CRM simula+ons with parameterized large- scale dynamics using +me- dependent forcings from observa+ons
|
|
|
- Chastity Poole
- 9 years ago
- Views:
Transcription
1 CRM simula+ons with parameterized large- scale dynamics using +me- dependent forcings from observa+ons Shuguang Wang, Adam Sobel, Zhiming Kuang Zhiming & Kerry s workshop Harvard, March 2012
2 In tropical studies it is common to run cloud- resolving models (or single- column models) with prescribed large- scale forcing incl. domain- averaged ver+cal mo+on. The specifica+on of ver+cal mo+on +ghtly constrains the deep convec+on, almost independently of model physics, because the dominant balance in the heat equa+on is (all quan++es being horizontal means) ws ~ Q (with w large- scale ver+cal mo+on, S stra+fica+on of poten+al temperature/dry sta+c energy, Q convec+ve hea+ng). With this formula+on, one cannot use the model to ask what controls the variability of deep convec+on, either in observa+ons or in the model.
3 With parameteriza+ons of large- scale dynamics, the model itself can determine the occurrence and intensity of deep convec+on. The large- scale mo+on is determined interac+vely using feedbacks that we believe have some resemblance to those which a small tropical region experiences when interac+ng with a global atmosphere.
4 Parameteriza+ons of large- scale dynamics have been used almost exclusively for idealized calcula+ons Steady precipita+on as func+on of horizontal wind speed under WTG, Sessions et al. (2010)
5 Here we extend these approaches to the simula+on of +me- dependent cases from observa+ons. The reference temperature profile is taken from the obs, and allowed to be +me- dependent. Other forcings are also from obs, esp. surface wind speed. We use both WTG (e.g., Sobel and Bretherton 2000, Raymond and Zeng 2005) ws = T / and the damped wave method of Blossey et al. (2009) (low- freq. limit of Kuang (2008)) ( Here f=0 We choose TOGA COARE it s well studied using tradi+onal methods, and we are interested in the MJO
6 CRM details WRF model V3.3 Microphysics: Lin et al. (cloud water, cloud ice, rain, snow, graupel) First order closure for horizontal subgrid turbulence YSU PBL for ver+cal eddies Monin- Obukhov similarity theory for surface fluxes CAM radia+on for imposed- w (and use resul+ng +me series for wave- coupling integra+ons) Equatorial plane, f=0, x = 4 km, 64x64x22 km 2 SST imposed Horizontal advec+on neglected Relax domain- averaged horizontal wind to obs at 1 hour 22 km ~64 km
7 We carry out integra+ons for 4 month Period during TOGA COARE, in West Pac Ciesielski et al. (2003) Percent high cloudiness, 20N- 20S 850 hpa u, 5N- 5S Our integra+ons Nov 1 Feb 28 Chen, Houze and Mapes (1996)
8 Tradi+onal method: large- scale forcing (imposed w) From sounding array, Ciesielski et al. (2003) Black: observed IFA- mean rainfall (from budget, can be nega+ve) Blue: CRM simula+on
9 Parameterized large- scale dynamics works! (at least somewhat) WTG Wave coupling ( = 6000 km) Wave coupling plus imposed +me mean w from obs (wave coupling uses +me- mean T only)
10 Ver+cal velocity vs. +me and height obs WTG wave wave + mean
11 WTG is too top- heavy; this is a result of neglec+ng momentum en+rely. Wave coupling on the other hand is not top- heavy enough. WTG: ws = T / Wave: - w zz ~ k 2 T
12 Theta differences from obs; with coupling these are not errors, but rather required to produce large- scale w imposed w (tradi+onal) WTG wave wave + mean w (here theta difference from +me- mean obs)
13 What success the method has appears largely arributable to control of deep convec+on by surface fluxes
14 What success the method has appears largely arributable to control of deep convec+on by surface fluxes (If we use constant reference temperature profile, it doesn t marer much)
15 The surface fluxes themselves are largely controlled by the imposed surface wind, but there are also nontrivial feedbacks from the convec+on itself (i.e., it s possible to get the fluxes wrong, even given the wind)
16 With wave method, substan+al sensi+vity to wavelength (in WTG, qualita+vely similar sensi+vity to ) km km 6000 km 1250 km
17 Conclusions With parameterized large- scale dynamics, we can simulate at least some part of the observed +me- variability of deep convec+on seem to get the MJO event. Both WTG and wave coupling work, the larer perhaps a lirle berer. Surface wind speed seems the most important forcing for MJO convec+on over the TOGA IFA. WTG produces too top- heavy w because it assumes T adjustment is local in z, whereas p is nonlocally related to T by hydrosta+c balance (and wave method knows this)
18 Issues and thoughts All simula+ons shown here used specified radia+on interac+ve radia+on kills the convec+on (Not true at all with tradi+onal method) Can be long- lived sensi+vity to ini+al condi+ons (mul+ple equilibria ) What do these results tell us about MJO dynamics? (We will do DYNAMO next ) If one does this with an SCM, one may get a more meaningful view into what controls the parameterized convec+on in a full 3D model.
19 The model error one can look at with tradi+onal forcing is not in precip but in, e.g., the temperature field precipita+on Poten+al Temperature Difference (model - obs)
20 The parameteriza+ons of large- scale dynamics have been used almost exclusively for idealized calcula+ons Steady precipita+on as func+on of horizontal wind speed, Sessions et al. (2010) Oscilla+ng precipita+on as func+on of +me & horiz. wave number, Kuang (2008)
Cloud-Resolving Simulations of Convection during DYNAMO
Cloud-Resolving Simulations of Convection during DYNAMO Matthew A. Janiga and Chidong Zhang University of Miami, RSMAS 2013 Fall ASR Workshop Outline Overview of observations. Methodology. Simulation results.
Cloud-resolving simulation of TOGA-COARE using parameterized largescale
Cloud-resolving simulation of TOGA-COARE using parameterized largescale dynamics Shuguang Wang 1, Adam H. Sobel 2, and Zhiming Kuang 3 -------------- Shuguang Wang, Department of Applied Physics and Applied
Evalua&ng Downdra/ Parameteriza&ons with High Resolu&on CRM Data
Evalua&ng Downdra/ Parameteriza&ons with High Resolu&on CRM Data Kate Thayer-Calder and Dave Randall Colorado State University October 24, 2012 NOAA's 37th Climate Diagnostics and Prediction Workshop Convective
Toward form func.on rela.onships for mul.cellular/ organized convec.on. Toward a moist dynamics that takes account of cloud systems
Toward form func.on rela.onships for mul.cellular/ organized convec.on or maybe Toward a moist dynamics that takes account of cloud systems (review/ essay in prep. for JMSJ) Brian Mapes University of Miami
Usama Anber 1, Shuguang Wang 2, and Adam Sobel 1,2,3
Response of Atmospheric Convection to Vertical Wind Shear: Cloud Resolving Simulations with Parameterized Large-Scale Circulation. Part I: Specified Radiative Cooling. Usama Anber 1, Shuguang Wang 2, and
GCMs with Implicit and Explicit cloudrain processes for simulation of extreme precipitation frequency
GCMs with Implicit and Explicit cloudrain processes for simulation of extreme precipitation frequency In Sik Kang Seoul National University Young Min Yang (UH) and Wei Kuo Tao (GSFC) Content 1. Conventional
Large Eddy Simulation (LES) & Cloud Resolving Model (CRM) Françoise Guichard and Fleur Couvreux
Large Eddy Simulation (LES) & Cloud Resolving Model (CRM) Françoise Guichard and Fleur Couvreux Cloud-resolving modelling : perspectives Improvement of models, new ways of using them, renewed views And
What the Heck are Low-Cloud Feedbacks? Takanobu Yamaguchi Rachel R. McCrary Anna B. Harper
What the Heck are Low-Cloud Feedbacks? Takanobu Yamaguchi Rachel R. McCrary Anna B. Harper IPCC Cloud feedbacks remain the largest source of uncertainty. Roadmap 1. Low cloud primer 2. Radiation and low
An economical scale-aware parameterization for representing subgrid-scale clouds and turbulence in cloud-resolving models and global models
An economical scale-aware parameterization for representing subgrid-scale clouds and turbulence in cloud-resolving models and global models Steven Krueger1 and Peter Bogenschutz2 1University of Utah, 2National
The formation of wider and deeper clouds through cold-pool dynamics
The formation of wider and deeper clouds through cold-pool dynamics Linda Schlemmer, Cathy Hohenegger e for Meteorology, Hamburg 2013-09-03 Bergen COST Meeting Linda Schlemmer 1 / 27 1 Motivation 2 Simulations
Month-Long 2D Cloud-Resolving Model Simulation and Resultant Statistics of Cloud Systems Over the ARM SGP
Month-Long 2D Cloud-Resolving Model Simulation and Resultant Statistics of Cloud Systems Over the ARM SGP X. Wu Department of Geological and Atmospheric Sciences Iowa State University Ames, Iowa X.-Z.
Limitations of Equilibrium Or: What if τ LS τ adj?
Limitations of Equilibrium Or: What if τ LS τ adj? Bob Plant, Laura Davies Department of Meteorology, University of Reading, UK With thanks to: Steve Derbyshire, Alan Grant, Steve Woolnough and Jeff Chagnon
Evaluation of precipitation simulated over mid-latitude land by CPTEC AGCM single-column model
Evaluation of precipitation simulated over mid-latitude land by CPTEC AGCM single-column model Enver Ramírez Gutiérrez 1, Silvio Nilo Figueroa 2, Paulo Kubota 2 1 CCST, 2 CPTEC INPE Cachoeira Paulista,
Parameterization of Cumulus Convective Cloud Systems in Mesoscale Forecast Models
DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Parameterization of Cumulus Convective Cloud Systems in Mesoscale Forecast Models Yefim L. Kogan Cooperative Institute
Using Cloud-Resolving Model Simulations of Deep Convection to Inform Cloud Parameterizations in Large-Scale Models
Using Cloud-Resolving Model Simulations of Deep Convection to Inform Cloud Parameterizations in Large-Scale Models S. A. Klein National Oceanic and Atmospheric Administration Geophysical Fluid Dynamics
Description of zero-buoyancy entraining plume model
Influence of entrainment on the thermal stratification in simulations of radiative-convective equilibrium Supplementary information Martin S. Singh & Paul A. O Gorman S1 CRM simulations Here we give more
V6 AIRS Spectral Calibra2on
V6 AIRS Spectral Calibra2on Evan Manning Bob Deen Yibo Jiang George Aumann Denis EllioA Jet Propulsion Laboratory California Ins2tute of Technology 5/4/09 1 Spectral Calibra2on Primer AIRS measures radiance
Comparison of the Vertical Velocity used to Calculate the Cloud Droplet Number Concentration in a Cloud-Resolving and a Global Climate Model
Comparison of the Vertical Velocity used to Calculate the Cloud Droplet Number Concentration in a Cloud-Resolving and a Global Climate Model H. Guo, J. E. Penner, M. Herzog, and X. Liu Department of Atmospheric,
Titelmasterformat durch Klicken. bearbeiten
Evaluation of a Fully Coupled Atmospheric Hydrological Modeling System for the Sissili Watershed in the West African Sudanian Savannah Titelmasterformat durch Klicken June, 11, 2014 1 st European Fully
Group Session 1-3 Rain and Cloud Observations
Group Session 1-3 Rain and Cloud Observations Targets in Science Plans CINDY Science Plan (Apr. 2009) DYNAMO SPO (Jul. 2009) Atmospheric Research a. Preconditioning processes b. Rossby wave c. Diabatic
A Review on the Uses of Cloud-(System-)Resolving Models
A Review on the Uses of Cloud-(System-)Resolving Models Jeffrey D. Duda Since their advent into the meteorological modeling world, cloud-(system)-resolving models (CRMs or CSRMs) have become very important
Unified Cloud and Mixing Parameterizations of the Marine Boundary Layer: EDMF and PDF-based cloud approaches
DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Unified Cloud and Mixing Parameterizations of the Marine Boundary Layer: EDMF and PDF-based cloud approaches Joao Teixeira
How To Model An Ac Cloud
Development of an Elevated Mixed Layer Model for Parameterizing Altocumulus Cloud Layers S. Liu and S. K. Krueger Department of Meteorology University of Utah, Salt Lake City, Utah Introduction Altocumulus
Developing Continuous SCM/CRM Forcing Using NWP Products Constrained by ARM Observations
Developing Continuous SCM/CRM Forcing Using NWP Products Constrained by ARM Observations S. C. Xie, R. T. Cederwall, and J. J. Yio Lawrence Livermore National Laboratory Livermore, California M. H. Zhang
Winds. Winds on a weather map are represented by wind barbs; e.g., Notes:
Winds Winds on a weather map are represented by wind barbs; e.g., flag half flag pennant wind direction The wind is blowing from the side with the flags and pennants (think an arrow with feathers) Speeds
Physical properties of mesoscale high-level cloud systems in relation to their atmospheric environment deduced from Sounders
Physical properties of mesoscale high-level cloud systems in relation to their atmospheric environment deduced from Sounders Claudia Stubenrauch, Sofia Protopapadaki, Artem Feofilov, Theodore Nicolas &
Assessing the performance of a prognostic and a diagnostic cloud scheme using single column model simulations of TWP ICE
Quarterly Journal of the Royal Meteorological Society Q. J. R. Meteorol. Soc. 138: 734 754, April 2012 A Assessing the performance of a prognostic and a diagnostic cloud scheme using single column model
Atmospheric Processes
Atmospheric Processes Steven Sherwood Climate Change Research Centre, UNSW Yann Arthus-Bertrand / Altitude Where do atmospheric processes come into AR5 WGI? 1. The main feedbacks that control equilibrium
Diurnal Cycle of Convection at the ARM SGP Site: Role of Large-Scale Forcing, Surface Fluxes, and Convective Inhibition
Thirteenth ARM Science Team Meeting Proceedings, Broomfield, Colorado, March 31-April 4, 23 Diurnal Cycle of Convection at the ARM SGP Site: Role of Large-Scale Forcing, Surface Fluxes, and Convective
Improving Low-Cloud Simulation with an Upgraded Multiscale Modeling Framework
Improving Low-Cloud Simulation with an Upgraded Multiscale Modeling Framework Kuan-Man Xu and Anning Cheng NASA Langley Research Center Hampton, Virginia Motivation and outline of this talk From Teixeira
Sub-grid cloud parametrization issues in Met Office Unified Model
Sub-grid cloud parametrization issues in Met Office Unified Model Cyril Morcrette Workshop on Parametrization of clouds and precipitation across model resolutions, ECMWF, Reading, November 2012 Table of
Project Title: Quantifying Uncertainties of High-Resolution WRF Modeling on Downslope Wind Forecasts in the Las Vegas Valley
University: Florida Institute of Technology Name of University Researcher Preparing Report: Sen Chiao NWS Office: Las Vegas Name of NWS Researcher Preparing Report: Stanley Czyzyk Type of Project (Partners
Comparison of visual observations and automated ceilometer cloud reports at Blindern, Oslo. Anette Lauen Borg Remote sensing MET-Norway
Comparison of visual observations and automated ceilometer cloud reports at Blindern, Oslo Anette Lauen Borg Remote sensing MET-Norway A test of our ceilometer data To fully exploit our new ceilometer
TOPIC: CLOUD CLASSIFICATION
INDIAN INSTITUTE OF TECHNOLOGY, DELHI DEPARTMENT OF ATMOSPHERIC SCIENCE ASL720: Satellite Meteorology and Remote Sensing TERM PAPER TOPIC: CLOUD CLASSIFICATION Group Members: Anil Kumar (2010ME10649) Mayank
Super-parametrization in climate and what do we learn from high-resolution
Super-parametrization in climate and what do we learn from high-resolution Marat Khairoutdinov Stony Brook University USA ECMWF Annual Seminar, 1-4 September 2015 scales-separation parameterized convection
MICROPHYSICS COMPLEXITY EFFECTS ON STORM EVOLUTION AND ELECTRIFICATION
MICROPHYSICS COMPLEXITY EFFECTS ON STORM EVOLUTION AND ELECTRIFICATION Blake J. Allen National Weather Center Research Experience For Undergraduates, Norman, Oklahoma and Pittsburg State University, Pittsburg,
Simulations of Clouds and Sensitivity Study by Wearther Research and Forecast Model for Atmospheric Radiation Measurement Case 4
Simulations of Clouds and Sensitivity Study by Wearther Research and Forecast Model for Atmospheric Radiation Measurement Case 4 Jingbo Wu and Minghua Zhang Institute for Terrestrial and Planetary Atmospheres
Theory of moist convection in statistical equilibrium
Theory of moist convection in statistical equilibrium By analogy with Maxwell-Boltzmann statistics Bob Plant Department of Meteorology, University of Reading, UK With thanks to: George Craig, Brenda Cohen,
ASSESSMENT OF THE CAPABILITY OF WRF MODEL TO ESTIMATE CLOUDS AT DIFFERENT TEMPORAL AND SPATIAL SCALES
16TH WRF USER WORKSHOP, BOULDER, JUNE 2015 ASSESSMENT OF THE CAPABILITY OF WRF MODEL TO ESTIMATE CLOUDS AT DIFFERENT TEMPORAL AND SPATIAL SCALES Clara Arbizu-Barrena, David Pozo-Vázquez, José A. Ruiz-Arias,
Convective Vertical Velocities in GFDL AM3, Cloud Resolving Models, and Radar Retrievals
Convective Vertical Velocities in GFDL AM3, Cloud Resolving Models, and Radar Retrievals Leo Donner and Will Cooke GFDL/NOAA, Princeton University DOE ASR Meeting, Potomac, MD, 10-13 March 2013 Motivation
Impact of microphysics on cloud-system resolving model simulations of deep convection and SpCAM
Impact of microphysics on cloud-system resolving model simulations of deep convection and SpCAM Hugh Morrison and Wojciech Grabowski NCAR* (MMM Division, NESL) Marat Khairoutdinov Stony Brook University
Stratosphere-Troposphere Exchange in the Tropics. Masatomo Fujiwara Hokkaido University, Japan (14 March 2006)
Stratosphere-Troposphere Exchange in the Tropics Masatomo Fujiwara Hokkaido University, Japan (14 March 2006) Contents 1. Structure of Tropical Atmosphere 2. Water Vapor in the Stratosphere 3. General
Atmospheric Dynamics of Venus and Earth. Institute of Geophysics and Planetary Physics UCLA 2 Lawrence Livermore National Laboratory
Atmospheric Dynamics of Venus and Earth G. Schubert 1 and C. Covey 2 1 Department of Earth and Space Sciences Institute of Geophysics and Planetary Physics UCLA 2 Lawrence Livermore National Laboratory
SPOOKIE: The Selected Process On/Off Klima Intercomparison Experiment
SPOOKIE: The Selected Process On/Off Klima Intercomparison Experiment Mark Webb, Adrian Lock (Met Office), Sandrine Bony (IPSL), Chris Bretherton (UW), Tsuyoshi Koshiro, Hideaki Kawai (MRI), Thorsten Mauritsen
Trimodal cloudiness and tropical stable layers in simulations of radiative convective equilibrium
GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L08802, doi:10.1029/2007gl033029, 2008 Trimodal cloudiness and tropical stable layers in simulations of radiative convective equilibrium D. J. Posselt, 1 S. C. van
Convective Systems over the South China Sea: Cloud-Resolving Model Simulations
VOL. 60, NO. 24 JOURNAL OF THE ATMOSPHERIC SCIENCES 15 DECEMBER 2003 Convective Systems over the South China Sea: Cloud-Resolving Model Simulations W.-K. TAO Laboratory for Atmospheres, NASA Goddard Space
Cloud Radiation and the Law of Attraction
Convec,on, cloud and radia,on Convection redistributes the thermal energy yielding (globally-averaged), a mean lapse rate of ~ -6.5 o C/km. Radiative processes tend to produce a more negative temperature
Introduction to the forecasting world Jukka Julkunen FMI, Aviation and military WS
Boundary layer challenges for aviation forecaster Introduction to the forecasting world Jukka Julkunen FMI, Aviation and military WS 3.12.2012 Forecast for general public We can live with it - BUT Not
Climate Models: Uncertainties due to Clouds. Joel Norris Assistant Professor of Climate and Atmospheric Sciences Scripps Institution of Oceanography
Climate Models: Uncertainties due to Clouds Joel Norris Assistant Professor of Climate and Atmospheric Sciences Scripps Institution of Oceanography Global mean radiative forcing of the climate system for
1D shallow convective case studies and comparisons with LES
1D shallow convective case studies and comparisons with CNRM/GMME/Méso-NH 24 novembre 2005 1 / 17 Contents 1 5h-6h time average vertical profils 2 2 / 17 Case description 5h-6h time average vertical profils
I. Cloud Physics Application Open Questions. II. Algorithm Open Issues. III. Computer Science / Engineering Open issues
I. Cloud Physics Application Open Questions II. Algorithm Open Issues III. Computer Science / Engineering Open issues 1 Part I. Cloud Physics Application Open Questions 2 Open mul)scale problems relevant
Evaluating the Impact of Cloud-Aerosol- Precipitation Interaction (CAPI) Schemes on Rainfall Forecast in the NGGPS
Introduction Evaluating the Impact of Cloud-Aerosol- Precipitation Interaction (CAPI) Schemes on Rainfall Forecast in the NGGPS Zhanqing Li and Seoung-Soo Lee University of Maryland NOAA/NCEP/EMC Collaborators
Cloud Correction and its Impact on Air Quality Simulations
Cloud Correction and its Impact on Air Quality Simulations Arastoo Pour Biazar 1, Richard T. McNider 1, Andrew White 1, Bright Dornblaser 3, Kevin Doty 1, Maudood Khan 2 1. University of Alabama in Huntsville
The impact of parametrized convection on cloud feedback.
The impact of parametrized convection on cloud feedback. Mark Webb, Adrian Lock (Met Office) Thanks also to Chris Bretherton (UW), Sandrine Bony (IPSL),Jason Cole (CCCma), Abderrahmane Idelkadi (IPSL),
How To Understand And Understand The Physics Of Clouds And Precipitation
Deutscher Wetterdienst Research and Development Physical Parameterizations: Cloud Microphysics and Subgrid-Scale Cloudiness Axel Seifert Deutscher Wetterdienst, Offenbach Deutscher Wetterdienst Research
Including thermal effects in CFD simulations
Including thermal effects in CFD simulations Catherine Meissner, Arne Reidar Gravdahl, Birthe Steensen [email protected], [email protected] Fjordgaten 15, N-125 Tonsberg hone: +47 8 1800 Norway Fax:
Real-time Ocean Forecasting Needs at NCEP National Weather Service
Real-time Ocean Forecasting Needs at NCEP National Weather Service D.B. Rao NCEP Environmental Modeling Center December, 2005 HYCOM Annual Meeting, Miami, FL COMMERCE ENVIRONMENT STATE/LOCAL PLANNING HEALTH
Turbulence-microphysics interactions in boundary layer clouds
Turbulence-microphysics interactions in boundary layer clouds Wojciech W. Grabowski 1 with contributions from D. Jarecka 2, H. Morrison 1, H. Pawlowska 2, J.Slawinska 3, L.-P. Wang 4 A. A. Wyszogrodzki
O.F.Wind Wind Site Assessment Simulation in complex terrain based on OpenFOAM. Darmstadt, 27.06.2012
O.F.Wind Wind Site Assessment Simulation in complex terrain based on OpenFOAM Darmstadt, 27.06.2012 Michael Ehlen IB Fischer CFD+engineering GmbH Lipowskystr. 12 81373 München Tel. 089/74118743 Fax 089/74118749
Clouds and Convection
Max-Planck-Institut Clouds and Convection Cathy Hohenegger, Axel Seifert, Bjorn Stevens, Verena Grützun, Thijs Heus, Linda Schlemmer, Malte Rieck Max-Planck-Institut Shallow convection Deep convection
Improving Hydrological Predictions
Improving Hydrological Predictions Catherine Senior MOSAC, November 10th, 2011 How well do we simulate the water cycle? GPCP 10 years of Day 1 forecast Equatorial Variability on Synoptic scales (2-6 days)
A new positive cloud feedback?
A new positive cloud feedback? Bjorn Stevens Max-Planck-Institut für Meteorologie KlimaCampus, Hamburg (Based on joint work with Louise Nuijens and Malte Rieck) Slide 1/31 Prehistory [W]ater vapor, confessedly
IMPACT OF SAINT LOUIS UNIVERSITY-AMERENUE QUANTUM WEATHER PROJECT MESONET DATA ON WRF-ARW FORECASTS
IMPACT OF SAINT LOUIS UNIVERSITY-AMERENUE QUANTUM WEATHER PROJECT MESONET DATA ON WRF-ARW FORECASTS M. J. Mueller, R. W. Pasken, W. Dannevik, T. P. Eichler Saint Louis University Department of Earth and
Development of an Integrated Data Product for Hawaii Climate
Development of an Integrated Data Product for Hawaii Climate Jan Hafner, Shang-Ping Xie (PI)(IPRC/SOEST U. of Hawaii) Yi-Leng Chen (Co-I) (Meteorology Dept. Univ. of Hawaii) contribution Georgette Holmes
