Sizes, shapes and interactions of molecules in solution
|
|
|
- Julia Stafford
- 9 years ago
- Views:
Transcription
1 Sizes, shapes and interactions of molecules in solution Light Scattering Analytical Viscometry Ultracentrifugation Steve Harding, NCMH University of Nottingham
2 1. Molecular weight distribution analysis SEC MALLs and AUC 2. Conformation and flexibility Viscometry, AUC, Light scattering
3 NCMH at Nottingham: A Facility for characterising i sizes/shapes and interactions of macromolecules in solution
4
5 Lecture 1: Albert Einstein and the Viscosity of Albert Einstein and the Viscosity of Macromolecules
6 Annalen der Physik Band 19, 1906, :
7 Annalen der Physik Band 34, 1911, :
8 Viscometry Intrinsic Viscosity of Macromolecular Solutions
9 Viscosity of biomolecules Why viscometry? Simple, straightforward technique for assaying 1. Solution conformation of biomolecules & volume/ solvent association 2. Molecular weight of biomolecules 3. Flexibility
10 Types of Viscometer: 1. U-tube (Ostwald or Ubbelohde) 2. Cone & Plate (Couette) Ostwald Viscometer
11 Types of Viscometer: 1. U-tube (Ostwald or Ubbelohde) 2. Cone & Plate (Couette) Extended Ostwald Viscometer
12 Types of Viscometer: 1. U-tube (Ostwald or Ubbelohde) 2. Cone & Plate (Couette) Couette-type Viscometer
13 Anton-Paar AMVn Rolling Ball viscometer
14 Auto-timer Coolant system Density meter Solution Water bath o C
15 Definition of viscosity: For normal (Newtonian) flow behaviour: τ = (F/A) = η. (dv/dy) η = τ/(dv/dy) units: (dyn/cm 2 )/sec -1 At 20.0 o C, η(water) ~ 0.01P = dyn.sec.cm -2.. = POISE (P)
16 Definition of viscosity: For normal (Newtonian) flow behaviour: viscosity τ = (F/A) = η. (dv/dy) shear stress shear rate η = τ/(dv/dy) units: (dyn/cm 2 )/sec -1 At 20.0 o C, η(water) ~ 0.01P = dyn.sec.cm -2.. = POISE (P)
17 Viscosity of biomolecular solutions: A dissolved macromolecule will INCREASE the viscosity of a solution because it disrupts the streamlines of the flow:
18 We define the relative viscosity η r as the ratio of the viscosity of the solution containing the macromolecule, η, to that of the pure solvent in the absence of macromolecule, η o : η r = η/η o no units For a U-tube viscometer, η r = (t/t o ). (ρ/ρ o )
19 Reduced viscosity The relative viscosity depends (at a given temp.) on the concentration of macromolecule, the shape of the macromolecule & the volume it occupies. If we are going to use viscosity to infer on the shape and volume of the macromolecule we need to eliminate the concentration contribution. The first step is to define the reduced viscosity η red = (η r 1)/c If c is in g/ml, units of η red are ml/g
20 The Intrinsic Viscosity [η] The next step is to eliminate non-ideality effects deriving from exclusion volume, backflow and charge effects. ec By analogy a with osmotic o pressure, e, we measure η red at a series of concentrations and extrapolate to zero concentration: [η] = Lim c 0 (η red) Units of [η] are ml/g
21 Form of the Concentration Extrapolation 2 main forms Huggins equation: η red = [η] (1 + K H [η]c) Kraemer equation: (lnη r )/c = [η] (1 - K K [η]c) K H (no units): HUGGINS CONSTANT K K (no units): KRAEMER CONSTANT
22 A variant of the Huggins equation is: η red = [η] (1 + k η.c) k η : ml/g and another important relation is the SOLOMON- CIUTA relation, essentially a combination of the Huggins and Kraemer lines: [η] ~ (1/c). [2 (η r 1) 2 ln(η r ) ] 1/2 The Solomon-Ciuta equation permits the approximate evaluation of [η] without a concentration extrapolation.
23 Differential Pressure Viscometer: ΔP P i η r = 1 + {(4ΔP).(P i -2ΔP)}
24 Intrinsic Viscosity and its relation to macromolecular properties [η] so found depends on the shape, flexibility and degree of (timeaveraged) water-binding, and for non- spherical particles the molecular weight:
25 M (g/mol) [η] (ml/g) Glucose Myoglobin Ovalbumin Hemoglobin Soya-bean 11S Tomato bushy stunt 10.7 x virus Fibrinogen Myosin Alginate GLOBULAR RODS, COILS
26 Intrinsic Viscosity and Protein Shape and Hydration [η] = ν. v s (1) ν: Simha-Saito function (function of shape & flexibility) v s : swollen specific volume, ml/g (function of H 2 O interaction) ν: Einstein value of 2.5 for rigid spheres >2.5 for other shapes v s : volume of hydrated or swollen macromolecule per. unit anhydrous mass = v + (δ/ρ ο ) = v. S w δ: hydration (g H 2 O/g protein) v: partial specific volume (anhydrous volume per unit anhydrous mass)
27 So, 3 forms of Eqn. (1): [η] = ν. v s or [η] = ν. {v + (δ/ρ ο )} or [η] = ν. v. S w For proteins, v ~ 0.73ml/g, v s ~ 1ml/g, S w ~ 1.4, {For polysacchs, v ~ 0.6ml/g, v s >>1ml/g, S w >>1}
28 Getting a shape from the viscosity ν parameter SIMPLE ELLIPSOIDS OF REVOLUTION: axial ratio: a/b Computer program ELLIPS1 downloadable from
29 Getting a shape from the viscosity ν parameter Computer program ELLIPS2 downloadable from
30 For more complicated shapes: BEAD & SHELL MODELS IgE IgG1
31 GENERAL CONFORMATIONS The three extremes of macromolecular conformation (COMPACT SPHERE, RIGID ROD, RANDOM COIL) are conveniently represented at the corners of a triangle, known as the HAUG TRIANGLE:
32 Each extreme has its own characteristic dependence of [η] on M. Mark-Houwink-Kuhn-Sakurada equation [η] = K.M a Analagous power law relations exist for sedimentation, diffusion and R g (classical light scattering) s o 20,w= K.M b ; D o 20,w = K.M -ε ; R g = K.M c ; d i i ( b )f h l i f By determining a (or b, ε or c) for a homologous series of a biomolecule, we can pinpoint the conformation type
33 [η] = K.M a a = 0 a = a = 1.8 Globular proteins, a~0.0, polysaccharide, a ~
34 The intrinsic viscosity is ideal for monitoring conformation change: Denaturation of ribonuclease [η] (ml/g) T( o C)
35 The intrinsic viscosity is also ideal for monitoring stability: Storage of chitosan (used in nasal drug delivery) Fee et al, 2006
36 Demonstration of H-bonding in DNA Creeth, J.M., Gulland J.M. & Jordan, D.O. (1947) J. Chem. Soc
37 J.Michael Creeth,
38 Follow up reference sources: Serydyuk, I.N., Zaccai, N.R. and Zaccai, J. (2006) Methods in Molecular l Biophysics, i Cambridge, Chapter D9 Harding, S.E. (1997) "The intrinsic viscosity of biological macromolecules. Progress in measurement, interpretation and application to structure in dilute solution" Prog. Biophys. Mol. Biol 68, Tombs, M.P. and Harding, S.E. (1997) An Introduction to Polysaccharide Biotechnology, Taylor & Francis, ISBN
SIZE OF A MOLECULE FROM A VISCOSITY MEASUREMENT
Experiment 8, page 1 Version of April 25, 216 Experiment 446.8 SIZE OF A MOLECULE FROM A VISCOSITY MEASUREMENT Theory Viscous Flow. Fluids attempt to minimize flow gradients by exerting a frictional force,
Rheology of polymer systems/ Reologia dos sistemas poliméricos
Rheology of polymer systems/ Reologia dos sistemas poliméricos 1. Viscosity/Viscosidade Jorge Morgado, IST Polymers Molecular materials in nature COMPLEX behaviour Viscosity of concentrated solu1ons and
Viscoelasticity of Polymer Fluids.
Viscoelasticity of Polymer Fluids. Main Properties of Polymer Fluids. Entangled polymer fluids are polymer melts and concentrated or semidilute (above the concentration c) solutions. In these systems polymer
Dynamics in nanoworlds
Dynamics in nanoworlds Interplay of energy, diffusion and friction in (sub)cellular world 1 NB Queste diapositive sono state preparate per il corso di Biofisica tenuto dal Dr. Attilio V. Vargiu presso
Diffusion and Fluid Flow
Diffusion and Fluid Flow What determines the diffusion coefficient? What determines fluid flow? 1. Diffusion: Diffusion refers to the transport of substance against a concentration gradient. ΔS>0 Mass
FLUID DYNAMICS. Intrinsic properties of fluids. Fluids behavior under various conditions
FLUID DYNAMICS Intrinsic properties of fluids Fluids behavior under various conditions Methods by which we can manipulate and utilize the fluids to produce desired results TYPES OF FLUID FLOW Laminar or
Molar Mass of Polyvinyl Alcohol by Viscosity
Molar Mass of Polyvinyl Alcohol by Viscosity Introduction Polyvinyl Alcohol (PVOH) is a linear polymer (i. e., it has little branching) of Ethanol monomer units: -CH 2 -CHOH- Unlike most high molar mass
1. Fluids Mechanics and Fluid Properties. 1.1 Objectives of this section. 1.2 Fluids
1. Fluids Mechanics and Fluid Properties What is fluid mechanics? As its name suggests it is the branch of applied mechanics concerned with the statics and dynamics of fluids - both liquids and gases.
RHEOLOGY RHEOLOGY Science describing the flow and deformation of matter under stress. Rheo = the flow Viscosity (η) is the resistance of a fluid material to flow under stress. The higher the viscosity,
4 Microscopic dynamics
4 Microscopic dynamics In this section we will look at the first model that people came up with when they started to model polymers from the microscopic level. It s called the Oldroyd B model. We will
HYDRONMR and Fast-HYDRONMR
File:hydronmr7c-pub.doc HYDRONMR and Fast-HYDRONMR Index 1. Introduction to HYDRONMR 2. Literature 3. Running HYDRONMR. Input data file 4. Output files 5. Notes and hints 7. Release notes Version 7c, September
3.3. Rheological Behavior of Vinyl Ester Resins
3.3. Rheological Behavior of Vinyl Ester Resins 3.3.1. Introduction Rheology is the study of the deformation and flow of matter 1. There has been significant appreciation of the importance of the rheological
PHYSICS FUNDAMENTALS-Viscosity and flow
PHYSICS FUNDAMENTALS-Viscosity and flow The origin of viscosity When a force is applied to a solid, it will yield slightly, and then resist further movement. However, when we apply force to a fluid, it
http://faculty.sau.edu.sa/h.alshehri
http://faculty.sau.edu.sa/h.alshehri Definition: Proteins are macromolecules with a backbone formed by polymerization of amino acids. Proteins carry out a number of functions in living organisms: - They
Kinetic Theory of Gases. Chapter 33. Kinetic Theory of Gases
Kinetic Theory of Gases Kinetic Theory of Gases Chapter 33 Kinetic theory of gases envisions gases as a collection of atoms or molecules. Atoms or molecules are considered as particles. This is based on
Mean Field Flory Huggins Lattice Theory
Mean Field Flory Huggins Lattice Theory Mean field: the interactions between molecules are assumed to be due to the interaction of a given molecule and an average field due to all the other molecules in
Viscosity. Desmond Schipper Andrew R. Barron. 1 Introduction
OpenStax-CNX module: m50215 1 Viscosity Desmond Schipper Andrew R. Barron This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 Abstract This module discusses
Fluids and Solids: Fundamentals
Fluids and Solids: Fundamentals We normally recognize three states of matter: solid; liquid and gas. However, liquid and gas are both fluids: in contrast to solids they lack the ability to resist deformation.
Chem 106 Thursday Feb. 3, 2011
Chem 106 Thursday Feb. 3, 2011 Chapter 13: -The Chemistry of Solids -Phase Diagrams - (no Born-Haber cycle) 2/3/2011 1 Approx surface area (Å 2 ) 253 258 Which C 5 H 12 alkane do you think has the highest
Measurement of the viscosities of He, Ne and Ar for the determination of their gas kinetic diameters.
American Journal of Engineering Research (AJER) e-issn: 2320-0847 p-issn : 2320-0936 Volume-4, Issue-11, pp-57-62 www.ajer.org Research Paper Measurement of the viscosities of He, Ne and Ar for the determination
Chapter 37 - SANS FROM POLYMER SOLUTIONS
Chapter 37 - SANS FROM OLYMER SOLUTIONS Soluility is a determining factor in the synthesis, mixing aility and end-use of polymers. A general model for descriing soluility (Flory, 1953) is discussed here
Fluid Mechanics: Static s Kinematics Dynamics Fluid
Fluid Mechanics: Fluid mechanics may be defined as that branch of engineering science that deals with the behavior of fluid under the condition of rest and motion Fluid mechanics may be divided into three
Scalars, Vectors and Tensors
Scalars, Vectors and Tensors A scalar is a physical quantity that it represented by a dimensional number at a particular point in space and time. Examples are hydrostatic pressure and temperature. A vector
Notes on Polymer Rheology Outline
1 Why is rheology important? Examples of its importance Summary of important variables Description of the flow equations Flow regimes - laminar vs. turbulent - Reynolds number - definition of viscosity
Hydrogen Bonds The electrostatic nature of hydrogen bonds
Hydrogen Bonds Hydrogen bonds have played an incredibly important role in the history of structural biology. Both the structure of DNA and of protein a-helices and b-sheets were predicted based largely
LABORATORY. www.irmeco.de
LABORATORY www.irmeco.de Cannon-Fenske Routine Cannon-Fenske Routine Viscometer according to ASTM D445-446, ASTM D2515, ISO 3104-3105 used for quick and easy measurement of the viscosities of transparent
Lovis 2000 M/ME. Microviscometer. ::: Viscometry at its best
Lovis 2000 M/ME Microviscometer ::: Viscometry at its best Lovis 2000 M/ME is a rolling ball viscometer which unites an established measuring principle (Höppler, DIN 53015 and ISO 12058) with innovative
Phase determination methods in macromolecular X- ray Crystallography
Phase determination methods in macromolecular X- ray Crystallography Importance of protein structure determination: Proteins are the life machinery and are very essential for the various functions in the
48 Practice Problems for Ch. 17 - Chem 1C - Joseph
48 Practice Problems for Ch. 17 - Chem 1C - Joseph 1. Which of the following concentration measures will change in value as the temperature of a solution changes? A) mass percent B) mole fraction C) molality
Differential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation
Differential Relations for Fluid Flow In this approach, we apply our four basic conservation laws to an infinitesimally small control volume. The differential approach provides point by point details of
User s Guide VISFIT: a computer tool for the measurement of intrinsic viscosities
File:UserVisfit_2.do User s Guide VISFIT: a omputer tool for the measurement of intrinsi visosities Version 2.a, September 2003 From: Multiple Linear Least-Squares Fits with a Common Interept: Determination
Essential Maths for Medics and Vets Reference Materials Module 2. Amount and Concentration.
2 Amount and concentration: making and diluting solutions 2 Amount and concentration; making and diluting solutions... 2A Rationale... 2B Distinguishing between amount and concentration, g and %w/v...
Sample Test 1 SAMPLE TEST 1. CHAPTER 12
13 Sample Test 1 SAMPLE TEST 1. CHAPTER 12 1. The molality of a solution is defined as a. moles of solute per liter of solution. b. grams of solute per liter of solution. c. moles of solute per kilogram
Introduction to Microfluidics. Date: 2013/04/26. Dr. Yi-Chung Tung. Outline
Introduction to Microfluidics Date: 2013/04/26 Dr. Yi-Chung Tung Outline Introduction to Microfluidics Basic Fluid Mechanics Concepts Equivalent Fluidic Circuit Model Conclusion What is Microfluidics Microfluidics
CBE 6333, R. Levicky 1 Review of Fluid Mechanics Terminology
CBE 6333, R. Levicky 1 Review of Fluid Mechanics Terminology The Continuum Hypothesis: We will regard macroscopic behavior of fluids as if the fluids are perfectly continuous in structure. In reality,
Ubbel. Viscometers and their range of use. Viscometer type. Cannon-Fenske reverse flow BS/IP-U tube reverse flow. Cannon-Fenske-Routine
Viscometers and their range of use Measurement substance property Viscometer type Ubbelohde Micro Ubbelohde TC Ubbelohde Ostwald Micro Ostwald Cannon-Fenske-Routine Cannon-Fenske reverse flow BS/IP-U tube
Determination of intrinsic viscosities of macromolecules and nanoparticles. Comparison of single-point and dilution procedures
Colloid Polym Sci (08) 286:1223 1231 DOI.07/s00396-008-1902-2 ORIGINAL CONTRIBUTION Determination of intrinsic viscosities of macromolecules and nanoparticles. Comparison of single-point and dilution procedures
Lab 2 Biochemistry. Learning Objectives. Introduction. Lipid Structure and Role in Food. The lab has the following learning objectives.
1 Lab 2 Biochemistry Learning Objectives The lab has the following learning objectives. Investigate the role of double bonding in fatty acids, through models. Developing a calibration curve for a Benedict
Lecture 24 - Surface tension, viscous flow, thermodynamics
Lecture 24 - Surface tension, viscous flow, thermodynamics Surface tension, surface energy The atoms at the surface of a solid or liquid are not happy. Their bonding is less ideal than the bonding of atoms
Lecture 5 Hemodynamics. Description of fluid flow. The equation of continuity
1 Lecture 5 Hemodynamics Description of fluid flow Hydrodynamics is the part of physics, which studies the motion of fluids. It is based on the laws of mechanics. Hemodynamics studies the motion of blood
TEMPERATURE, CONCENTRATION, AND PUMPING EFFECTS ON PAM VISCOSITY
TEMPERATURE, CONCENTRATION, AND PUMPING EFFECTS ON PAM VISCOSITY D. L. Bjorneberg ABSTRACT. As polyacrylamide (PAM) use in irrigated agriculture increases, new methods are being sought to accurately and
DYNAMIC LIGHT SCATTERING COMMON TERMS DEFINED
DYNAMIC LIGHT SCATTERING COMMON TERMS DEFINED Abstract: There are a number of sources of information that give a mathematical description of the terms used in light scattering. However, these will not
Density and Viscosity of Concentrated Aqueous Solutions of Polyethylene Glycol
Subscriber access provided by UNIV DE GRANADA Density and Viscosity of Concentrated Aqueous Solutions of Polyethylene Glycol Pedro Gonzalez-Tello, Fernando Camacho, and Gabriel Blazquez J. Chem. Eng. Data,
Unfolding and Aggregation of mabs Application Note NT-PR-005
Unfolding and Aggregation of mabs Application Note NT-PR-005 Analysis of formulation-dependent colloidal and conformational stability of monoclonal antibodies Franziska Söltl 1, Jonathan Derix 1, Michaela
DIFFUSION IN SOLIDS. Materials often heat treated to improve properties. Atomic diffusion occurs during heat treatment
DIFFUSION IN SOLIDS WHY STUDY DIFFUSION? Materials often heat treated to improve properties Atomic diffusion occurs during heat treatment Depending on situation higher or lower diffusion rates desired
Viscous flow in pipe
Viscous flow in pipe Henryk Kudela Contents 1 Laminar or turbulent flow 1 2 Balance of Momentum - Navier-Stokes Equation 2 3 Laminar flow in pipe 2 3.1 Friction factor for laminar flow...........................
Viscosity of Liquids: Methanol and Water
of Liquids: Methanol and Water Colin McGuire January 4 and February, 01 March, 01 1 1 Abstract This experiment was done in order to determine the viscosity of mixtures of methanol and water of concentrations
EXERCISES. 16. What is the ionic strength in a solution containing NaCl in c=0.14 mol/dm 3 concentration and Na 3 PO 4 in 0.21 mol/dm 3 concentration?
EXERISES 1. The standard enthalpy of reaction is 512 kj/mol and the standard entropy of reaction is 1.60 kj/(k mol) for the denaturalization of a certain protein. Determine the temperature range where
PENETRATION OF BITUMINOUS MATERIALS
NANYANG TECHNOLOGICAL UNIVERSITY School of Civil and Structural Engineering LABORATORY - PAVEMENT MATERIALS PENETRATION OF BITUMINOUS MATERIALS OBJECTIVES To examine the consistency of a sample of bitumen
NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES
Vol. XX 2012 No. 4 28 34 J. ŠIMIČEK O. HUBOVÁ NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES Jozef ŠIMIČEK email: [email protected] Research field: Statics and Dynamics Fluids mechanics
Basic Equations, Boundary Conditions and Dimensionless Parameters
Chapter 2 Basic Equations, Boundary Conditions and Dimensionless Parameters In the foregoing chapter, many basic concepts related to the present investigation and the associated literature survey were
The ratio of inertial to viscous forces is commonly used to scale fluid flow, and is called the Reynolds number, given as:
12.001 LAB 3C: STOKES FLOW DUE: WEDNESDAY, MARCH 9 Lab Overview and Background The viscosity of a fluid describes its resistance to deformation. Water has a very low viscosity; the force of gravity causes
Basic Principles in Microfluidics
Basic Principles in Microfluidics 1 Newton s Second Law for Fluidics Newton s 2 nd Law (F= ma) : Time rate of change of momentum of a system equal to net force acting on system!f = dp dt Sum of forces
= 1.038 atm. 760 mm Hg. = 0.989 atm. d. 767 torr = 767 mm Hg. = 1.01 atm
Chapter 13 Gases 1. Solids and liquids have essentially fixed volumes and are not able to be compressed easily. Gases have volumes that depend on their conditions, and can be compressed or expanded by
Advanced Medicinal & Pharmaceutical Chemistry CHEM 5412 Dept. of Chemistry, TAMUK
Advanced Medicinal & Pharmaceutical Chemistry CHEM 5412 Dept. of Chemistry, TAMUK Dai Lu, Ph.D. [email protected] Tel: 361-221-0745 Office: RCOP, Room 307 Drug Discovery and Development Drug Molecules Medicinal
Organic Chemistry Calculations
Organic Chemistry Calculations There are three basic units for measurement in the organic laboratory mass, volume, and number, measured in moles. Most of the other types of measurements are combinations
Lecture 6 Black-Scholes PDE
Lecture 6 Black-Scholes PDE Lecture Notes by Andrzej Palczewski Computational Finance p. 1 Pricing function Let the dynamics of underlining S t be given in the risk-neutral measure Q by If the contingent
Structure of proteins
Structure of proteins Primary structure: is amino acids sequence or the covalent structure (50-2500) amino acids M.Wt. of amino acid=110 Dalton (56 110=5610 Dalton). Single chain or more than one polypeptide
Viscosity (VIS) Topic: Mechanics. Laminar and turbulent flow, Reynolds number, Hagen-Poiseuille s law, Stokes law
Seite 1 Viscosity Topic: Mechanics 1 Key words Laminar and turbulent flow, Reynolds number, Hagen-Poiseuille s law, Stokes law 2 Literatur L. Bergmann, C. Schäfer, Lehrbuch der Experimentalphysik, Band
The Viscosity of Fluids
Experiment #11 The Viscosity of Fluids References: 1. Your first year physics textbook. 2. D. Tabor, Gases, Liquids and Solids: and Other States of Matter (Cambridge Press, 1991). 3. J.R. Van Wazer et
Chapter 4. Chemical Composition. Chapter 4 Topics H 2 S. 4.1 Mole Quantities. The Mole Scale. Molar Mass The Mass of 1 Mole
Chapter 4 Chemical Composition Chapter 4 Topics 1. Mole Quantities 2. Moles, Masses, and Particles 3. Determining Empirical Formulas 4. Chemical Composition of Solutions Copyright The McGraw-Hill Companies,
Ch 2 Properties of Fluids - II. Ideal Fluids. Real Fluids. Viscosity (1) Viscosity (3) Viscosity (2)
Ch 2 Properties of Fluids - II Ideal Fluids 1 Prepared for CEE 3500 CEE Fluid Mechanics by Gilberto E. Urroz, August 2005 2 Ideal fluid: a fluid with no friction Also referred to as an inviscid (zero viscosity)
CE 204 FLUID MECHANICS
CE 204 FLUID MECHANICS Onur AKAY Assistant Professor Okan University Department of Civil Engineering Akfırat Campus 34959 Tuzla-Istanbul/TURKEY Phone: +90-216-677-1630 ext.1974 Fax: +90-216-677-1486 E-mail:
Mechanical Properties of Metals Mechanical Properties refers to the behavior of material when external forces are applied
Mechanical Properties of Metals Mechanical Properties refers to the behavior of material when external forces are applied Stress and strain fracture or engineering point of view: allows to predict the
Why? Intermolecular Forces. Intermolecular Forces. Chapter 12 IM Forces and Liquids. Covalent Bonding Forces for Comparison of Magnitude
1 Why? Chapter 1 Intermolecular Forces and Liquids Why is water usually a liquid and not a gas? Why does liquid water boil at such a high temperature for such a small molecule? Why does ice float on water?
1 The basic equations of fluid dynamics
1 The basic equations of fluid dynamics The main task in fluid dynamics is to find the velocity field describing the flow in a given domain. To do this, one uses the basic equations of fluid flow, which
Features of the formation of hydrogen bonds in solutions of polysaccharides during their use in various industrial processes. V.Mank a, O.
Features of the formation of hydrogen bonds in solutions of polysaccharides during their use in various industrial processes. V.Mank a, O. Melnyk b a National University of life and environmental sciences
Vatten(byggnad) VVR145 Vatten. 2. Vätskors egenskaper (1.1, 4.1 och 2.8) (Föreläsningsanteckningar)
Vatten(byggnad) Vätskors egenskaper (1) Hydrostatik (3) Grundläggande ekvationer (5) Rörströmning (4) 2. Vätskors egenskaper (1.1, 4.1 och 2.8) (Föreläsningsanteckningar) Vätska som kontinuerligt medium
EXPERIMENT 15: Ideal Gas Law: Molecular Weight of a Vapor
EXPERIMENT 15: Ideal Gas Law: Molecular Weight of a Vapor Purpose: In this experiment you will use the ideal gas law to calculate the molecular weight of a volatile liquid compound by measuring the mass,
Fluid Dynamics Viscosity. Dave Foster Department of Chemical Engineering University of Rochester Email: dafoster@che
Fluid Dynamics Viscosity Dave Foster Department of Chemical Engineering University of Rochester Email: dafoster@che che.rochester.eduedu 1 Chemical Engineering What do Chemical Engineers Do? Manufacturing
INVESTIGATION OF FALLING BALL VISCOMETRY AND ITS ACCURACY GROUP R1 Evelyn Chou, Julia Glaser, Bella Goyal, Sherri Wykosky
INVESTIGATION OF FALLING BALL VISCOMETRY AND ITS ACCURACY GROUP R1 Evelyn Chou, Julia Glaser, Bella Goyal, Sherri Wykosky ABSTRACT: A falling ball viscometer and its associated equations were studied in
Determination of Molar Mass by Boiling Point Elevation of Urea Solution
Determination of Molar Mass by Boiling Point Elevation of Urea Solution CHRISTIAN E. MADU, PhD AND BASSAM ATTILI, PhD COLLIN COLLEGE CHEMISTRY DEPARTMENT Purpose of the Experiment Determine the boiling
Disaccharides consist of two monosaccharide monomers covalently linked by a glycosidic bond. They function in sugar transport.
1. The fundamental life processes of plants and animals depend on a variety of chemical reactions that occur in specialized areas of the organism s cells. As a basis for understanding this concept: 1.
Measuring Protein Concentration through Absorption Spectrophotometry
Measuring Protein Concentration through Absorption Spectrophotometry In this lab exercise you will learn how to homogenize a tissue to extract the protein, and then how to use a protein assay reagent to
BIOL 305L Laboratory Two
Please print Full name clearly: Introduction BIOL 305L Laboratory Two Osmosis, because it is different in plants! Osmosis is the movement of solvent molecules through a selectively permeable membrane into
7. 1.00 atm = 760 torr = 760 mm Hg = 101.325 kpa = 14.70 psi. = 0.446 atm. = 0.993 atm. = 107 kpa 760 torr 1 atm 760 mm Hg = 790.
CHATER 3. The atmosphere is a homogeneous mixture (a solution) of gases.. Solids and liquids have essentially fixed volumes and are not able to be compressed easily. have volumes that depend on their conditions,
Millikan Oil Drop Experiment Matthew Norton, Jurasits Christopher, Heyduck William, Nick Chumbley. Norton 0
Millikan Oil Drop Experiment Matthew Norton, Jurasits Christopher, Heyduck William, Nick Chumbley Norton 0 Norton 1 Abstract The charge of an electron can be experimentally measured by observing an oil
XI / PHYSICS FLUIDS IN MOTION 11/PA
Viscosity It is the property of a liquid due to which it flows in the form of layers and each layer opposes the motion of its adjacent layer. Cause of viscosity Consider two neighboring liquid layers A
n molarity = M = N.B.: n = litres (solution)
1. CONCENTRATION UNITS A solution is a homogeneous mixture of two or more chemical substances. If we have a solution made from a solid and a liquid, we say that the solid is dissolved in the liquid and
Collagen I Self-Assembly: Revealing the Developing Structures that Generate Turbidity. Supporting Material
Collagen I Self-Assembly: Revealing the Developing Structures that Generate Turbidity Supporting Material Jieling Zhu and Laura J. Kaufman* Department of Chemistry, Columbia University, New York, NY 10027
A New Technique Provides Faster Particle Size Analysis at a Lower Cost Compared to Conventional Methods
A New Technique Provides Faster Particle Size Analysis at a Lower Cost Compared to Conventional Methods Howard Sanders and Akshaya Jena Porous Material Inc. Ithaca, NY The technique described here calculates
Acoustic Porous Materials and Their Characterisation
Acoustic Porous Materials and Their Characterisation Kirill V. Horoshenkov School of Engineering, Design and Technology University of Bradford Bradford [email protected] 1 Yorkshire dales Where
3D plasticity. Write 3D equations for inelastic behavior. Georges Cailletaud, Ecole des Mines de Paris, Centre des Matériaux
3D plasticity 3D viscoplasticity 3D plasticity Perfectly plastic material Direction of plastic flow with various criteria Prandtl-Reuss, Hencky-Mises, Prager rules Write 3D equations for inelastic behavior
CHEMISTRY. Matter and Change. Section 13.1 Section 13.2 Section 13.3. The Gas Laws The Ideal Gas Law Gas Stoichiometry
CHEMISTRY Matter and Change 13 Table Of Contents Chapter 13: Gases Section 13.1 Section 13.2 Section 13.3 The Gas Laws The Ideal Gas Law Gas Stoichiometry State the relationships among pressure, temperature,
Chapter 18. Electric Forces and Electric Fields
My lecture slides may be found on my website at http://www.physics.ohio-state.edu/~humanic/ ------------------------------------------------------------------- Chapter 18 Electric Forces and Electric Fields
Element of same atomic number, but different atomic mass o Example: Hydrogen
Atomic mass: p + = protons; e - = electrons; n 0 = neutrons p + + n 0 = atomic mass o For carbon-12, 6p + + 6n 0 = atomic mass of 12.0 o For chlorine-35, 17p + + 18n 0 = atomic mass of 35.0 atomic mass
Molecular Spectroscopy
Molecular Spectroscopy UV-Vis Spectroscopy Absorption Characteristics of Some Common Chromophores UV-Vis Spectroscopy Absorption Characteristics of Aromatic Compounds UV-Vis Spectroscopy Effect of extended
Kinematic viscometers in accordance with ISO 3105, DIN 51562, ASTM D445 For automatic and manual viscosity measuring Greatest precision and durability
T h e r i g h t t e m p e r a t u r e w o r l d w i d e Kinematic viscometers in accordance with ISO 3105, DIN 51562, ASTM D445 For automatic and manual viscosity measuring Greatest precision and durability
Chapter 13. Properties of Solutions
Sample Exercise 13.1 (p. 534) By the process illustrated below, water vapor reacts with excess solid sodium sulfate to form the hydrated form of the salt. The chemical reaction is Na 2 SO 4(s) + 10 H 2
Chapter 11 Properties of Solutions
Chapter 11 Properties of Solutions 11.1 Solution Composition A. Molarity moles solute 1. Molarity ( M ) = liters of solution B. Mass Percent mass of solute 1. Mass percent = 1 mass of solution C. Mole
10.7 Kinetic Molecular Theory. 10.7 Kinetic Molecular Theory. Kinetic Molecular Theory. Kinetic Molecular Theory. Kinetic Molecular Theory
The first scheduled quiz will be given next Tuesday during Lecture. It will last 5 minutes. Bring pencil, calculator, and your book. The coverage will be pp 364-44, i.e. Sections 0.0 through.4. 0.7 Theory
Performing Calculatons
Performing Calculatons There are three basic units for measurement in the organic laboratory mass, volume, and number, measured in moles. Most of the other types of measurements are combinations of them,
Improved fluid control by proper non-newtonian flow modeling
Tekna Flow Assurance 2015, Larvik Improved fluid control by proper non-newtonian flow modeling Stein Tore Johansen, SINTEF Sjur Mo, SINTEF A general wall friction model for a non-newtonian fluid has been
2054-2. Structure and Dynamics of Hydrogen-Bonded Systems. 26-27 October 2009. Hydrogen Bonds and Liquid Water
2054-2 Structure and Dynamics of Hydrogen-Bonded Systems 26-27 October 2009 Hydrogen Bonds and Liquid Water Ruth LYNDEN-BELL University of Cambridge, Department of Chemistry Lensfield Road Cambridge CB2
1 The water molecule and hydrogen bonds in water
The Physics and Chemistry of Water 1 The water molecule and hydrogen bonds in water Stoichiometric composition H 2 O the average lifetime of a molecule is 1 ms due to proton exchange (catalysed by acids
