either the number of neutrons

More information

Mathematics Notes for Class 12 chapter 10. Vector Algebra

Mathematics Notes for Class 12 chapter 10. Vector Algebra 1 P a g e Mathematics Notes for Class 12 chapter 10. Vector Algebra A vector has direction and magnitude both but scalar has only magnitude. Magnitude of a vector a is denoted by a or a. It is non-negative

More information

0.1 Phase Estimation Technique

0.1 Phase Estimation Technique Phase Estimation In this lecture we will describe Kitaev s phase estimation algorithm, and use it to obtain an alternate derivation of a quantum factoring algorithm We will also use this technique to design

More information

Linear algebra and the geometry of quadratic equations. Similarity transformations and orthogonal matrices

Linear algebra and the geometry of quadratic equations. Similarity transformations and orthogonal matrices MATH 30 Differential Equations Spring 006 Linear algebra and the geometry of quadratic equations Similarity transformations and orthogonal matrices First, some things to recall from linear algebra Two

More information

Given three vectors A, B, andc. We list three products with formula (A B) C = B(A C) A(B C); A (B C) =B(A C) C(A B);

Given three vectors A, B, andc. We list three products with formula (A B) C = B(A C) A(B C); A (B C) =B(A C) C(A B); 1.1.4. Prouct of three vectors. Given three vectors A, B, anc. We list three proucts with formula (A B) C = B(A C) A(B C); A (B C) =B(A C) C(A B); a 1 a 2 a 3 (A B) C = b 1 b 2 b 3 c 1 c 2 c 3 where the

More information

SOLUTIONS TO HOMEWORK ASSIGNMENT #4, MATH 253

SOLUTIONS TO HOMEWORK ASSIGNMENT #4, MATH 253 SOLUTIONS TO HOMEWORK ASSIGNMENT #4, MATH 253 1. Prove that the following differential equations are satisfied by the given functions: (a) 2 u + 2 u 2 y + 2 u 2 z =0,whereu 2 =(x2 + y 2 + z 2 ) 1/2. (b)

More information

Force on a square loop of current in a uniform B-field.

Force on a square loop of current in a uniform B-field. Force on a square loop of current in a uniform B-field. F top = 0 θ = 0; sinθ = 0; so F B = 0 F bottom = 0 F left = I a B (out of page) F right = I a B (into page) Assume loop is on a frictionless axis

More information

Mechanics lecture 7 Moment of a force, torque, equilibrium of a body

Mechanics lecture 7 Moment of a force, torque, equilibrium of a body G.1 EE1.el3 (EEE1023): Electronics III Mechanics lecture 7 Moment of a force, torque, equilibrium of a body Dr Philip Jackson http://www.ee.surrey.ac.uk/teaching/courses/ee1.el3/ G.2 Moments, torque and

More information

Kyu-Jung Kim Mechanical Engineering Department, California State Polytechnic University, Pomona, U.S.A.

Kyu-Jung Kim Mechanical Engineering Department, California State Polytechnic University, Pomona, U.S.A. MECHANICS: STATICS AND DYNAMICS Kyu-Jung Kim Mechanical Engineering Department, California State Polytechnic University, Pomona, U.S.A. Keywords: mechanics, statics, dynamics, equilibrium, kinematics,

More information

Universitätsstrasse 1, D-40225 Düsseldorf, Germany 3 Current address: Institut für Festkörperforschung,

Universitätsstrasse 1, D-40225 Düsseldorf, Germany 3 Current address: Institut für Festkörperforschung, Lane formation in oppositely charged colloidal mixtures - supplementary information Teun Vissers 1, Adam Wysocki 2,3, Martin Rex 2, Hartmut Löwen 2, C. Patrick Royall 1,4, Arnout Imhof 1, and Alfons van

More information

Physics 1A Lecture 10C

Physics 1A Lecture 10C Physics 1A Lecture 10C "If you neglect to recharge a battery, it dies. And if you run full speed ahead without stopping for water, you lose momentum to finish the race. --Oprah Winfrey Static Equilibrium

More information

Incorporating Internal Gradient and Restricted Diffusion Effects in Nuclear Magnetic Resonance Log Interpretation

Incorporating Internal Gradient and Restricted Diffusion Effects in Nuclear Magnetic Resonance Log Interpretation The Open-Access Journal for the Basic Principles of Diffusion Theory, Experiment and Application Incorporating Internal Gradient and Restricted Diffusion Effects in Nuclear Magnetic Resonance Log Interpretation

More information

AP2 Magnetism. (c) Explain why the magnetic field does no work on the particle as it moves in its circular path.

AP2 Magnetism. (c) Explain why the magnetic field does no work on the particle as it moves in its circular path. A charged particle is projected from point P with velocity v at a right angle to a uniform magnetic field directed out of the plane of the page as shown. The particle moves along a circle of radius R.

More information

Lecture 6. Weight. Tension. Normal Force. Static Friction. Cutnell+Johnson: 4.8-4.12, second half of section 4.7

Lecture 6. Weight. Tension. Normal Force. Static Friction. Cutnell+Johnson: 4.8-4.12, second half of section 4.7 Lecture 6 Weight Tension Normal Force Static Friction Cutnell+Johnson: 4.8-4.12, second half of section 4.7 In this lecture, I m going to discuss four different kinds of forces: weight, tension, the normal

More information

Introduction to Powder X-Ray Diffraction History Basic Principles

Introduction to Powder X-Ray Diffraction History Basic Principles Introduction to Powder X-Ray Diffraction History Basic Principles Folie.1 History: Wilhelm Conrad Röntgen Wilhelm Conrad Röntgen discovered 1895 the X-rays. 1901 he was honoured by the Noble prize for

More information

Physics 235 Chapter 1. Chapter 1 Matrices, Vectors, and Vector Calculus

Physics 235 Chapter 1. Chapter 1 Matrices, Vectors, and Vector Calculus Chapter 1 Matrices, Vectors, and Vector Calculus In this chapter, we will focus on the mathematical tools required for the course. The main concepts that will be covered are: Coordinate transformations

More information

Laser expander design of highly efficient Blu-ray disc pickup head

Laser expander design of highly efficient Blu-ray disc pickup head Laser expander design of highly efficient Blu-ray disc pickup head Wen-Shing Sun, 1,* Kun-Di Liu, 1 Jui-Wen Pan, 1 Chuen-Lin Tien, 2 and Min-Sheng Hsieh 1 1 Department of Optics and Photonics, National

More information

Molecular Dynamics Simulations

Molecular Dynamics Simulations Molecular Dynamics Simulations Yaoquan Tu Division of Theoretical Chemistry and Biology, Royal Institute of Technology (KTH) 2011-06 1 Outline I. Introduction II. Molecular Mechanics Force Field III. Molecular

More information

Inner Product Spaces

Inner Product Spaces Math 571 Inner Product Spaces 1. Preliminaries An inner product space is a vector space V along with a function, called an inner product which associates each pair of vectors u, v with a scalar u, v, and

More information

GCE Mathematics (6360) Further Pure unit 4 (MFP4) Textbook

GCE Mathematics (6360) Further Pure unit 4 (MFP4) Textbook Version 36 klm GCE Mathematics (636) Further Pure unit 4 (MFP4) Textbook The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 364473 and a

More information

A vector is a directed line segment used to represent a vector quantity.

A vector is a directed line segment used to represent a vector quantity. Chapters and 6 Introduction to Vectors A vector quantity has direction and magnitude. There are many examples of vector quantities in the natural world, such as force, velocity, and acceleration. A vector

More information

Mechanical Properties - Stresses & Strains

Mechanical Properties - Stresses & Strains Mechanical Properties - Stresses & Strains Types of Deformation : Elasic Plastic Anelastic Elastic deformation is defined as instantaneous recoverable deformation Hooke's law : For tensile loading, σ =

More information

Reflection and Refraction

Reflection and Refraction Equipment Reflection and Refraction Acrylic block set, plane-concave-convex universal mirror, cork board, cork board stand, pins, flashlight, protractor, ruler, mirror worksheet, rectangular block worksheet,

More information

Quantum Magnetism. Jonathan Keeling. http://www.tcm.phy.cam.ac.uk/ jmjk2/qm/

Quantum Magnetism. Jonathan Keeling. http://www.tcm.phy.cam.ac.uk/ jmjk2/qm/ Quantum Magnetism Jonathan Keeling http://www.tcm.phy.cam.ac.uk/ jmjk2/qm/ Contents Contents List of Figures Introduction Books and Review articles...................... iii v vii vii 1 Quantum magnetism

More information

Polarization Dependence in X-ray Spectroscopy and Scattering. S P Collins et al Diamond Light Source UK

Polarization Dependence in X-ray Spectroscopy and Scattering. S P Collins et al Diamond Light Source UK Polarization Dependence in X-ray Spectroscopy and Scattering S P Collins et al Diamond Light Source UK Overview of talk 1. Experimental techniques at Diamond: why we care about x-ray polarization 2. How

More information

Today in Physics 217: the method of images

Today in Physics 217: the method of images Today in Physics 17: the method of images Solving the Laplace and Poisson euations by sleight of hand Introduction to the method of images Caveats Example: a point charge and a grounded conducting sphere

More information

Spectroscopic Ellipsometry:

Spectroscopic Ellipsometry: Spectroscopic : What it is, what it will do, and what it won t do by Harland G. Tompkins Introduction Fundamentals Anatomy of an ellipsometric spectrum Analysis of an ellipsometric spectrum What you can

More information

Chapter 15 Collision Theory

Chapter 15 Collision Theory Chapter 15 Collision Theory 151 Introduction 1 15 Reference Frames Relative and Velocities 1 151 Center of Mass Reference Frame 15 Relative Velocities 3 153 Characterizing Collisions 5 154 One-Dimensional

More information

Interference and Diffraction

Interference and Diffraction Chapter 14 nterference and Diffraction 14.1 Superposition of Waves... 14-14. Young s Double-Slit Experiment... 14-4 Example 14.1: Double-Slit Experiment... 14-7 14.3 ntensity Distribution... 14-8 Example

More information

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1 - LOADING SYSTEMS

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1 - LOADING SYSTEMS EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1 - LOADING SYSTEMS TUTORIAL 1 NON-CONCURRENT COPLANAR FORCE SYSTEMS 1. Be able to determine the effects

More information

MAT 1341: REVIEW II SANGHOON BAEK

MAT 1341: REVIEW II SANGHOON BAEK MAT 1341: REVIEW II SANGHOON BAEK 1. Projections and Cross Product 1.1. Projections. Definition 1.1. Given a vector u, the rectangular (or perpendicular or orthogonal) components are two vectors u 1 and

More information

45. The peak value of an alternating current in a 1500-W device is 5.4 A. What is the rms voltage across?

45. The peak value of an alternating current in a 1500-W device is 5.4 A. What is the rms voltage across? PHYS Practice Problems hapters 8- hapter 8. 45. The peak value of an alternating current in a 5-W device is 5.4 A. What is the rms voltage across? The power and current can be used to find the peak voltage,

More information

X-ray thin-film measurement techniques

X-ray thin-film measurement techniques Technical articles X-ray thin-film measurement techniques II. Out-of-plane diffraction measurements Toru Mitsunaga* 1. Introduction A thin-film sample is two-dimensionally formed on the surface of a substrate,

More information

Chapter 1: Statics. A) Newtonian Mechanics B) Relativistic Mechanics

Chapter 1: Statics. A) Newtonian Mechanics B) Relativistic Mechanics Chapter 1: Statics 1. The subject of mechanics deals with what happens to a body when is / are applied to it. A) magnetic field B) heat C ) forces D) neutrons E) lasers 2. still remains the basis of most

More information

Largest Fixed-Aspect, Axis-Aligned Rectangle

Largest Fixed-Aspect, Axis-Aligned Rectangle Largest Fixed-Aspect, Axis-Aligned Rectangle David Eberly Geometric Tools, LLC http://www.geometrictools.com/ Copyright c 1998-2016. All Rights Reserved. Created: February 21, 2004 Last Modified: February

More information

v w is orthogonal to both v and w. the three vectors v, w and v w form a right-handed set of vectors.

v w is orthogonal to both v and w. the three vectors v, w and v w form a right-handed set of vectors. 3. Cross product Definition 3.1. Let v and w be two vectors in R 3. The cross product of v and w, denoted v w, is the vector defined as follows: the length of v w is the area of the parallelogram with

More information

MATH4427 Notebook 2 Spring 2016. 2 MATH4427 Notebook 2 3. 2.1 Definitions and Examples... 3. 2.2 Performance Measures for Estimators...

MATH4427 Notebook 2 Spring 2016. 2 MATH4427 Notebook 2 3. 2.1 Definitions and Examples... 3. 2.2 Performance Measures for Estimators... MATH4427 Notebook 2 Spring 2016 prepared by Professor Jenny Baglivo c Copyright 2009-2016 by Jenny A. Baglivo. All Rights Reserved. Contents 2 MATH4427 Notebook 2 3 2.1 Definitions and Examples...................................

More information

COMPUTATION OF THREE-DIMENSIONAL ELECTRIC FIELD PROBLEMS BY A BOUNDARY INTEGRAL METHOD AND ITS APPLICATION TO INSULATION DESIGN

COMPUTATION OF THREE-DIMENSIONAL ELECTRIC FIELD PROBLEMS BY A BOUNDARY INTEGRAL METHOD AND ITS APPLICATION TO INSULATION DESIGN PERIODICA POLYTECHNICA SER. EL. ENG. VOL. 38, NO. ~, PP. 381-393 (199~) COMPUTATION OF THREE-DIMENSIONAL ELECTRIC FIELD PROBLEMS BY A BOUNDARY INTEGRAL METHOD AND ITS APPLICATION TO INSULATION DESIGN H.

More information

Standard Model of Particle Physics

Standard Model of Particle Physics Standard Model of Particle Physics Chris Sachrajda School of Physics and Astronomy University of Southampton Southampton SO17 1BJ UK SUSSP61, St Andrews August 8th 3rd 006 Contents 1. Spontaneous Symmetry

More information

II. Linear Systems of Equations

II. Linear Systems of Equations II. Linear Systems of Equations II. The Definition We are shortly going to develop a systematic procedure which is guaranteed to find every solution to every system of linear equations. The fact that such

More information

Right- and left-handed twist in optical fibers

Right- and left-handed twist in optical fibers RESEARCH Revista Mexicana de Física 60 (2014) 69 74 JANUARY-FEBRUARY 2014 Right- and left-handed twist in optical fibers D. Tentori and A. Garcia-Weidner* Centro de Investigación Científica y Educación

More information

COMPLEX NUMBERS AND DIFFERENTIAL EQUATIONS

COMPLEX NUMBERS AND DIFFERENTIAL EQUATIONS COMPLEX NUMBERS AND DIFFERENTIAL EQUATIONS BORIS HASSELBLATT CONTENTS. Introduction. Why complex numbers were introduced 3. Complex numbers, Euler s formula 3 4. Homogeneous differential equations 8 5.

More information

Exact Inference for Gaussian Process Regression in case of Big Data with the Cartesian Product Structure

Exact Inference for Gaussian Process Regression in case of Big Data with the Cartesian Product Structure Exact Inference for Gaussian Process Regression in case of Big Data with the Cartesian Product Structure Belyaev Mikhail 1,2,3, Burnaev Evgeny 1,2,3, Kapushev Yermek 1,2 1 Institute for Information Transmission

More information

/ DSM / IRAMIS / LLB)

/ DSM / IRAMIS / LLB) RESIDUAL STRESSES ANF Métallurgie Fondamentale Vincent Klosek (CEA / DSM / IRAMIS / LLB) 23/10/2012 8 NOVEMBRE 2012 CEA 23 OCTOBRE 2012 PAGE 1 INTRODUCTION Residual Stresses? Static multiaxial stresses

More information

a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2.

a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2. Chapter 1 LINEAR EQUATIONS 1.1 Introduction to linear equations A linear equation in n unknowns x 1, x,, x n is an equation of the form a 1 x 1 + a x + + a n x n = b, where a 1, a,..., a n, b are given

More information

Chapter 33. The Magnetic Field

Chapter 33. The Magnetic Field Chapter 33. The Magnetic Field Digital information is stored on a hard disk as microscopic patches of magnetism. Just what is magnetism? How are magnetic fields created? What are their properties? These

More information

Section 11.1: Vectors in the Plane. Suggested Problems: 1, 5, 9, 17, 23, 25-37, 40, 42, 44, 45, 47, 50

Section 11.1: Vectors in the Plane. Suggested Problems: 1, 5, 9, 17, 23, 25-37, 40, 42, 44, 45, 47, 50 Section 11.1: Vectors in the Plane Page 779 Suggested Problems: 1, 5, 9, 17, 3, 5-37, 40, 4, 44, 45, 47, 50 Determine whether the following vectors a and b are perpendicular. 5) a = 6, 0, b = 0, 7 Recall

More information

The Matrix Elements of a 3 3 Orthogonal Matrix Revisited

The Matrix Elements of a 3 3 Orthogonal Matrix Revisited Physics 116A Winter 2011 The Matrix Elements of a 3 3 Orthogonal Matrix Revisited 1. Introduction In a class handout entitled, Three-Dimensional Proper and Improper Rotation Matrices, I provided a derivation

More information

GEOMETRIC, THERMODYNAMIC AND CFD ANALYSES OF A REAL SCROLL EXPANDER FOR MICRO ORC APPLICATIONS

GEOMETRIC, THERMODYNAMIC AND CFD ANALYSES OF A REAL SCROLL EXPANDER FOR MICRO ORC APPLICATIONS 2 nd International Seminar on ORC Power Systems October 7 th & 8 th, 213 De Doelen, Rotterdam, NL GEOMETRIC, THERMODYNAMIC AND CFD ANALYSES OF A REAL SCROLL EXPANDER FOR MICRO ORC APPLICATIONS M. Morini,

More information

CIRCLE COORDINATE GEOMETRY

CIRCLE COORDINATE GEOMETRY CIRCLE COORDINATE GEOMETRY (EXAM QUESTIONS) Question 1 (**) A circle has equation x + y = 2x + 8 Determine the radius and the coordinates of the centre of the circle. r = 3, ( 1,0 ) Question 2 (**) A circle

More information