H2-TS-FUZZY POSITION CONTROL OF PMSM WITH AN AUGMENTED D-AXIS STATOR CURRENT MODEL

Size: px
Start display at page:

Download "H2-TS-FUZZY POSITION CONTROL OF PMSM WITH AN AUGMENTED D-AXIS STATOR CURRENT MODEL"

Transcription

1 ns o XIX Congesso seo e utomátc, C. H-S-FUZZY POSIION CONROL OF PMSM WIH N UGMENED D-XIS SOR CURREN MODEL RYMUNDO C. GRCI,, WLER I. SUEMISU, JOO O. P. PINO Lbotóo e Eetônc e Potênc, COPPE, Unvese Fee e Ro e Jneo Ih o Goveno, CEP , Ro e Jneo E-ms: [email protected], [email protected] Lbotóo e Integênc tc, Eetônc Dgt, Eetônc e Potênc, Dto. e Engenh Eétc, Unvese Fee e Mto Gosso o Su CEP , Cmo Gne, Mto Gosso o Su, s E-ms: [email protected] bstct Pemnent Mgnet Synchonous Moto (PMSM) s non-ne system use n the eveoment o sevomechnsm, wth oston oo n the -xs stto cuent oo whch contos the mgnetc ux o the moto. Fuzzy kgsugeno Moeng (S) ows the esgn o obust contoes bse on ne mtx neutes (LMI), usng combnton set o oc ne moes. he oc moes o the oston oo o PMSM hve n mct ntegto, whch euce the stey-stte eo. Howeve, the -xs cuent oo oes not hve ths ntegto. hs e esents the esgn o obust contoes o PMSM conseng the ton o n ntegto n n ntegtve gn n the -xs stto cuent oo. hs conseton s me o othe owe eectonc systems s DC-DC convetes, but ths e nyzes the use o ths technue n vecto conto o PMSM. he eect o etubtons s euce conseng the H nom technue. he oston n the -xs stto cuent oos e consee s two neenent SISO systems, whch gve moe exbty o the oe cement. Smuton esuts show the goo eomnce o ths technue. Keywos ugmente moe, H nom, Lne Mtx Ineutes, PMSM, gk-sugeno Moeng. Resumo O Moto Síncono e Ímã Pemnente (PMSM) é um sstem não ne utzo no esenvovmento e sevomecnsmos, com um mh e osção e um mh e coente no estto no exo, o u conto o uxo mgnétco o moto. moegem Fuzzykg-Sugeno (S) emte o oeto e contooes obustos bseo em esgues nees mtcs (LMI), usno um combnção e moeos nees ocs. Os moeos ocs mh e osção o PMSM ossuem um ntego, o u euz o eo em egme estáve. Não obstnte, mh coente o estto no exo não ossu uee ntego. Este tgo esent o oeto e contooes obustos PMSM conseno nseção e um ntego e um gnho e ntegção n mh e coente. Est conseção é utz no contoe e outos ccutos e otênc como os convesoes DC-DC, oém o esente tgo z um náse o uso est técnc no contoe veto o PMSM. O eeto s etubções é euzo tvés técnc nom H. s mhs e osção e coente são conses como os sstems SISO neenentes, o ue onece mo exbe n ocção os óos em mh ech. Smuções mostm o bom esemenho técnc oost. Pvs-chve Ineue Lne Mtc, Moeo umento, Moegem kg-sugeno, Nom H, PMSM. Intoucton Nowys, emnent mgnet synchonous moto (PMSM) s oweu tentve n the mementton o vbe euency ve ctons n sevomechnsm by ts bette toue/sze eton n obustness thn DC motos, n by ts owe toue e n hghe enegetc ecency thn nucton motos (Un et., ; ezc n Jc, ). On the othe hn, the conto o PMSM s moe cut thn DC moto ue to PMSM s non-ne system, whose metes cn chnge n tme, ecte by exten o etubtons (Py n Kshnn, 988; ose, 997). Vecto moe o PMSM s comose by two systems (ose, 997): the -xs ccut tht contos the ngu oston o see though the geneton o eectomgnetc toue, n the -xs ccut, tht conto the mgnetc oto ux. he -xs votges, ISN: cuents n uxes e obtne by Pk tnsomton (ose, 997). Howeve, both ccuts hve nonne comonents tht mke ne contoes s PID egutos neute o see conto o PMSM. Fuzzy kg-sugeno Moeng (S) s oweu too n the eveoment o obust contoes o non-ne nts, by eesentng them s Fuzzy combnton o ne systems (kg n Sugeno, 985; nguch et., ; nguch et., ; exe et., 3, Schute, 5; Pecu et., 7; No n Okubo, ). cton o S n see vecto conto o PMSM cn be oune n (Ln et., 7; Jung et., ; Wng et., ; Cho et., ). Howeve, thee e ew eseches bout the cton o S contoes o the ngu oston o PMSM. Geney, S moes e use wth Lne Mtx Ineutes (LMI), n oe to get cose-oo contoes whch e obust gnst vtons n the mete, conseng estctons n the conto w, 4753

2 ns o XIX Congesso seo e utomátc, C. the system oututs n o tckng obems (ssunção et., 8, ne et., ). hs e nyzes the esgn o LMI contoes o oston conto o PMSM bse on n ugmente S moe o the moto, whee n ntegto n n ntegtve gn s e to the -xs ccut. ugmente moe usng n ntegto o non-ne owe eectoncs ctons s oost convete cn be oun n (Montgne et., ; O et., 9; O et., ). he ton o n ntegto s technue use n ne systems o tckng obems (Ogt, ). hs e uses the sme methooogy o the -xs stto cuent oo. s esut, the contoe hs two comonents: stte eebck n n nteg contoe, whose metes e obtne usng LMIs. he -xs n the -xs systems e consee s SISO systems nste o n ony one MIMO system. hs conseton n the ton o stte vbe n the -xs system gve moe exbty to set the cement o the cose-oo oes usng D- stbty contons. H nom technue s use to euce the eect o etubtons. Smuton esuts show the otentty o the use o the oose S moe wth ugmente nt o oston conto o PMSM. Vecto Moe o PMSM Pk tnsom s use to exess the thee-hse votges, cuents n uxes o PMSM, [ b c ] n new othogon eeence system, conseng new vbes [ ] (ose, 997): ( λ) sn( λ k) sn( λ k) ( cos( λ cos( λ sn cos b c () Whee k π/3 n λ s the nge o the new othogon eeence system, whch s geney eu to the ngu oston o the moto sht (θ) mute by the numbe o oe s (n): λ nθ () he ynmc behvo o PMSM s escbe by the oowng eutons (Py n Kshnn, 988): (3) v s nωm t (4) v s nω m nφωm t t,. φ (5) em ( ) Whee: v, v,, b n s t em t L φ θ ω m ω m bωm tem t (6) L t θ (7) ω m t : -xs n -xs stto votges; : -xs n -xs stto cuents; : -xs n -xs nuctnces; : Coecent o cton; : Roto net; : Numbe o oe s; : Resstnce o the stto wnngs; : Eectomgnetc toue; : Lo toue; : Euvent ux by the mgnets; : ngu oston o the moto sht; : Roto see. Fo PMSM wth non-sent oes (ose, 997; Py n Kshnn, 988): (8) Recng euton (8) n euton (5), t s ove tht the eectomgnetc toue eens ony on the -xs stto cuent. t. φ (9) em On the othe hn, the -xs ux s etemne by () (ose, 997; Py n Kshnn, 988): ϕ φ () When PMSM woks beow ts nomn see (constnt toue oeton moe), s set to zeo to euce the owe consumton o the moto, ue to the mgnets oves enough ux. On the othe hn, when PMSM hs to oete bove ts nomn see (constnt owe oeton moe), s negtve n oe to euce the -xs ux ϕ (ose, 997). hs technue, ce ux wekenng, emns the conto o the -xs stto cuent. Cose-Loo Moes o PMSM. Sce-Stte Moe o ngu Poston o PMSM he stte-stte eesentton o the system tht eesents the ynmc behvo o the ngu oston o PMSM s euce om eutons (4) to (9): ISN:

3 ns o XIX Congesso seo e utomátc, C. x & x u w () w y [ ]x () ( ) mx (3) 3 3 ( ) mn (4) 3 3 Whee: x, [ θ ω ] m (3) u v (4) w t (5) L s φ n ( φ ) b [ ] [ ] w (6) (7) (8) In (), w n w e the etubton n the etubton nut vecto, esectvey. Euton (6) shows tht the stte mtx o the ngu oston system hs non-nety 3 : ( φ ) 3 n (9). S Moeng o ngu Poston Fuzzy kg-sugeno moeng (S) s technue to moe non-ne systems s uzzy vege o oc ne systems (kg n Sugeno, 985), s shown n eutons () n (): x& x u y C x () () Whee s the numbe o oc moes whe α s the uzzy membesh uncton o the non-ne nt to the -th sce-stte oc moe (,, ), eesente by the set o mtces (,, C ). α,α > () In ths e, the uzzy membesh unctons e obtne usng the methooogy esente n (nguch et., ), whch uses the mxmum n mnmum vues o evey non-nety o the sce-stte moe. In ths cse, the ony non-nety o the ngu oston system s ouce by 3, n ne moes e neee (nguch et., ). he vbes 3 n 3 e ene s: he unctons σ 3 n σ 3 e chosen to exess 3 s ne uncton o 3 n 3 : σ σ (5) σ σ (6) eng σ n σ. Fom eutons (5) n (6): σ σ s thee s ony one non-nety n : α ( t) σ3( t) ( t) σ ( t) 3 (7) (8) α (9) he S oc moes (,, C ) n (,, C ) e ene s:,, s φ s φ b b 3 3 [ ] w w C [ ] [ ] (3) (3) (3) (33) C (34) he etemnnt o n o eutons (3) n (3) s zeo, nctng tht thee s n mct ntegto n the oc moes (Cheng, 999)..3 ugmente -xs Cuent Moe he mgnetc ux eens on the -xs stto cuent (ose, 997), whose ynmc behvo s escbe n euton (3). hs euton shows tht thee s not n mct ntegto n the -xs cuent oo. ISN:

4 ns o XIX Congesso seo e utomátc, C. hs esech nsets n ntegto n n ntegtve gn k I to ths system. hs technue s use n ne systems o tckng obems (Ogt, ). Fgue shows the oose ugmente moe o the -xs stto cuent. ccong to Fgue, the nut u s: u v k k ε (35) x I Conseng tht the eeence * s constnt ung the eue tme o the stbzton o the outut, t cn be ove tht (Ogt, ): ( K ) E w w E & (4) Whee: K [ ] [ k k ] x s I (4) Fgue. ugmente -xs cuent moe he gn K cn be seecte to eect etubtons n mkes E eu to zeo n stey stte (Ogt, ). Recng eutons (8) n (35) n euton (3) n te some gebc mnutons: k t t x k ε I s s s kx On the othe hn: nωm t ki ε k x nω m ki nω ε m (36) 3 LMI Contoes 3. LMI Desgn o Feebck Contoes he eebck gns o the oston n -xs cuent contoes e esgne though ne mtx neutes (LMI) n oe to guntee obust conto, whch e bse on Lyunov stbty theoy: system wth stte mtx s symtotcy stbe exsts ostve ente mtx Q (Q > ) tht (ne et., ): Q Q < (4) ε t * ε * [ ] Fom eutons (36) n (37): (37) oc contoe K s ccute o ech oc moe, to etemne the oc conto w u (t). s esut, the conto w u(t) s (kg n Sugeno, 985; exe n Zk, 999; nguch et., ): t ε s k n ω m x ki ε * (38) Whee w ω m s the etubton o the ugmente moe, n w [n ] s the ugmente etubton nut vecto. Denng the eo vecto E s the eence between the sttes n the tme t n when they e n stey stte: E ε ( stey stte) ε( stey stte) (39) u u F x (43) Recng euton (43) n euton () n te some gebc mnutons: x& x& G α eng: ( K ) x( t) < G x α G G x (44) K,,, K, (45) < ISN:

5 ns o XIX Congesso seo e utomátc, C. ccong to Lyunov theoy e to euton (44), the cose-oo system s symtotcy stbe thee s ostve ente mtx Q > tht: G G G Q QG G G Q Q < ;,, K,,, K, < ; < (46) (47) he ugmente -xs stto cuent nt ony hs one oc moe. the LMI sttements n ths e e sove enng the vbe Y K Q (,, ) n mkng the oowng tnsomton: G Q Q K Q Q Y (48) he vbes Y n Q e ccute sovng the LMI tems. he eebck gns K cn be obtne mkng K Y Q Cose oo Contoes usng H Nom ccong to S moeng, ech oc moe eects etubtons, then, the gob non-ne nt w be obust gnst ths etubton. hs e uses H nom to estbsh LMI contons n oe to euce the eect o etubtons n the system outut. Conseng the oowng oc system: w w [ n ] (5) 3.3 Poe Pcement o the Loc Cose Loos usng D-Stbty he oston o the cose-oo oes etemnes the ynmc esonse o the system. Conseng the egon n the Lcn e sem-ne S(γ,, θ) s the set o comex numbes λ x y whch stsy the oowng contons (O et., ): S ( γ,, θ) x < γ < x y < x tn( θ) < y (53) Fgue shows the egon S(γ,, θ). I the oes o the cose-oo system beong to ths egon, the system hs mnmum ecy te γ, mnmum umng coecent ξ cos(θ) n mnmum ume euency ω.sn(θ). x& x u w (49) y C x w Whee w(t) s nose n w s ts nut vecto. he eect o the nose on the outut y shou be mnm. hs obectve cn be cheve by seectng the eebck gn K tht mnmzes the H nom between the nose n the outut, ccong to the oowng otmzton obem (ne et., ): mn < ( Z ) Q G Q QG w C Q Q > ; Z > Z w QC I Fo the oc moes o ngu oston: w w w [ ] (5) (5) Whe o the ugmente -xs stto cuent moe n ccong to euton (37): Fgue. Regon S(γ,, θ). he cose oo mtx s ce D-stbe ts egenvues beongs to D(γ,, θ) (O et., ). In conseuence, the egon D(γ,, θ) set contons o the oveshoot, sng tme n stbzng tme. he oowng eutons ene the egon D(γ,, θ) though LMIs: h Q Q γq < Q Q Q Q < ( Q Q ) hs ( Q Q ) ( Q Q) hc ( Q Q ) s sn Whee: ( θ) ; h cos( θ) c h c < hs (54) (55) (56) G,, K, (57), 5( G G ); <,, K, ISN:

6 ns o XIX Congesso seo e utomátc, C. he D-stbty contons o the ngu oston n -xs cuent contoes cn be set neenenty ue to they hve the own SISO moes. tony, the ton o the new stte o the - xs cuent system gves moe exbty to set ts ynmcs. 4 Resuts Poston ().5 ngu oston eeence Smutons tests wee one usng ML/SIMULINK, ccong to the metes n be I. he two-eve thee-hse nvete tht gves enegy to the PMSM woks wth swtchng euency o 5 khz n hs DC votge souce o V. he o toue e to the moto sht s t L.5.ω m me (s) Fgue 3. Poston eeence. be I. Smuton Pmete Pmete Vue Resstnce,78 Ω -xs nuctnce 6 mh -xs nuctnce 6 mh Euvent ux o,48 Wb PMSM mgnet Poe s 3 Roto net 4,98-4 kg.m Coecent o 5, -5 N.m.s cton D-stbty γ o oston contoes θ π/ D-stbty γ 5 o cuent 6 contoe θ π/3 he oc moes wee constucte conseng: n he obtne coseoo contoes e: Poston: K [ 3,7 x 4, ] K [ 3,7 x 4, ] D-xs stto cuent: K [ ] Fgue 3 shows the oston eeences, whe the -xs cuent eeence s set to zeo. wo tests wee one, conseng nomn nt n eucton o % n the eectc metes o PMSM. Resuts om Fgues 4 n Fgue 5 show tht the esgne oston n -xs cuent contoes hve goo ccucy, eect etubtons n e obust gnst vtons o the metes o the moto. Cuent () Poston () Cuent () Poston () D xs stto cuent me (s) x 4 Poston eo me (s) Fgue 4. Smuton esuts o nomn nt. D xs stto cuent me (s) x 4 Poston eo me (s) Fgue 5. Smuton esuts conseng eucton o % n the eectc metes o the PMSM. Concusons he esgn o cose-oo contoes o oston conto o PMSM though LMI n ugmente -xs stto cuent moe n S ngu oston moe cn eect etubtons n hs goo ccucy, even conseng vtons n the metes o the moto. he oe cement cn be one wth hgh exbty ISN:

7 ns o XIX Congesso seo e utomátc, C. ue to the ton o the stte vbe n the SISO moeng o PMSM. s utue wok, exement esuts w be obtne. cknowegment uthos wnt to thnk L Lbotoy by the suot o ths esech. Reeences ne, C.Q.; Gues, R.; Romne, E.F.R.; Pnto, J.O.P. n Gonçves, R. C. (). Sstem e Reeção e stúbo e Rstemento H e H co o Conveso oost usno LMIs. Congesso seo e utomátc, ssunção, E.; ne, C. Q.; exe, M.C.M n Pnto, J.O.P. (8). Metooog Rstemento com Mocção e Zeos e Reeção e Dstúbo c Sstems Incetos, Sb Contoe & utomção, Vo. 9, No., ose,.k (997). Powe Eectoncs n Vbe Feuency Dves. IEEE Pess, Psctwy. Cheng, C. (999). Lne System heoy n Desng. Oxo Unvesty Pess, th eton. Cho, H.H.; Vu, N..-. n Jung, J.-W. (). Desgn n Imementton o kg-sugeno Fuzzy See Reguto o Pemnent Mgnet Synchonous Moto. IEEE nsctons on Inust Eectoncs, Vo. 59, No. 8, Jung, J.-W.; Km,.H. n Cho, H.H. (). See Conto o Pemnent Mgnet Synchonous Moto Wth oue Obseve: Fuzzy och. IE Conto heoy ctons, Vo. 4, No., Ln, K.-Y.; Chng, C.-H.; n u, H-W. (7). LMI-se Sensoess Conto o Pemnent- Mgnet Synchonous Moto. IEEE. nsctons on Inust Eectoncs, Vo. 54, No. 5, Montgne, V.F.; Mcc, L.. n Ove, R.C.L.F. (). Desgn n Exement vton o Robust H Contoe e to oost Convete. Congesso seo e utomátc, No, M. K.. M. n Okubo, S. (). he Desgn o Nonne Sevo System Usng Fuzzy Metho. Intenton Coneence on Fuzzy Systems n Knowege Dscovey, Ogt, K. (). Moen Conto Engneeng, Ue Se Rve, NJ, Pentce H. O, C.; Leyv, R.; E ou,. n Quennec, I (9). Robust LQR Conto o PWM Convetes: n LMI och. IEEE nsctons on Inust Eectoncs, Vo. 56, No. 7, O, C.; Leyv, R.; Quennec, I. n Mksmovc, M (). Robust Gn-Scheue Conto o Swtche-Moe DC-DC Convetes. IEEE nsctons on Powe Eectoncs, Vo. 7, No. 6, Py, P. n Kshnn, R. (988). Moeng o Pemnent Mgnet Moto Dves. IEEE nsctons on Inust Eectoncs, Vo. 35, No. 4, Pecu, R.-E.; Pet, S. n Koon, P. (7). Fuzzy Contoes wth mxmum senstvty o sevosystems, IEEE nsctons on Inust Eectoncs, Vo. 54, No. 3, Schute, H. (5). oxmte moeng o css o nonne osctos usng kg-sugeno uzzy systems n ts cton to conto esgn. Poceengs o 44 th IEEE Coneence on Decson n Conto n the Euoen Conto Coneence, kg,. n Sugeno, M. (985). Fuzzy Ientcton o Systems n ts ctons o Moeng n Conto. IEEE nsctons on Systems, Mn n Cybenetcs, Vo 5, No., nguch,.; nk, K. n Wng, H.O. (). Fuzzy Descto Systems n Nonne Moe Foowng Conto. IEEE nsctons on Fuzzy Systems, Vo. 8, No. 4, nguch,.; nk, K.; Ohtke, H. n Wng, H.O. (). Moe Constucton, Rue Reucton n Robust Comenston o Geneze Fom o kg-sugeno Fuzzy Systems. IEEE nsctons on Fuzzy Systems, Vo. 9, No. 4, exe, M.C.M. n Zk, S.H. (999). Stbzng Contoe Desgn o Uncetn Nonne Systems Usng Fuzzy Moes. IEEE nsctons on Fuzzy Systems, Vo. 7, No., exe, M.C.M., ssunção, E. n ve, R.G. (3). On Rexe LMI-se Desgn o Fuzzy Regutos n Fuzzy Obseves. IEEE nsctons on Fuzzy Systems, Vo., No. 5, ezc,. n Jc, M. (). Desgn n Imementton o the Extene Kmn Fte o the See n Roto Poston Estmton o ushess DC Moto, IEEE nsctons on Inust Eectoncs, Vo. 48, No. 6, Un, M.N.; Rwn,.S.; Rhmn, M.. n Geoge, G.H. (). Fuzzy Logc bse Poston Conto o Pemnent Mgnet Synchonous Moto. Cnn Coneence on Eectc n Comute Engneeng, Vo., Wng, F.G.; Pk, S.K.; Yoon,. n hn, H.K. (). -S Fuzzy Moeng o Inteo Pemnent Mgnet Synchonous Moto. Intenton Coneence on Integent Systems Desgn n ctons,. 8-86, ISN:

N V V L. R a L I. Transformer Equation Notes

N V V L. R a L I. Transformer Equation Notes Tnsfome Eqution otes This file conts moe etile eivtion of the tnsfome equtions thn the notes o the expeiment 3 wite-up. t will help you to unestn wht ssumptions wee neee while eivg the iel tnsfome equtions

More information

Summary: Vectors. This theorem is used to find any points (or position vectors) on a given line (direction vector). Two ways RT can be applied:

Summary: Vectors. This theorem is used to find any points (or position vectors) on a given line (direction vector). Two ways RT can be applied: Summ: Vectos ) Rtio Theoem (RT) This theoem is used to find n points (o position vectos) on given line (diection vecto). Two ws RT cn e pplied: Cse : If the point lies BETWEEN two known position vectos

More information

Orbits and Kepler s Laws

Orbits and Kepler s Laws Obits nd Keple s Lws This web pge intoduces some of the bsic ides of obitl dynmics. It stts by descibing the bsic foce due to gvity, then consides the ntue nd shpe of obits. The next section consides how

More information

16. Mean Square Estimation

16. Mean Square Estimation 6 Me Sque stmto Gve some fomto tht s elted to uow qutty of teest the poblem s to obt good estmte fo the uow tems of the obseved dt Suppose epeset sequece of dom vbles bout whom oe set of obsevtos e vlble

More information

JFET AMPLIFIER CONFIGURATIONS

JFET AMPLIFIER CONFIGURATIONS JFET MPFE CONFGUTON 5 5 5 n G OUT n G OUT n OUT [a] Cn urce plfer [b] Cn ran [urce Fllwer] plfer [c] Cn Gate plfer Cte a: n ce, cure ateral fr 6.0 ntructry nal Electrnc abratry, prn 2007.MT OpenCureWare

More information

1.- L a m e j o r o p c ió n e s c l o na r e l d i s co ( s e e x p li c a r á d es p u é s ).

1.- L a m e j o r o p c ió n e s c l o na r e l d i s co ( s e e x p li c a r á d es p u é s ). PROCEDIMIENTO DE RECUPERACION Y COPIAS DE SEGURIDAD DEL CORTAFUEGOS LINUX P ar a p od e r re c u p e ra r nu e s t r o c o rt a f u e go s an t e un d es a s t r e ( r ot u r a d e l di s c o o d e l a

More information

Electric Potential. otherwise to move the object from initial point i to final point f

Electric Potential. otherwise to move the object from initial point i to final point f PHY2061 Enched Physcs 2 Lectue Notes Electc Potental Electc Potental Dsclame: These lectue notes ae not meant to eplace the couse textbook. The content may be ncomplete. Some topcs may be unclea. These

More information

LAPLACE S EQUATION IN SPHERICAL COORDINATES. With Applications to Electrodynamics

LAPLACE S EQUATION IN SPHERICAL COORDINATES. With Applications to Electrodynamics LALACE S EQUATION IN SHERICAL COORDINATES With Appitions to Eetodynmis We hve seen tht Lpe s eqution is one of the most signifint equtions in physis. It is the soution to pobems in wide viety of fieds

More information

Vector Calculus: Are you ready? Vectors in 2D and 3D Space: Review

Vector Calculus: Are you ready? Vectors in 2D and 3D Space: Review Vecto Calculus: Ae you eady? Vectos in D and 3D Space: Review Pupose: Make cetain that you can define, and use in context, vecto tems, concepts and fomulas listed below: Section 7.-7. find the vecto defined

More information

(Ch. 22.5) 2. What is the magnitude (in pc) of a point charge whose electric field 50 cm away has a magnitude of 2V/m?

(Ch. 22.5) 2. What is the magnitude (in pc) of a point charge whose electric field 50 cm away has a magnitude of 2V/m? Em I Solutions PHY049 Summe 0 (Ch..5). Two smll, positively chged sphees hve combined chge of 50 μc. If ech sphee is epelled fom the othe by n electosttic foce of N when the sphees e.0 m pt, wht is the

More information

WHAT HAPPENS WHEN YOU MIX COMPLEX NUMBERS WITH PRIME NUMBERS?

WHAT HAPPENS WHEN YOU MIX COMPLEX NUMBERS WITH PRIME NUMBERS? WHAT HAPPES WHE YOU MIX COMPLEX UMBERS WITH PRIME UMBERS? There s n ol syng, you n t pples n ornges. Mthemtns hte n t; they love to throw pples n ornges nto foo proessor n see wht hppens. Sometmes they

More information

4. SHAFT SENSORLESS FORCED DYNAMICS CONTROL OF RELUCTANCE SYNCHRONOUS MOTOR DRIVES

4. SHAFT SENSORLESS FORCED DYNAMICS CONTROL OF RELUCTANCE SYNCHRONOUS MOTOR DRIVES 4. SHAFT SENSORLESS FORCED DYNAMICS CONTROL OF RELUCTANCE SYNCHRONOUS MOTOR DRIVES 4.. VECTOR CONTROLLED RELUCTANCE SYNCHRONOUS MOTOR DRIVES WITH PRESCRIBED CLOSED-LOOP SPEED DYNAMICS Abstact: A new spee

More information

G ri d m on i tori n g w i th N A G I O S (*) (*) Work in collaboration with P. Lo Re, G. S av a and G. T ortone WP3-I CHEP 2000, N F N 10.02.2000 M e e t i n g, N a p l e s, 29.1 1.20 0 2 R o b e r 1

More information

Adaptive Control of a Production and Maintenance System with Unknown Deterioration and Obsolescence Rates

Adaptive Control of a Production and Maintenance System with Unknown Deterioration and Obsolescence Rates Int J of Mthemtic Sciences nd Appictions, Vo, No 3, Septembe Copyight Mind Rede Pubictions wwwjounshubcom Adptive Conto of Poduction nd Mintennce System with Unknown Deteiotion nd Obsoescence Rtes Fwzy

More information

Chapter 4: Matrix Norms

Chapter 4: Matrix Norms EE448/58 Vesion.0 John Stensby Chate 4: Matix Noms The analysis of matix-based algoithms often equies use of matix noms. These algoithms need a way to quantify the "size" of a matix o the "distance" between

More information

Opis przedmiotu zamówienia - zakres czynności Usługi sprzątania obiektów Gdyńskiego Centrum Sportu

Opis przedmiotu zamówienia - zakres czynności Usługi sprzątania obiektów Gdyńskiego Centrum Sportu O p i s p r z e d m i o t u z a m ó w i e n i a - z a k r e s c z y n n o c i f U s ł u i s p r z» t a n i a o b i e k t ó w G d y s k i e C eo n t r u m S p o r t us I S t a d i o n p i ł k a r s k i

More information

α α λ α = = λ λ α ψ = = α α α λ λ ψ α = + β = > θ θ β > β β θ θ θ β θ β γ θ β = γ θ > β > γ θ β γ = θ β = θ β = θ β = β θ = β β θ = = = β β θ = + α α α α α = = λ λ λ λ λ λ λ = λ λ α α α α λ ψ + α =

More information

Newton-Raphson Method of Solving a Nonlinear Equation Autar Kaw

Newton-Raphson Method of Solving a Nonlinear Equation Autar Kaw Newton-Rphson Method o Solvng Nonlner Equton Autr Kw Ater redng ths chpter, you should be ble to:. derve the Newton-Rphson method ormul,. develop the lgorthm o the Newton-Rphson method,. use the Newton-Rphson

More information

C o a t i a n P u b l i c D e b tm a n a g e m e n t a n d C h a l l e n g e s o f M a k e t D e v e l o p m e n t Z a g e bo 8 t h A p i l 2 0 1 1 h t t pdd w w wp i j fp h D p u b l i c2 d e b td S t

More information

Generator stability analysis - Fractional tools application

Generator stability analysis - Fractional tools application Generor by ny - Frcon oo ppcon Auhor : Ocvn ENACHEANU Dephne RIU Nco RETIERE SDNE Grenobe -67 Oune. Eecrc nework cone. Frcon moeng o ynchronou mchne. Se pce repreenon n by conon o ynchronou mchne neger

More information

r (1+cos(θ)) sin(θ) C θ 2 r cos θ 2

r (1+cos(θ)) sin(θ) C θ 2 r cos θ 2 icles xmple 66: Rounding one ssume we hve cone of ngle θ, nd we ound it off with cuve of dius, how f wy fom the cone does the ound stt? nd wht is the chod length? (1+cos(θ)) sin(θ) θ 2 cos θ 2 xmple 67:

More information

ASPECTS CONCERNING A DYNAMIC MODEL FOR A SYSTEM WITH TWO DEGREES OF FREEDOM

ASPECTS CONCERNING A DYNAMIC MODEL FOR A SYSTEM WITH TWO DEGREES OF FREEDOM Buetin of the Trnsivni University of Brşov Series I: Engineering Sciences Vo. 4 (53 No. - ASPECTS CONCERNING A DYNAMIC MODEL FOR A SYSTEM WITH TWO DEGREES OF FREEDOM M. BOTIŞ C. HARBIC Abstrct: In this

More information

Voltage ( = Electric Potential )

Voltage ( = Electric Potential ) V-1 of 9 Voltage ( = lectic Potential ) An electic chage altes the space aound it. Thoughout the space aound evey chage is a vecto thing called the electic field. Also filling the space aound evey chage

More information

The Casino Experience. Let us entertain you

The Casino Experience. Let us entertain you The Csio Expeiee Let us eteti you The Csio Expeiee If you e lookig fo get ight out, Csio Expeiee is just fo you. 10 The Stight Flush Expeiee 25 pe peso This is get itodutio to gmig tht sves you moey Kik

More information

H ig h L e v e l O v e r v iew. S te p h a n M a rt in. S e n io r S y s te m A rc h i te ct

H ig h L e v e l O v e r v iew. S te p h a n M a rt in. S e n io r S y s te m A rc h i te ct H ig h L e v e l O v e r v iew S te p h a n M a rt in S e n io r S y s te m A rc h i te ct OPEN XCHANGE Architecture Overview A ge nda D es ig n G o als A rc h i te ct u re O ve rv i ew S c a l a b ili

More information

Physics 43 Homework Set 9 Chapter 40 Key

Physics 43 Homework Set 9 Chapter 40 Key Physics 43 Homework Set 9 Chpter 4 Key. The wve function for n electron tht is confined to x nm is. Find the normliztion constnt. b. Wht is the probbility of finding the electron in. nm-wide region t x

More information

Forces & Magnetic Dipoles. r r τ = μ B r

Forces & Magnetic Dipoles. r r τ = μ B r Foces & Magnetic Dipoles x θ F θ F. = AI τ = U = Fist electic moto invented by Faaday, 1821 Wie with cuent flow (in cup of Hg) otates aound a a magnet Faaday s moto Wie with cuent otates aound a Pemanent

More information

Simulation of Spacecraft Attitude and Orbit Dynamics

Simulation of Spacecraft Attitude and Orbit Dynamics Smulton o Spcect Atttude nd Obt Dynmcs Ps Rhmäk, Jen-Pete Ylén Contol Engneeng Lbotoy Helsnk Unvesty o Technology PL-, TKK E-ml: ps.hmk@tkk., pete.ylen@tkk. KEYWORDS Smulton Model, Stellte, FDIR, Qutenon

More information

Voltage ( = Electric Potential )

Voltage ( = Electric Potential ) V-1 Voltage ( = Electic Potential ) An electic chage altes the space aound it. Thoughout the space aound evey chage is a vecto thing called the electic field. Also filling the space aound evey chage is

More information

PCA vs. Varimax rotation

PCA vs. Varimax rotation PCA vs. Vamax otaton The goal of the otaton/tansfomaton n PCA s to maxmze the vaance of the new SNP (egensnp), whle mnmzng the vaance aound the egensnp. Theefoe the dffeence between the vaances captued

More information

A PID Tuning Method for Tracking Control of an Underactuated Gantry Crane

A PID Tuning Method for Tracking Control of an Underactuated Gantry Crane Univesal Jounal of Engineeing echanics 1 (13), 45-49 www.aesciences.com A PID Tuning etho fo Tacing Contol of an Uneactuate Ganty Cane. Nazemizaeh Deatment of echanics, Damavan Banch, Islamic Aza Univesity,

More information

Gravitation. Definition of Weight Revisited. Newton s Law of Universal Gravitation. Newton s Law of Universal Gravitation. Gravitational Field

Gravitation. Definition of Weight Revisited. Newton s Law of Universal Gravitation. Newton s Law of Universal Gravitation. Gravitational Field Defnton of Weght evsted Gavtaton The weght of an object on o above the eath s the gavtatonal foce that the eath exets on the object. The weght always ponts towad the cente of mass of the eath. On o above

More information

Order-Degree Curves for Hypergeometric Creative Telescoping

Order-Degree Curves for Hypergeometric Creative Telescoping Ode-Degee Cuves fo Hyegeometc Ceatve Telescong ABSTRACT Shaosh Chen Deatment of Mathematcs NCSU Ralegh, NC 7695, USA schen@ncsuedu Ceatve telescong aled to a bvaate oe hyegeometc tem oduces lnea ecuence

More information

32. The Tangency Problem of Apollonius.

32. The Tangency Problem of Apollonius. . The Tngeny olem of Apollonius. Constut ll iles tngent to thee given iles. This eleted polem ws posed y Apollinius of eg (. 60-70 BC), the getest mthemtiin of ntiquity fte Eulid nd Ahimedes. His mjo wok

More information

Victims Compensation Claim Status of All Pending Claims and Claims Decided Within the Last Three Years

Victims Compensation Claim Status of All Pending Claims and Claims Decided Within the Last Three Years Claim#:021914-174 Initials: J.T. Last4SSN: 6996 DOB: 5/3/1970 Crime Date: 4/30/2013 Status: Claim is currently under review. Decision expected within 7 days Claim#:041715-334 Initials: M.S. Last4SSN: 2957

More information

Comparing plans is now simple with metal plans. What Does it Mean to Have a 6-Tier Pharmacy Plan? Tie. Individual Health Insurance

Comparing plans is now simple with metal plans. What Does it Mean to Have a 6-Tier Pharmacy Plan? Tie. Individual Health Insurance Compg p ow mp wth mt p Iu p py 0% 0% Iu p py T T T T T T 0% t to M G - No G B No B Iu p py 0% Iu p py Iu Hth Iu Mt p po you wth ho. Th m wth mt p th ptg you p w gy py o. 0% A Hth O tm. Cot. Cg o you. Wh

More information

Analytical Proof of Newton's Force Laws

Analytical Proof of Newton's Force Laws Analytical Poof of Newton s Foce Laws Page 1 1 Intouction Analytical Poof of Newton's Foce Laws Many stuents intuitively assume that Newton's inetial an gavitational foce laws, F = ma an Mm F = G, ae tue

More information

ALABAMA ASSOCIATION of EMERGENCY MANAGERS

ALABAMA ASSOCIATION of EMERGENCY MANAGERS LBM SSOCTON of EMERGENCY MNGERS ON O PCE C BELLO MER E T R O CD NCY M N G L R PROFESSONL CERTFCTON PROGRM .. E. M. CERTFCTON PROGRM 2014 RULES ND REGULTONS 1. THERE WLL BE FOUR LEVELS OF CERTFCTON. BSC,

More information

Screentrade Car Insurance Policy Summary

Screentrade Car Insurance Policy Summary Sceentde C Insunce Policy Summy This is summy of the policy nd does not contin the full tems nd conditions of the cove, which cn be found in the policy booklet nd schedule. It is impotnt tht you ed the

More information

AN IMPLEMENTATION OF BINARY AND FLOATING POINT CHROMOSOME REPRESENTATION IN GENETIC ALGORITHM

AN IMPLEMENTATION OF BINARY AND FLOATING POINT CHROMOSOME REPRESENTATION IN GENETIC ALGORITHM AN IMPLEMENTATION OF BINARY AND FLOATING POINT CHROMOSOME REPRESENTATION IN GENETIC ALGORITHM Main Golub Faculty of Electical Engineeing and Computing, Univesity of Zageb Depatment of Electonics, Micoelectonics,

More information

A Coverage Gap Filling Algorithm in Hybrid Sensor Network

A Coverage Gap Filling Algorithm in Hybrid Sensor Network A Coveage Ga Fllng Algothm n Hybd Senso Netwok Tan L, Yang Mnghua, Yu Chongchong, L Xuanya, Cheng Bn A Coveage Ga Fllng Algothm n Hybd Senso Netwok 1 Tan L, 2 Yang Mnghua, 3 Yu Chongchong, 4 L Xuanya,

More information

Phys 2101 Gabriela González. cos. sin. sin

Phys 2101 Gabriela González. cos. sin. sin 1 Phys 101 Gabiela González a m t t ma ma m m T α φ ω φ sin cos α τ α φ τ sin m m α τ I We know all of that aleady!! 3 The figue shows the massive shield doo at a neuton test facility at Lawence Livemoe

More information

CURVES ANDRÉ NEVES. that is, the curve α has finite length. v = p q p q. a i.e., the curve of smallest length connecting p to q is a straight line.

CURVES ANDRÉ NEVES. that is, the curve α has finite length. v = p q p q. a i.e., the curve of smallest length connecting p to q is a straight line. CURVES ANDRÉ NEVES 1. Problems (1) (Ex 1 of 1.3 of Do Crmo) Show tht the tngent line to the curve α(t) (3t, 3t 2, 2t 3 ) mkes constnt ngle with the line z x, y. (2) (Ex 6 of 1.3 of Do Crmo) Let α(t) (e

More information

PY1052 Problem Set 8 Autumn 2004 Solutions

PY1052 Problem Set 8 Autumn 2004 Solutions PY052 Poblem Set 8 Autumn 2004 Solutions H h () A solid ball stats fom est at the uppe end of the tack shown and olls without slipping until it olls off the ight-hand end. If H 6.0 m and h 2.0 m, what

More information

University of Maryland Fraternity & Sorority Life Spring 2015 Academic Report

University of Maryland Fraternity & Sorority Life Spring 2015 Academic Report University of Maryland Fraternity & Sorority Life Academic Report Academic and Population Statistics Population: # of Students: # of New Members: Avg. Size: Avg. GPA: % of the Undergraduate Population

More information

I n la n d N a v ig a t io n a co n t r ib u t io n t o eco n o m y su st a i n a b i l i t y

I n la n d N a v ig a t io n a co n t r ib u t io n t o eco n o m y su st a i n a b i l i t y I n la n d N a v ig a t io n a co n t r ib u t io n t o eco n o m y su st a i n a b i l i t y and KB rl iak s iol mi a, hme t a ro cp hm a5 a 2k p0r0o 9f i,e ls hv oa nr t ds eu rmv oedye l o nf dae cr

More information

Gauss Law. Physics 231 Lecture 2-1

Gauss Law. Physics 231 Lecture 2-1 Gauss Law Physics 31 Lectue -1 lectic Field Lines The numbe of field lines, also known as lines of foce, ae elated to stength of the electic field Moe appopiately it is the numbe of field lines cossing

More information

Generalized Difference Sequence Space On Seminormed Space By Orlicz Function

Generalized Difference Sequence Space On Seminormed Space By Orlicz Function Ieaoa Joa of Scece ad Eee Reeach IJSER Vo Ie Decembe -4 5687 568X Geeazed Dffeece Seece Sace O Semomed Sace B Ocz Fco A.Sahaaa Aa ofeo G Ie of TechooCombaoeIda. Abac I h aewe defe he eece ace o emomed

More information

Intro to Circle Geometry By Raymond Cheong

Intro to Circle Geometry By Raymond Cheong Into to Cicle Geomety By Rymond Cheong Mny poblems involving cicles cn be solved by constucting ight tingles then using the Pythgoen Theoem. The min chllenge is identifying whee to constuct the ight tingle.

More information

Continuous Compounding and Annualization

Continuous Compounding and Annualization Continuous Compounding and Annualization Philip A. Viton Januay 11, 2006 Contents 1 Intoduction 1 2 Continuous Compounding 2 3 Pesent Value with Continuous Compounding 4 4 Annualization 5 5 A Special Poblem

More information

Pure C4. Revision Notes

Pure C4. Revision Notes Pure C4 Revision Notes Mrch 0 Contents Core 4 Alger Prtil frctions Coordinte Geometry 5 Prmetric equtions 5 Conversion from prmetric to Crtesin form 6 Are under curve given prmetriclly 7 Sequences nd

More information

A New replenishment Policy in a Two-echelon Inventory System with Stochastic Demand

A New replenishment Policy in a Two-echelon Inventory System with Stochastic Demand A ew eplenshment Polcy n a wo-echelon Inventoy System wth Stochastc Demand Rasoul Haj, Mohammadal Payesh eghab 2, Amand Babol 3,2 Industal Engneeng Dept, Shaf Unvesty of echnology, ehan, Ian ([email protected],

More information

LATIN SQUARE DESIGN (LS) -With the Latin Square design you are able to control variation in two directions.

LATIN SQUARE DESIGN (LS) -With the Latin Square design you are able to control variation in two directions. Facts about the LS Design LATIN SQUARE DESIGN (LS) -With the Latin Squae design you ae able to contol vaiation in two diections. -Teatments ae aanged in ows and columns -Each ow contains evey teatment.

More information

PHYSICS 161 EXAM III: Thursday December 04, 2003 11:00 a.m.

PHYSICS 161 EXAM III: Thursday December 04, 2003 11:00 a.m. PHYS 6: Eam III Fall 003 PHYSICS 6 EXAM III: Thusda Decembe 04, 003 :00 a.m. Po. N. S. Chan. Please pn ou name and ene ou sea numbe o den ou and ou eamnaon. Suden s Pned Name: Recaon Secon Numbe: Sea Numbe:.

More information

Chapter 6 Best Linear Unbiased Estimate (BLUE)

Chapter 6 Best Linear Unbiased Estimate (BLUE) hpter 6 Bet Lner Unbed Etmte BLUE Motvton for BLUE Except for Lner Model ce, the optml MVU etmtor mght:. not even ext. be dffcult or mpoble to fnd Reort to ub-optml etmte BLUE one uch ub-optml etmte Ide

More information

I = Prt. = P(1+i) n. A = Pe rt

I = Prt. = P(1+i) n. A = Pe rt 11 Chapte 6 Matheatcs of Fnance We wll look at the atheatcs of fnance. 6.1 Sple and Copound Inteest We wll look at two ways nteest calculated on oney. If pncpal pesent value) aount P nvested at nteest

More information

Campus Sustainability Assessment and Related Literature

Campus Sustainability Assessment and Related Literature Campus Sustainability Assessment and Related Literature An Annotated Bibliography and Resource Guide Andrew Nixon February 2002 Campus Sustainability Assessment Review Project Telephone: (616) 387-5626

More information

HUT, TUT, LUT, OU, ÅAU / Engineering departments Entrance examination in mathematics May 25, 2004

HUT, TUT, LUT, OU, ÅAU / Engineering departments Entrance examination in mathematics May 25, 2004 HUT, TUT, LUT, OU, ÅAU / Engineeing depamens Enane examinaion in mahemais May 5, 4 Insuions. Reseve a sepaae page fo eah poblem. Give you soluions in a lea fom inluding inemediae seps. Wie a lean opy of

More information

Mathematics. Vectors. hsn.uk.net. Higher. Contents. Vectors 128 HSN23100

Mathematics. Vectors. hsn.uk.net. Higher. Contents. Vectors 128 HSN23100 hsn.uk.net Higher Mthemtics UNIT 3 OUTCOME 1 Vectors Contents Vectors 18 1 Vectors nd Sclrs 18 Components 18 3 Mgnitude 130 4 Equl Vectors 131 5 Addition nd Subtrction of Vectors 13 6 Multipliction by

More information

ON YOUR TURN: ROLLING AND MOVING

ON YOUR TURN: ROLLING AND MOVING E8 IF CV Monopoly.pdf // O YOU : LG MOVG I M J. I I W O PY O GE OU. W WH? oll the dice. If you roll doubles, move the amount shown. If you don t roll doubles and it is your fir or second try to get out

More information

Online Department Stores. What are we searching for?

Online Department Stores. What are we searching for? Online Department Stores What are we searching for? 2 3 CONTENTS Table of contents 02 Table of contents 03 Search 06 Fashion vs. footwear 04 A few key pieces 08 About SimilarWeb Stepping up the Competition

More information

2.016 Hydrodynamics Prof. A.H. Techet

2.016 Hydrodynamics Prof. A.H. Techet .016 Hydodynmics Reding #5.016 Hydodynmics Po. A.H. Techet Fluid Foces on Bodies 1. Stedy Flow In ode to design oshoe stuctues, suce vessels nd undewte vehicles, n undestnding o the bsic luid oces cting

More information

2. TRIGONOMETRIC FUNCTIONS OF GENERAL ANGLES

2. TRIGONOMETRIC FUNCTIONS OF GENERAL ANGLES . TRIGONOMETRIC FUNCTIONS OF GENERAL ANGLES In ode to etend the definitions of the si tigonometic functions to geneal angles, we shall make use of the following ideas: In a Catesian coodinate sstem, an

More information

With Rejoicing Hearts/ Con Amor Jovial. A Fm7 B sus 4 B Cm Cm7/B

With Rejoicing Hearts/ Con Amor Jovial. A Fm7 B sus 4 B Cm Cm7/B for uli With Rejoic Herts/ on mor ol dition # 10745-Z1 ime ortez Keyord ccompniment y effy Honoré INTRO With energy ( = c 88) Keyord * m7 B sus 4 B 7/B mj 9 /B SMPL B 7 *Without percussion, egin he 1995,

More information

Multiple choice questions [60 points]

Multiple choice questions [60 points] 1 Multiple choice questions [60 points] Answe all o the ollowing questions. Read each question caeully. Fill the coect bubble on you scanton sheet. Each question has exactly one coect answe. All questions

More information

Chapter 30: Magnetic Fields Due to Currents

Chapter 30: Magnetic Fields Due to Currents d Chapte 3: Magnetic Field Due to Cuent A moving electic chage ceate a magnetic field. One of the moe pactical way of geneating a lage magnetic field (.1-1 T) i to ue a lage cuent flowing though a wie.

More information

Lecture 5. Inner Product

Lecture 5. Inner Product Lecture 5 Inner Product Let us strt with the following problem. Given point P R nd line L R, how cn we find the point on the line closest to P? Answer: Drw line segment from P meeting the line in right

More information

1240 ev nm 2.5 ev. (4) r 2 or mv 2 = ke2

1240 ev nm 2.5 ev. (4) r 2 or mv 2 = ke2 Chapte 5 Example The helium atom has 2 electonic enegy levels: E 3p = 23.1 ev and E 2s = 20.6 ev whee the gound state is E = 0. If an electon makes a tansition fom 3p to 2s, what is the wavelength of the

More information

Random Variables and Distribution Functions

Random Variables and Distribution Functions Topic 7 Rndom Vibles nd Distibution Functions 7.1 Intoduction Fom the univese of possible infomtion, we sk question. To ddess this question, we might collect quntittive dt nd ognize it, fo emple, using

More information

VEHICLE PLANAR DYNAMICS BICYCLE MODEL

VEHICLE PLANAR DYNAMICS BICYCLE MODEL Auptions -Do, VEHE PANA DYNAMS BYE MODE o tel, (esued o instntneous cente o ottion O) o Yw, (wt Globl Ais) ongitudinl elocit is ued to be constnt. Sll slip ngles, i.e. ties opete in the line egion. No

More information

Example 27.1 Draw a Venn diagram to show the relationship between counting numbers, whole numbers, integers, and rational numbers.

Example 27.1 Draw a Venn diagram to show the relationship between counting numbers, whole numbers, integers, and rational numbers. 2 Rtionl Numbers Integers such s 5 were importnt when solving the eqution x+5 = 0. In similr wy, frctions re importnt for solving equtions like 2x = 1. Wht bout equtions like 2x + 1 = 0? Equtions of this

More information

How many times have you seen something like this?

How many times have you seen something like this? VOL. 77, NO. 4, OTOR 2004 251 Whee the amea Was KTHRN McL. YRS JMS M. HNL Smith ollege Nothampton, M 01063 [email protected] How many times have you seen something like this? Then Now Souces: outesy

More information

(1) continuity equation: 0. momentum equation: u v g (2) u x. 1 a

(1) continuity equation: 0. momentum equation: u v g (2) u x. 1 a Comment on The effect of vible viscosity on mied convection het tnsfe long veticl moving sufce by M. Ali [Intentionl Jounl of Theml Sciences, 006, Vol. 45, pp. 60-69] Asteios Pntoktos Associte Pofesso

More information

Curvature. (Com S 477/577 Notes) Yan-Bin Jia. Oct 8, 2015

Curvature. (Com S 477/577 Notes) Yan-Bin Jia. Oct 8, 2015 Cuvtue Com S 477/577 Notes Yn-Bin Ji Oct 8, 205 We wnt to find mesue of how cuved cuve is. Since this cuvtue should depend only on the shpe of the cuve, it should not be chnged when the cuve is epmetized.

More information

Physics 235 Chapter 5. Chapter 5 Gravitation

Physics 235 Chapter 5. Chapter 5 Gravitation Chapte 5 Gavitation In this Chapte we will eview the popeties of the gavitational foce. The gavitational foce has been discussed in geat detail in you intoductoy physics couses, and we will pimaily focus

More information

On Efficiently Updating Singular Value Decomposition Based Reduced Order Models

On Efficiently Updating Singular Value Decomposition Based Reduced Order Models On Efficiently dating Singula alue Decoosition Based Reduced Ode Models Ralf Zieann GAMM oksho Alied and Nueical Linea Algeba with Secial Ehasis on Model Reduction Been Se..-3. he POD-based ROM aoach.

More information

Scalar and Vector Quantities. A scalar is a quantity having only magnitude (and possibly phase). LECTURE 2a: VECTOR ANALYSIS Vector Algebra

Scalar and Vector Quantities. A scalar is a quantity having only magnitude (and possibly phase). LECTURE 2a: VECTOR ANALYSIS Vector Algebra Sclr nd Vector Quntities : VECTO NLYSIS Vector lgebr sclr is quntit hving onl mgnitude (nd possibl phse). Emples: voltge, current, chrge, energ, temperture vector is quntit hving direction in ddition to

More information

Week 3-4: Permutations and Combinations

Week 3-4: Permutations and Combinations Week 3-4: Pemutations and Combinations Febuay 24, 2016 1 Two Counting Pinciples Addition Pinciple Let S 1, S 2,, S m be disjoint subsets of a finite set S If S S 1 S 2 S m, then S S 1 + S 2 + + S m Multiplication

More information

12. Rolling, Torque, and Angular Momentum

12. Rolling, Torque, and Angular Momentum 12. olling, Toque, and Angula Momentum 1 olling Motion: A motion that is a combination of otational and tanslational motion, e.g. a wheel olling down the oad. Will only conside olling with out slipping.

More information

CSSE463: Image Recognition Day 27

CSSE463: Image Recognition Day 27 CSSE463: Image Recogto Da 27 Ths week Toda: Alcatos of PCA Suda ght: roject las ad relm work due Questos? Prcal Comoets Aalss weght grth c ( )( ) ( )( ( )( ) ) heght sze Gve a set of samles, fd the drecto(s)

More information

Graphs on Logarithmic and Semilogarithmic Paper

Graphs on Logarithmic and Semilogarithmic Paper 0CH_PHClter_TMSETE_ 3//00 :3 PM Pge Grphs on Logrithmic nd Semilogrithmic Pper OBJECTIVES When ou hve completed this chpter, ou should be ble to: Mke grphs on logrithmic nd semilogrithmic pper. Grph empiricl

More information

Binary Representation of Numbers Autar Kaw

Binary Representation of Numbers Autar Kaw Binry Representtion of Numbers Autr Kw After reding this chpter, you should be ble to: 1. convert bse- rel number to its binry representtion,. convert binry number to n equivlent bse- number. In everydy

More information

Lesson 7 Gauss s Law and Electric Fields

Lesson 7 Gauss s Law and Electric Fields Lesson 7 Gauss s Law and Electic Fields Lawence B. Rees 7. You may make a single copy of this document fo pesonal use without witten pemission. 7. Intoduction While it is impotant to gain a solid conceptual

More information

D D. DETAILs FOR x-284561-2. 2 POS. PCB LAYOUT FOR PN.S x-284561-2 PER ALTRI DETTAGLI RIFERIRSI AL FOGLIO 5 (FOR ADDITIONAL DETAILS SEE SHEET 5)

D D. DETAILs FOR x-284561-2. 2 POS. PCB LAYOUT FOR PN.S x-284561-2 PER ALTRI DETTAGLI RIFERIRSI AL FOGLIO 5 (FOR ADDITIONAL DETAILS SEE SHEET 5) THS RWNG S NPSHE. OPRGHT copyright_date REESE FOR PTON RGHTS RESERE. O ST NS P TR ESRPTON TE WN P Z SE PER ER000 PR0 W JP Z ER00 0M0 F RR RPPRESENTZONE GRF E P/Ns: (GRPH REPRESENTTON OF P/Ns:) RPPRESENTZONE

More information

Symmetric polynomials and partitions Eugene Mukhin

Symmetric polynomials and partitions Eugene Mukhin Symmetic polynomials and patitions Eugene Mukhin. Symmetic polynomials.. Definition. We will conside polynomials in n vaiables x,..., x n and use the shotcut p(x) instead of p(x,..., x n ). A pemutation

More information

4a 4ab b 4 2 4 2 5 5 16 40 25. 5.6 10 6 (count number of places from first non-zero digit to

4a 4ab b 4 2 4 2 5 5 16 40 25. 5.6 10 6 (count number of places from first non-zero digit to . Simplify: 0 4 ( 8) 0 64 ( 8) 0 ( 8) = (Ode of opeations fom left to ight: Paenthesis, Exponents, Multiplication, Division, Addition Subtaction). Simplify: (a 4) + (a ) (a+) = a 4 + a 0 a = a 7. Evaluate

More information

2005-06 Second Term MAT2060B 1. Supplementary Notes 3 Interchange of Differentiation and Integration

2005-06 Second Term MAT2060B 1. Supplementary Notes 3 Interchange of Differentiation and Integration Source: http://www.mth.cuhk.edu.hk/~mt26/mt26b/notes/notes3.pdf 25-6 Second Term MAT26B 1 Supplementry Notes 3 Interchnge of Differentition nd Integrtion The theme of this course is bout vrious limiting

More information

Performance Control of PMSM Drives Using a Self-tuning PID

Performance Control of PMSM Drives Using a Self-tuning PID fom oo of MSM U Sf- I XIO X I Yoo I M pm of h U j 8 h ho: 86--67858 Fx: 86--67896 -m: xo_x@h.. -I h pp f- I oo o mmm mho pp o h pm-m hoo moo MSM p oo m. h popo mho h ppoxm mmm pop h of h o-oop m po-m whh

More information

OFFSHORE INTERNATIONAL MARINE PERSONNEL SERVICES, INC. EMPLOYMENT APPLICATION

OFFSHORE INTERNATIONAL MARINE PERSONNEL SERVICES, INC. EMPLOYMENT APPLICATION OFFSHORE INTERNATIONAL MARINE PERSONNEL SERVICES, INC. 3802 W. Nvy Bvd Po, FL 32507 Tho: (850) 455-2995 Tx: (850) 455-3033 www.oho-.om EMPLOYMENT APPLICATION Poo Ay Fo Nm: F L SS# - - Add Cy/S Z Pho: Hom

More information

How Much Should a Firm Borrow. Effect of tax shields. Capital Structure Theory. Capital Structure & Corporate Taxes

How Much Should a Firm Borrow. Effect of tax shields. Capital Structure Theory. Capital Structure & Corporate Taxes How Much Should a Fim Boow Chapte 19 Capital Stuctue & Copoate Taxes Financial Risk - Risk to shaeholdes esulting fom the use of debt. Financial Leveage - Incease in the vaiability of shaeholde etuns that

More information

The Electric Potential, Electric Potential Energy and Energy Conservation. V = U/q 0. V = U/q 0 = -W/q 0 1V [Volt] =1 Nm/C

The Electric Potential, Electric Potential Energy and Energy Conservation. V = U/q 0. V = U/q 0 = -W/q 0 1V [Volt] =1 Nm/C Geneal Physics - PH Winte 6 Bjoen Seipel The Electic Potential, Electic Potential Enegy and Enegy Consevation Electic Potential Enegy U is the enegy of a chaged object in an extenal electic field (Unit

More information

Overview of Spellings on www.spellzoo.co.uk

Overview of Spellings on www.spellzoo.co.uk Overview of Spellings on www.spellzoo.co.uk Year 1 Set 1: CVC words Set 2: CVC and CCVC words Set 3: CVC, CCVC and CCVCC words Set 4: Words containing 'ch', 'sh', 'th' and 'wh' Set 5: Words ending in 'll',

More information

FAULT TREES AND RELIABILITY BLOCK DIAGRAMS. Harry G. Kwatny. Department of Mechanical Engineering & Mechanics Drexel University

FAULT TREES AND RELIABILITY BLOCK DIAGRAMS. Harry G. Kwatny. Department of Mechanical Engineering & Mechanics Drexel University SYSTEM FAULT AND Hrry G. Kwtny Deprtment of Mechnicl Engineering & Mechnics Drexel University OUTLINE SYSTEM RBD Definition RBDs nd Fult Trees System Structure Structure Functions Pths nd Cutsets Reliility

More information

Data Mining for extraction of fuzzy IF-THEN rules using Mamdani and Takagi-Sugeno-Kang FIS

Data Mining for extraction of fuzzy IF-THEN rules using Mamdani and Takagi-Sugeno-Kang FIS Engneeng Lettes, 5:, EL_5 3 Dt Mnng fo extcton of fuzzy IF-THEN ules usng Mmdn nd Tkg-Sugeno-Kng FIS Jun E. Moeno, Osc Cstllo, Jun R. Csto, Lus G. Mtínez, Ptc Meln Abstct Ths ppe pesents clusteng technques

More information

www.mathsbox.org.uk e.g. f(x) = x domain x 0 (cannot find the square root of negative values)

www.mathsbox.org.uk e.g. f(x) = x domain x 0 (cannot find the square root of negative values) www.mthsbo.org.uk CORE SUMMARY NOTES Functions A function is rule which genertes ectl ONE OUTPUT for EVERY INPUT. To be defined full the function hs RULE tells ou how to clculte the output from the input

More information